首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
The natural radioactivity due to presence of (226)Ra, (232)Th and (40)K radionuclides in raw materials, intermediate products (clinker) and end products (22 different cement types) was measured using a gamma-ray spectrometry with HPGe detector. The specific radioactivity of (226)Ra, (232)Th and (40)K in the analyzed cement samples ranged from 12.5+/-0.3 to 162.5+/-1.7Bqkg(-1) with a mean of 40.5+/-26.7Bqkg(-1), 6.7+/-0.3 to 124.9+/-2.5Bqkg(-1) with a mean of 26.1+/-18.9Bqkg(-1) and 64.4+/-2.3 to 679.3+/-18.2Bqkg(-1) with a mean of 267.1+/-102.4Bqkg(-1), respectively. The radium equivalent activity (Ra(eq)), the gamma-index, the emanation coefficient, the (222)Rn mass exhalation rate and the indoor absorbed dose rate were estimated for the radiation hazard of the natural radioactivity in all samples. The calculated Ra(eq) values of cement samples (37.2+/-8.7-331.1+/-15.5Bqkg(-1) with a mean of 98.3+/-53.8) are lower than the limit of 370Bqkg(-1) set for building materials. The Ra(eq) values were compared with the corresponding values for cement of different countries. The mean indoor absorbed dose rate is slightly higher than the population-weighted average of 84nGyh(-1).  相似文献   

2.
The specific activity of (226)Ra, (232)Th and (40)K in 52 Turkish pumice samples collected from 11 geographical areas located in Central Anatolia, Eastern Anatolia, Mediterranean and Aegean regions was determined by gamma-ray spectrometry with a high-purity germanium (HPGe) detector. The specific activity of (226)Ra, (232)Th and (40)K ranged from 12.7+/-0.5 to 256.2+/-9.1Bqkg(-1) with a mean of 89.1+/-65.2Bqkg(-1), 12.3+/-1.0 to 237.9+/-12.2Bqkg(-1) with a mean of 87.0+/-61.4Bqkg(-1) and 300.1+/-5.5 to 1899.0+/-30.8Bqkg(-1) with a mean of 1211.9+/-419.8Bqkg(-1), respectively. Elemental concentrations were determined for U (from 1.0 to 20.7ppm with a mean of 7.2+/-5.3ppm), Th (from 3.0 to 58.6ppm with a mean of 21.4+/-15.1ppm) and K (from 1.0 to 6.1% with a mean of 3.9+/-1.3%). The radium equivalent activity (Ra(eq)), the activity index, the emanation coefficient, the (222)Rn mass exhalation rate, the indoor absorbed dose rate and the effective dose rate were estimated for the radiation hazard of the natural radioactivity in all samples. The calculated mean Ra(eq) value was 306.6+/-177.7Bqkg(-1) (54.6+/-5.5 to 737.6+/-49.0Bqkg(-1)) for all pumice samples. This value is lower than the recommended limit value of 370Bqkg(-1) for building raws and products. The emanation coefficient and the (222)Rn mass exhalation rate of all samples ranged from 29.4 to 42.9% with a mean of 36.2% and from 11.0 to 196.4muBqkg(-1)s(-1) with a mean of 73.5muBqkg(-1)s(-1), respectively. The mean indoor absorbed dose rate and the corresponding mean effective dose rate were 274.6+/-153.6nGyh(-1) (50.4-644.6nGyh(-1)) and 1.35+/-0.75mSvy(-1) (0.24-3.16mSvy(-1)), respectively. For all pumice samples the mean indoor absorbed dose rate is about three times higher than the population-weighted average of 84nGyh(-1), while the mean effective dose rate values except for PUM 05, PUM 06, PUM 10 and PUM 15 exceed the dose criterion of 1mSvy(-1).  相似文献   

3.
Radon-222 emanation fractions were determined for barite scale deposits associated with petroleum production tubing and soil contaminated with naturally occurring radioactive material (NORM). Samples were analyzed for 226Ra concentration, the results of which were used to calculate the 222Rn emanation fraction for the sample. An important parameter determining the overall Rn activity flux from a solid medium, 222Rn emanation fraction represents the fraction of 222Rn produced that enters the interconnected pore space within a medium contaminated with 226Ra before the 222Rn undergoes radioactive decay. The primary objective of the study was to determine whether 222Rn emanation fractions from pipe scale and soil from petroleum production sites are similar to those of uranium mill tailings. Pipe scale samples were collected at four sites representing a wide geographical area, and consisted primarily of barite scale where Ra atoms have replaced a fraction of the Ba within the crystal lattice of the scale. Soil samples were collected at five sites, from areas exhibiting elevated surface gamma exposure rates indicating the presence of NORM. For comparison, 226Ra concentrations and 222Rn emanation fraction were also determined for uranium mill tailings samples provided from a site in Utah. Although 2226Ra concentrations from pipe scale samples were similar to those found in uranium mill tailings, 222Rn emanation fractions from scale were generally lower. Emanation fractions from each data set were statistically different from those of mill tailings (p < or = 0.01). The differences are probably due to physical differences between the two media and to the method by which the Ra is deposited in the material. Radon emanation from soils was extremely variable owing not only to differences in physical and chemical soil properties, but also to the means by which NORM has entered the soil. Although additional emanation measurements from other sites are needed, the data collected at these sites indicate that regulations intended to protect human health from 222Rn inhalation should consider the type and properties of the medium in which the NORM is contained, rather than relying strictly on concentrations of the parent 226Ra.  相似文献   

4.
Phosphogypsum board is a popular construction material used for housing panels in Korea. Phosphogypsum often contains (226)Ra which decays into (222)Rn through an alpha transformation. (222)Rn emanated from the (226)Ra-bearing phosphogypsum board has drawn the public concern due to its potential radiological impacts to indoor occupants. The emanation rate of (222)Rn from the board is estimated in this paper. A mathematical model of the emanation rate of (222)Rn from the board is presented and validated through a series of experiments. The back diffusion effect due to accumulation of (222)Rn-laden air was incorporated in the model and found to have a strong impact on the (222)Rn emanation characteristics.  相似文献   

5.
Measurements of radon exhalation for a total of 50 selected samples of construction materials used in Saudi Arabia were taken using a radon gas analyzer. These materials included sand, aggregate, cement, gypsum, hydrated lime, ceramics and granite. It was found that the granite samples were the main source of radon emanations. A total of 32 local and imported granite samples were tested. It was found that the radon exhalation rates per unit area from these granite samples varied from not detectable to 10.6 Bq m-2 h-1 with an average of 1.3 Bq m-2 h-1. The linear correlation coefficient between emanated radon and radium content was 0.92. The normalized radon exhalation rates from 2.0 cm thick granite samples varied from not detectable to 0.068 (Bq m-2 h-1)/(Bq kg-1) with an average of 0.030 (Bq m-2 h-1)/(Bq kg-1). The average radon emanation of the granite samples was found to be 21% of the total radium concentration. Therefore, granite can be a source of indoor radon as well as external gamma-radiation from the uranium decay series.  相似文献   

6.
It is known that in soils and sediments moisture adsorbed on particle surfaces and in the pore system significantly affects the behaviour of recoiling radon (222Rn) atoms after decay of parent 226Ra, leading to increased 222Rn emanation. As a first step in an effort to characterize the 222Rn source term in mineralised sediments in the present study, complementing previous studies in the area, granitic esker sand samples were collected in order to test how moisture content affects 222Rn emanation at different grain size fractions. Emanation fractions measured for natural samples were compared with theoretical calculations. Six different grain size fractions were studied at 0%, 5% and 10% moisture contents relative to the mass of solids. In a further study necessary complementary information on the chemical and structural distribution of 226Ra was gained by selective leaching experiments. The results showed that 226Ra concentration increases from 50 Bq/kg at grain size 1-2 mm to 200 Bq/kg at grain size <0.063 mm. Respectively, the emanation factor increased from 0.12 to 0.30 at 5% moisture content. Both emanation factor and radium concentration increased significantly when grain size was below 0.125-0.250 mm. Above this fraction, the emanation fraction was approximately constant, 0.13 at 5% moisture content. In most of the grain size fractions, emanation reaches its maximum at 5% moisture content, being twice as high as in a dry sample. For the small particles (<0.063 mm) the 226Ra distribution is rather complex and depends on the mineral composition compared to larger particles wherein emanation from the internal pore system and the adjacent matrix is dominating over the contribution from external surface.  相似文献   

7.
Phosphogypsum (PG) has been traditionally applied as Ca-amendment in saline marsh soils in SW Spain, where available PG has 710 ± 40 Bq kg−1 of 226Ra. This work assesses the potential radiological risk for farmers through 222Rn exhalation from PG-amended soils and by inhalation of PG-dust during its application. A three-year field experiment was conducted in a commercial farm involving two treatments: control and 25 t PG ha−1 with three replicates (each 0.5 ha plots). The 222Rn exhalation rate was positively correlated with potential evapotranspiration, which explained 67% of the variability. Statistically significant differences between the control and PG treatments were not found for 222Rn exhalation rates, and mean values were within the lowest quartile of the typical range for 222Rn exhalation from soils. Airborne dust samples were collected during the application of PG and sugar-beet sludge amendments. The highest PG-attributable 226Ra concentration in the dust samples was 3.3 × 102 μBq m−3, implying negligible dose increment for exposed workers.  相似文献   

8.
The ambient dose equivalent rate is caused by ionizing radiation of radionuclides in the atmosphere and on the ground surface as well as by cosmic radiation. Seasonal and diurnal variations of the ambient dose equivalent rate (ADER) in the ground level air are influenced by the concentration of 222Rn daughters. The 222Rn concentration in the ground level atmosphere, in turn, depends on the rate of the 222Rn exhalation from soil and turbulent air mixing. Its diurnal and seasonal variations depend on meteorological conditions. The aim of this study is to estimate the influence of variations of the rate of the 222Rn exhalation from soil and its concentrations in the ground level air on variations of ADER in the ground level air, as well as the dependence of these parameters on meteorological conditions. The 222Rn diffusion coefficient and its exhalation rate in undisturbed loamy soil have been determined. The 222Rn concentration in the soil air and its concentration in the ground level air correlate inversely (correlation coefficient is r = -0.62). The main factors determining the 222Rn exhalation from soil are: the soil temperature (r = 0.64), the difference in temperature of soil and air (r = 0.57), and the precipitation amount (r = 0.50). The intensity of gamma radiation in the ground level air is mostly related to the 222Rn concentration in the air (r = 0.62), while the effect of the exhalation rate from soil is relatively low (r = 0.36). It has been shown that ADER due to 222Rn progeny causes only 7-16% of the total ADER and influences its variation. The comparison of variations of ADER due to 222Rn progeny and the total ADER during several years shows that these parameters correlate positively.  相似文献   

9.
The Pechelbronn oilfield (Rhine Graben, France), where mining activity ended in the 1960s, has been used for waste disposal for twenty years. Since the wastes are varied, work is underway to identify the discharged materials and their derivatives, as well as to locate and quantify potential discharge sites. Two major goals were assigned to the present work. The first was to identify or refine the location of hidden structures that could facilitate gas emanation up to the surface, by studying soil gas concentrations (mainly 222Rn, CO2, CH4 and helium) and carbon isotope ratios in the CO2 phase. The second was devoted to examining, from a health and safety viewpoint, if the use of the oilfield as a waste disposal site might have led to enhanced or modified gas emanation throughout the area.It appeared that CO2 and 222Rn evolution in the whole area were similar, except near some of the faults and fractures that are known through surface mapping and underground observations. These 222Rn and CO2 anomalies made it possible to highlight more emissive zones that are either related to main faults or to secondary fractures acting as migration pathways. In that sense, the CO2 phase can be used to evaluate 222Rn activities distant from tectonic structures but can lead to erroneous evaluations near to gas migration pathways. Dumping of wastes, as well as oil residues, did not appear to have a strong influence on soil gaseous species and emanation. Similarly, enhanced gas migration due to underground galleries and exploitation wells has not been established. Carbon isotope ratios suggested a balance of biological phenomena, despite the high CO2 contents reached. Other monitored gaseous species (N2, Ar, H2 and alkanes), when detected, always showed amounts close to those found subsurface and/or in atmospheric gases.  相似文献   

10.
Phosphogypsum (PG) is a waste product of the phosphoric acid production process and contains, generally, high activity concentrations of uranium series radionuclides. It is stored in piles formed over the last 40 years close to the town of Huelva (Southwest of Spain). The very broad expanse of the PG piles (about 1200 ha) produces a local, but unambiguous, radioactive impact to their surroundings. In 1992, the regional government of Andalusia restored an area of 400 ha by covering it with a 25-cm thick layer of natural soil and, currently, there is an additional zone of 400 ha in course of restoration (unrestored) and the same area of active PG stacks. Due to the high activity concentration of (226)Ra in active PG stacks (average 647 Bq kg(-1)), a significant exhalation of (222)Rn could be produced from the surface of the piles. Measurements have been made of (222)Rn exhalation from active PG stacks and from restored and unrestored zones. The (222)Rn exhalation from unrestored zones is half of that of the active PG stacks. Following restoration, the (222)Rn exhalation is approximately eight times lower than the active PG stacks. The activity concentrations of natural radionuclides ((226)Ra, (40)K, (232)Th) in the mentioned zones have been determined. This study was also conducted to determine the effect of (226)Ra activity concentration on the (222)Rn exhalation, and a good correlation was obtained between the (222)Rn exhalation and (226)Ra activity, porosity and density of soil.  相似文献   

11.
Radon-222 exhalation from the ground surface depends upon a number of variables such as the 226Ra activity concentration and its distribution in soil grains; soil grain size; soil porosity, temperature and moisture; atmospheric pressure, rainfall and temperature. In this study, 222Rn exhalation flux density measurements within and around the Ranger uranium mine in northern Australia were performed to investigate the effect of these variables within a tropical region. Measurements were taken at the waste rock dumps, ore stockpiles, mine pits, and at sites where effluent water with elevated 226Ra concentration has been spray irrigated over land, as well as at sites outside the mine. The sites selected represented a variety of geomorphic regions ranging from uranium-bearing rocks to ambient soils. Generally, wet season rains reduced 222Rn exhalation but at a few sites the onset of rains caused a step rise in exhalation flux densities. The results show that parameters such as 226Ra activity concentration, soil grain size and soil porosity have a marked effect on 222Rn flux densities. For similar geomorphic sites, 226Ra activity concentration is a dominant factor, but soil grain size and porosity also influence 222Rn exhalation. Surfaces with vegetation showed higher exhalation flux densities than their barren counterparts, perhaps because the associated root structure increases soil porosity and moisture retention. Repeated measurements over one year at eight sites enabled an analysis of precipitation and soil moisture effects on 222Rn exhalation. Soil moisture depth profiles varied both between seasons and at different times during the wet season, indicating that factors such as duration, intensity and time between precipitation events can influence 222Rn flux densities considerably.  相似文献   

12.
High concentrations of natural radionuclides in building materials can result in high dose rates indoors, from both internal and external exposure. In dose calculations, the main radionuclides of interest are 226Ra, 232Th and 40K. Usually much attention is paid to 226Ra due to 222Rn exhalation and the subsequent internal exposure. Other radionuclides of the uranium series such as 238U and 210Pb, emitting low energy photons are not usually determined and an assumption of radioactive equilibrium is made. The above assumption is seldom checked mainly because of the difficulties in the gamma-spectroscopic analysis of low energy photons. For the determination of radionuclides emitting low-energy photons, in samples like building materials where intense self-absorption of the photons exists, a method for self-absorption correction has been developed. The method needs as input the linear attenuation coefficient mu for the material under analysis. This paper presents: 1. Correlations in the form mu = f(rho,E) developed for the estimation of the linear attenuation coefficient mu (cm(-1)), as a function of the material packing density p (g cm(-3)) and the photon energy E (keV), for building materials as well as other materials of environmental importance. 2. Gamma-spectroscopic analysis techniques used for the determination of 238U, 226Ra, 210Pb, 232Th and 40K in environmental samples, together with the results obtained from the analysis of building materials used in Greece, and industrial by-products used for the production of building materials. Among the techniques used, one is based on the direct determination of 226Ra and 235U from the analysis of the multiplet photopeak at approximarely186 keV. 3. Results from radon exhalation measurements of building materials such as cement and fly-ash and building structures conducted in the radon chambers in our Laboratory. Based on the above results, dosimetric calculations are also reported.  相似文献   

13.
In controlling the natural radiation exposure for the residents of dwellings, it is necessary to determine the levels of natural radioactivity (external exposure) and radon exhalation rate (internal exposure) from building materials. Using a high-resolution gamma ray spectrometry system, the activity concentration of natural radionuclides was measured. The radon exhalation rate was measured by hermetically closing the sample in a container and following the radon activity growth as a function of time. Three different methods were applied in order to find the most appropriate, i.e. that with the less uncertainty for the less exposure time. Typical building materials were analyzed in order to examine the external and internal exposures. In addition, the total annual effective dose was evaluated for the residents of a typical Greek dwelling.  相似文献   

14.
We propose a new methodology for predicting areas with a strong potential for radon (222Rn) exhalation at the soil surface. This methodology is based on the Rn exhalation rate quantification, starting from a precise characterisation of the main local geological and pedological parameters that control the radon source and its transport to the soil/atmosphere interface. It combines a cross mapping analysis of these parameters into a geographic information system with a model of the Rn vertical transport by diffusion in the soil. The rock and soil chemical and physical properties define the entry parameters of this code (named TRACHGEO) which calculates the radon flux density at the surface. This methodology is validated from in situ measurements of radon levels at the soil/atmosphere interface and in dwellings. We apply this approach to an area located in western France and characterised by a basement displaying a heterogeneous radon source potential, as previously demonstrated by lelsch et al. (J. Environ. Radioactivity 53(1) (2001) 75). The new results obtained show that spatial heterogeneity of pedological characteristics in addition to basement geochemistry--must be taken into account to improve the mapping resolution. The TRACHGEO forecasts explain the Rn exhalation variability on a larger scale and in general correlate well with in situ observations. Moreover, the radon-prone sectors identified by this approach generally correspond to the location of the dwellings showing the highest radon concentrations.  相似文献   

15.
An extensive research project to investigate the radioactive properties of Cuban building materials was carried out because there is a lack of information on the radioactivity of such materials in Cuba. In the framework of this project 44 samples of commonly used raw materials and building products were collected in five Cuban provinces. The activity concentrations of natural radionuclides were determined by gamma ray spectrometry using a p-type coaxial high purity germanium detector and their mean values were in the ranges: 9-857Bqkg(-1) for (40)K; 6-57Bqkg(-1) for (226)Ra; and 1.2-22Bqkg(-1) for (232)Th. The radium equivalent activity in the 44 samples varied from 4Bqkg(-1) (wood) to 272Bqkg(-1) (brick). A high pressure ionisation chamber was used to measure the indoor absorbed dose rate in 543 dwellings and workplaces in five Cuban provinces. The average absorbed dose rates in air ranged from 43nGyh(-1) (Holguín) to 73nGyh(-1) (Camagüey) and the corresponding population-weighted annual effective dose due to external gamma radiation was estimated to be 145+/-40microSv. This value is 51% lower than the effective dose due to internal exposure from inhalation of decay products of (222)Rn and (220)Rn and it is 16% higher than the calculated value for the typical room geometry of a Cuban house.  相似文献   

16.
Recent concern has been devoted to the hazard arising from naturally occurring radioactive materials (NORM) in oil and gas facilities. Twenty-seven petroleum samples were collected from Riyadh Refinery. Fourteen samples were products and 13 were waste samples; three of them were scale samples and 10 were sludge samples. The specific radioactivities of (238)U, (232)Th, (226)Ra, (224)Ra, (40)K, and (235)U for all samples were determined using high-resolution gamma-ray spectrometry. The radium equivalent activity, radiation hazard indices and absorbed dose rate in air for all waste samples were estimated. The radon emanation coefficient of the waste samples was estimated. It ranged between 0.574 and 0.154. The age of two scale samples was determined and found to be 2.39 and 3.66 years. The chemical structure of the waste samples was investigated using X-ray florescence analysis (XRF) and Mg, Al, Si, S, Cl, Ca and Fe were found in all samples. From this study, it was noticed that the concentrations of the natural radionuclides in the petroleum wastes were higher than that of the petroleum products.  相似文献   

17.
The present study investigates the short- and long-term effects of radon ((222)Rn) released from water on the progeny exposure in a thermal spa. For the purposes of this work, the Polichnitos spa was used as a case study. The bathroom was supplied with water containing 110-210 kBq m(-3) of (222)Rn. The (222)Rn concentration in air and the short-lived (222)Rn progenies in attached and unattached form were monitored into the bathroom and the surrounding premises. The equilibrium factor (F-factor) and the unattached fraction were estimated. The results of this study show that water flow during bath filling is by far the dominant mechanism by which (222)Rn is released in the air of the bathroom. The progeny exposure was correlated linearly with the (222)Rn concentration in the entering water. The annual effective dose received by a worker was found to be below the lower limit value of 3 mSv recommended by ICRP 65. The dose limit was exceeded only for water containing more than 300 kBq m(-3).  相似文献   

18.
The natural radioactivity of 226Ra and 228Ra in scale samples taken from pipes used in several local water wells was investigated. The results showed 226Ra activities to be varying from 1284 to 3613 Bq/kg whereas, the 228Ra concentrations did not show any significant variation, all being low, below 30 Bq/kg. The 222Rn exhalations from these scale samples were also measured and compared with the 226Ra contents. The average ratio of 222Rn/226Ra was 31%. Chemical analyses showed that the main constituent of the scale samples was iron. The radiation dose rates from the pipes and scale were up to 100nSv/h. Although not a major hazard this could present a long-term risk if the scale materials were handled indiscriminately.  相似文献   

19.
Using gamma-spectroscopy and CR-39 detector, concentration C of naturally occurring radioactive nuclides (226)Ra, (222)Rn, (214)Bi, (228)Ac, (212)Pb, (212)Bi and (40)K, has been measured in sand, cement, gravel, gypsum, and paint, which are used as building materials in Lebanon. Sand samples were collected from 10 different sandbank locations in the southern part of the country. Gravel samples of different types and forms were collected from several quarries. White and gray cement fabricated by Shaka Co. were obtained. gamma-spectroscopy measurements in sand gave Ra concentration ranging from 4.2+/-0.4 to 60.8+/-2.2 Bq kg(-1) and Ra concentration equivalents from 8.8+/-1.0 to 74.3+/-9.2 Bq kg(-1). The highest Ra concentration was in gray and white cement having the values 73.2+/-3.0 and 76.3+/-3.0 Bq kg(-1), respectively. Gravel results showed Ra concentration between 20.2+/-1.0 and 31.7+/-1.4 Bq kg(-1) with an average of 27.5+/-1.3 Bq kg(-1). Radon concentration in paint was determined by CR-39 detector. In sand, the average (222)Rn concentration ranged between 291+/-69 and 1774+/-339 Bq m(-3) among the sandbanks with a total average value of 704+/-139 Bq m(-3). For gravel, the range was found to be from 52+/-9 to 3077+/-370 Bq m(-3) with an average value of 608+/-85 Bq m(-3). Aerial and mass exhalation rates of (222)Rn were also calculated and found to be between 44+/-7 and 2226+/-267 mBq m(-2)h(-1), and between 0.40+/-0.07 and 20.0+/-0.3 mBq kg(-1)h(-1), respectively.  相似文献   

20.
The expectation of elevated 222Rn levels in modern homes that have low air interchange rates with the outdoor air caused us to survey both solar and conventional homes in northeastern New York State. As a group, homes that are more airtight have three times the 222Rn levels of the conventional homes; they have other specific problems that are introduced or exaggerated by modern construction. For example, the highest two levels of radon in the solar homes give doses over 30 years that are known to produce lung cancer in 1% of uranium miners. Summer readings in more than one-half of the cases are different from winter ones by a factor of two or more, so that year-round measurements are necessary for precise dosimetry. The track-etching technique is ideally suited for such measurements. Radon emanation measurements on soils and sand demonstrate a considerable variety of release rates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号