首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 906 毫秒
1.
Despite the growing popularity of ecological restoration approach, data on primary succession on toxic post-mining substrates, under site environmental conditions which considerably differ from the surrounding environment, are still scarce. Here, we studied the spontaneous vegetation development on an unusual locality created by long-term and large-scale fluvial deposition of sulphidic tailings from a copper mine in a pronouncedly xerothermic, calcareous surrounding. We performed multivariate analyses of soil samples (20 physical and chemical parameters) and vegetation samples (floristic and structural parameters in three types of occurring forests), collected along the pollution gradients throughout the affected floodplain. The nature can cope with two types of imposed constraints: (a) excessive Cu concentrations and (b) very low pH, combined with nutrient deficiency. The former will still allow convergence to the original vegetation, while the latter will result in novel, depauperate assemblages of species typical for cooler and moister climate. Our results for the first time demonstrate that with the increasing severity of environmental filtering, the relative importance of the surrounding vegetation for primary succession strongly decreases.  相似文献   

2.
The Arctic land area has warmed by >1 °C in the last 30 years and there is evidence that this has led to increased productivity and stature of tundra vegetation and reduced albedo, effecting a positive (amplifying) feedback to climate warming. We applied an individual-based dynamic vegetation model over the Arctic forced by observed climate and atmospheric CO2 for 1980–2006. Averaged over the study area, the model simulated increases in primary production and leaf area index, and an increasing representation of shrubs and trees in vegetation. The main underlying mechanism was a warming-driven increase in growing season length, enhancing the production of shrubs and trees to the detriment of shaded ground-level vegetation. The simulated vegetation changes were estimated to correspond to a 1.75 % decline in snow-season albedo. Implications for modelling future climate impacts on Arctic ecosystems and for the incorporation of biogeophysical feedback mechanisms in Arctic system models are discussed.  相似文献   

3.
This study was conducted in the Swedish sub-Arctic, near Abisko, in order to assess the direction and scale of possible vegetation changes in the alpine–birch forest ecotone. We have re-surveyed shrub, tree and vegetation data at 549 plots grouped into 61 clusters. The plots were originally surveyed in 1997 and re-surveyed in 2010. Our study is unique for the area as we have quantitatively estimated a 19% increase in tree biomass mainly within the existing birch forest. We also found significant increases in the cover of two vegetation types—“birch forest-heath with mosses” and “meadow with low herbs”, while the cover of snowbed vegetation decreased significantly. The vegetation changes might be caused by climate, herbivory and past human impact but irrespective of the causes, the observed transition of the vegetation will have substantial effects on the mountain ecosystems.  相似文献   

4.
Miller PA  Smith B 《Ambio》2012,41(Z3):281-291
The Arctic land area has warmed by > 1 °C in the last 30 years and there is evidence that this has led to increased productivity and stature of tundra vegetation and reduced albedo, effecting a positive (amplifying) feedback to climate warming. We applied an individual-based dynamic vegetation model over the Arctic forced by observed climate and atmospheric CO(2) for 1980-2006. Averaged over the study area, the model simulated increases in primary production and leaf area index, and an increasing representation of shrubs and trees in vegetation. The main underlying mechanism was a warming-driven increase in growing season length, enhancing the production of shrubs and trees to the detriment of shaded ground-level vegetation. The simulated vegetation changes were estimated to correspond to a 1.75 % decline in snow-season albedo. Implications for modelling future climate impacts on Arctic ecosystems and for the incorporation of biogeophysical feedback mechanisms in Arctic system models are discussed.  相似文献   

5.
Leif Kullman 《Ambio》2010,39(2):159-169
Alpine plant life is proliferating, biodiversity is on the rise and the mountain world appears more productive and inviting than ever. Upper range margin rise of trees and low-altitude (boreal) plant species, expansion of alpine grasslands and dwarf-shrub heaths are the modal biotic adjustments during the past few decades, after a century of substantial climate warming in the Swedish Scandes. This course of biotic landscape evolution has reached historical dimensions and broken a multi-millennial trend of plant cover retrogression, alpine tundra expansion, floristic and faunal impoverishment, all imposed by progressive and deterministic neoglacial climate cooling. Continued modest warming over the present century will likely be beneficial to alpine biodiversity, geoecological stability, resilience, sustainable reindeer husbandry and aesthetic landscape qualities. These aspects are highlighted by an integrative review of results from long-term monitoring of subalpine/alpine vegetation in the Swedish Scandes. This forms the basis for some tentative projections of landscape transformations in a potentially warmer future. Notably, these results and projections are not necessarily valid in other regions and differ in some respects from model predictions. Continued monitoring is mandatory as a basis for generation of more realistic vegetation and ecosystem models.  相似文献   

6.
Large herbivores play key roles in terrestrial ecosystems. Continuous defaunation processes have produced cascade effects on plant community composition, vegetation structure, and even climate. Wood-pastures were created by traditional management practices that have maintained open structures and biodiversity for millennia. In Europe, despite the broad recognition of their biological importance, such landscapes are declining due to land-use changes. This calls for finding urgent solutions for wood-pasture conservation. To test whether introducing an ecological replacement of an extinct wild horse could have positive effects on wood-pasture restoration, we designed a 3-year rewilding experiment. Horses created a more open wood-pasture structure by browsing on seedlings and saplings, affected tree composition via selective browsing and controlled the colonization of woody vegetation in grassland-dominated areas. Thus, rewilding could be a potential avenue for wood-pasture restoration and biodiversity conservation. However, such benefits may not materialize without a necessary paradigm and political shift.Electronic supplementary materialThe online version of this article (10.1007/s13280-020-01320-0) contains supplementary material, which is available to authorized users.  相似文献   

7.
Background, aim, and scope  The Yunnan snub-nosed monkey is one of the most endangered primates in the world. It is experiencing a range of ongoing threats and the persisting effects of past disturbances. The prospects for this species are not very optimistic because habitat corridors are severely damaged by logging, grazing, and mining. Each group of the monkeys in different areas is facing a unique variety of threats. Based on genetic analysis, Rhinopithecus bieti should be separated into three management units for conservation, of which the Mt. Laojun management unit involves the most endangered primates. Despite the fact that the vegetation on Mt. Laojun is in a relatively pristine state, only two groups of monkeys, of a total of fewer than 300, survive in the area. With this paper, we aimed to address the capacity of the monkeys’ habitat at the study site and the possible reasons for the small populations. Materials and methods  Rapid ecological assessment based on a SPOT 5 image and field survey was used to simulate the vegetation of the whole area based on reference ecological factors of the GIS system. The vegetation map of the site was thus derived from this simulation. Based on the previous studies, the three vegetation types were identified as the suitable habitat of the monkeys. The confusion matrix-based field GPS points were applied to analyze the precision of the habitat map. Based on the map of suitable habitat of the monkeys, the utilization of the habitat and the carrying capacity were analyzed in the GIS. Results  The confusion matrix-based field GPS points were applied to the habitat analysis process, and it was found that the habitat map was 81.3% precise. Then, with the current habitat map, we found that the mixed forest currently used by the monkeys is only a very small fraction (2.65%) of the overall potential habitat of the population, while the dark conifer forest is 4.09%. Discussion  Poaching is the greatest short-term threat to this species, particularly in the southern range where local residents have a strong tradition of hunting. Quite a few individual monkeys are still trapped accidentally due to the high density of traps. These problems are hard to mitigate because it is difficult to enforce laws due to the extremely rugged terrain. Conclusions  The results show that there is a great ecological capacity of the area for the monkey’s survival and a great potential for an expansion of the monkey population at the site. Based on the current population and its geographical range, it can be estimated that the suitable habitat area defined by this study can support more monkeys, about many times the current population. Thus, at least in the Mt. Laojun Area, poaching pressure is the main factor to be responsible for the low density of Yunnan snub-nosed monkeys instead of habitat alteration. Recommendations and perspectives  Based on these results, some suggestions relating to conservation can be made: Focus conservation efforts on the current distribution area of the monkeys and create a 20 km buffer zone; design a long-term plan for the suitable habitat outside the buffer zone to set up a wildlife corridor in the long run; establish an association for the local hunters exploiting, their knowledge on the animals to promote monkey conservation and stop poaching. Also, the map derived from the study helps managers to allocate conservation resources more efficiently and enhances the overall outcomes of conservation measures.  相似文献   

8.
Acidification of lakes results in a number of chemical, physical and biological changes. This review initially outlines the major floristic changes that occur in acidifying and limed lakes. The different types of evidence (historical comparisons, inter-lake comparisons and palaeoecological studies) are considered. These studies emphasise the replacement of calcicole species and others such as the isoetids with Juncus bulbosus and Sphagnun spp. in acidifying lakes. The review then discusses the way in which the various alterations in lake conditions affect the physiology of the macrophytes, particularly with changes in the availability of carbon, a change from nitrate to ammonium as a nitrogen source and the effects of an alteration in the Lake light climate. The population biology, community ecology and ecosystem functioning of macrophytes are discussed, especially where competitive processes may seem more important in determining community change than physiological processes. Particular consideration is paid to the types of evidence of floristic change that are useful and the importance of undertaking experimental studies at the correct scale to determine which factors may be causally related to the floristic evidence.  相似文献   

9.
A one-dimensional radiation fog model is presented. It is coupled with a second model to include the effects of tall vegetation. The fog model describes in detail the dynamics, thermodynamics, and microphysical structure of a fog, as well as the interactions with the atmospheric radiative transfer. A two-dimensional joint size distribution for the aerosol particles and activated fog droplets is used, the activation of aerosol particles is explicitly modeled.The implications of the presence of tall vegetation on the state of the atmosphere and on the evolution of radiation fog are stated. It is shown that the existence of tall vegetation impedes the evolution of radiation fog. The life cycle of radiation fog is discussed. The input of fog water and associated aerosol particles onto the vegetation surfaces via fog water interception processes is assessed.  相似文献   

10.
In 1990, 3 ha of a highly metal polluted acid sandy soil at the site of a former pyrometallurgical zinc smelter was treated with a combination of beringite and compost; beringite is a substance that has a strong metal immobilization capacity. After soil treatment and sowing of a mixture of metal-tolerant Agrostis capillaris and Festuca rubra, a healthy vegetation cover developed. Five years later, an evaluation was made of soil physico-chemical parameters, potential phytotoxicity, floristic and fungal diversity and mycorrhizal infection of the plant community. Phytotoxicity was shown to be maintained at the low level observed immediately after soil treatment. The water-extractable metal fraction of the treated soil was up to 70 times lower compared to the non-treated soil. The vegetation was still healthy and regenerating by vegetative means and by seed. Diversity of higher plant species and saprophytic fungi was extremely low in the untreated area due to the high soil toxicity and the absence of metal tolerant ecotypes of plants and fungi. On the treated soil, in contrast, the species richness of higher plants was much higher; several perennial forbs which are not noted as metal tolerant had colonized the revegetated area. Most of these species belong to mycotrophic families so that the presence of a mycorrhizal network in the soil promotes their establishment. The ubiquity of the mycorrhizal fungi in the roots showed that a functioning ecosystem was establishing. In non-treated soil, the mycorrhizal infection rates of the roots were consistently lower during the whole growing season.  相似文献   

11.
Restoration of vegetation is the most viable management approach for restoring ecological functions in the drawdown zone (hydro-fluctuation belt) of the Three Gorges Reservoir. The selection of plants for this purpose is therefore critically important. Most indigenous plants are not adapted, however, to the counter-seasonal fluctuation of water levels and rapid changes of up to 30 m in water depth that characterize the management of the reservoir. As a result, the reservoir drawdown zone tends to be vegetation deficient. Mulberry (Morus alba L.) has attracted attention as a suitable woody plant for restoring woody vegetation because of its strong adaptation to environmental stresses and the finding that it survives up to 7 m of flooding in parts of the drawdown zone. Comprehensive evaluation of research is therefore required in order to provide guidance for the rational use of mulberry in vegetation restoration strategies for the drawdown zone. Knowledge of the physiology of mulberry adaptation to stress is reviewed here, along with a detailed review of the ecology and agricultural benefits and limitations of mulberry in the context of the Three Gorges Reservoir. It is proposed that a cultivation model for mulberry plants based on ecological principles should be adopted for use within the drawdown zone and that a wider range of biophysical and socio-economic research to develop this model further should be conducted in the future.  相似文献   

12.
The paper presents the role of spontaneous vegetation on the hydraulic performance of an infiltration basin. The objective of the research was more particularly to study this role of different types of spontaneous vegetation found in situ in an infiltration basin near Lyon. The saturated hydraulic conductivity of three areas covered by Phalaris arundinacea, Polygonum mite, Rumex crispus and similar non-vegetated zones was compared. Eight field campaigns were carried out from July 2010 to May 2011 in order to compare the performance of each type of vegetation and its evolution over time. The results suggest a positive impact of vegetation on hydraulic performance in particular in summer during the growth of the plants. The hydraulic conductivity in this period was twice to four times higher than in bare areas or in vegetated zones during the plant rest periods. Some species were also found more appropriate to limit clogging (Phalaris arundinacea) likely due to its specific structure and growth process.  相似文献   

13.
The impact of ozone on forest ecosystems in Italy is monitored within the CONECOFOR programme. Ozone levels are measured in 30 plots using passive samplers. Response parameters used are: crown condition (transparency), BAI (basal area increment), and visible symptoms on spontaneous vegetation. Levels of AOT40 are above the concentration-based critical level of 5 ppmh in all sites, but the evidence of impact on forest vegetation remains limited. Ozone is a predictor of crown transparency residuals in beech sites over two consecutive years, but the variance explained amounts to less than 10%. The relation between BAI reduction and ozone is even less certain. Transparency and BAI are more readily explainable in terms of ecological conditions of the site and climate fluctuations. The interpretation of visible symptoms is doubtful, and is conditioned by the prevailing ecological factors in the areas.  相似文献   

14.
Predictions of forest ecosystem response to changes in climate and atmospheric CO(2) concentration require hierarchically structured process models. Present forest simulation models have conceptual limitations that restrict their application to climate-change studies. A major drawback of forest succession models is that they often lack physiological details in the simulation of annual tree growth. On the other hand, aggregated ecosystem models assume spatially homogeneous forests, and do not account for successional changes in forest composition and canopy structure. The concept of a new coupled carbon-water-energy-forest vegetation model is presented which attempts to overcome the main limitations of existing models by implementing a modern view of ecological hierarchy and a robust approach for scaling ecological processes in space and time.  相似文献   

15.
Wong MH 《Chemosphere》2003,50(6):775-780
This paper reviews the ecological aspects of mined soil restoration, with special emphasis on maintaining a long-term sustainable vegetation on toxic metal mine sites. The metal mined soils are man-made habitats which are very unstable and will become sources of air and water pollution. Establishment of a vegetation cover is essential to stabilize the bare area and to minimize the pollution problem. In addition to remediate the adverse physical and chemical properties of the sites, the choice of appropriate vegetation will be important. Phytostabilization and phytoextraction are two common phytoremediation techniques in treating metal-contaminated soils, for stabilizing toxic mine spoils, and the removal of toxic metals from the spoils respectively. Soil amendments should be added to aid stabilizing mine spoils, and to enhance metal uptake accordingly.  相似文献   

16.
For flood control purpose, the water level of the Three Gorges Reservoir (TGR) varies significantly. The annual reservoir surface elevation amplitude is about 30 m behind the dam. Filling of the reservoir has created about 349 km2 of newly flooded riparian zone. The average flooding period lasts for more than 6 months, from mid-October to late April. The dam and its associated reservoir provide flood control, power generation, and navigation, but there are also many environmental challenges. The littoral zone is the important part of the TGR, once its eco-health and stability are damaged,which will directly endanger the ecological safety of the whole reservoir area and even the Yangtze River Basin. So, understanding the great ecological opportunities which are hidden in littoral zone of TGR (LZTGR) and putting forward approaches to solve the environmental problems are very important. LZTGR involves a wide field of problems, such as the landslides, potential water pollution, soil erosion, biodiversity loss, land cover changes, and other issues. The Three Gorges dam (TGD) is a major trigger of environmental change in the Yangtze River. The landslides, water quality, soil erosion, loss of biodiversity, dam operation, and challenge for land use are closely interrelated across spatial and temporal scales. Therefore, the ecological and environmental impacts caused by TGD are necessarily complex and uncertain. LZTGR is not only a great environmental challenge but also an ecological opportunity for us. In fact, LZTGR is an important structural unit of TGR ecosystem and has special ecosystem services function. Vegetation growing in LZTGR is therefore a valuable resource due to accumulation of carbon and nutrients. Everyone thinks that the ecological approach to the problem is needed. If properly designed, dike–pond systems, littoral woods systems, and re-created waterfowl habitats will have the capacity to capture nutrients from uplands and obstruct soil erosion. Ecological engineering approaches can therefore reduce environmental impacts of LZTGR and optimize ecological services. In view of the current situation and existing ecological problems of LZTGR, according to function demands such as environmental purification, biodiversity conservation, and vegetation carbon sink enhancement, we should explore the eco-friendly utilization mode of resources in LZTGR. Ecological engineering approaches might minimize the impacts or optimize the ecological services. Natural regeneration and ecological restoration in LZTGR are valuable for soil erosion decrease, pollutant purification, biodiversity conservation, carbon sink increase, and ecosystem health maintenance in TGR.  相似文献   

17.
广州李坑生活垃圾填埋场周围植被现状调查与影响分析   总被引:7,自引:0,他引:7  
为对垃圾填埋场封场后如何进行生态恢复研究提供基础资料,对超负荷运转中的广州市李坑生活垃圾填埋场周围的植被现状进行了调查,测算了物种量、覆盖度、污染状况等。同时运用植被覆盖度、结构、物种量和相对物种量等级评价以及对Zn、Cd等6种污染物的质量指数进行了评价。结果表明,所调查填埋场场区及灌区内有轻度污染,而场外与灌区外则相对较轻或无污染。  相似文献   

18.
Chiang PN  Wang MK  Chiu CY  King HB  Hwong JL 《Chemosphere》2004,54(2):217-224
The carbon isotope analysis [delta13C values] of organic samples can be a useful research in ecological studies because delta13C values are indicative of the plant source. This study investigated the changes in plant communities along the grassland-forest boundary in the alpine forest at Ta-Ta-Chia long term ecological research (LTER) site in central Taiwan using carbon isotope data. The aim of this study was focused on the forest fire affected the change of vegetation community. Four pedons from grassland dominated by Miscanthus transmorrisonensis (pedons 1 and 2), transition zone by Tsuga and Yushania nittakeyamensis (pedon 3), and forest zone by Tsuga and nittakeyamensis (pedon 4) were examined. Soil organic matter (SOM) delta13C values in the upper soil horizon were similar to delta13C values of the overlaying vegetation types. This indicates that the boundary between these plant communities remained the same in the past decades. The delta13C values of the grassland SOM ranged from -19.4 per thousand to -24.1 per thousand, showing decrease with soil depth. This suggests that C4 plants (transmorrisonensis) have replaced C3 plants of Tsuga and nittakeyamensis. The delta13C values of the Tsuga forest area (pedon 4) range from -27.0 per thousand to -23.5 per thousand and showed only slight change with soil depth, implying that C3 plants have remained the major species in the forest.  相似文献   

19.
Liao M  Chen CL  Zeng LS  Huang CY 《Chemosphere》2007,66(7):1197-1205
A greenhouse pot experiment was conducted to evaluate the impact of different concentrations of lead acetate on soil microbial biomass and community structure during growth of Chinese cabbage (Brassica chinensis) in two different soils. The field soils were used for a small pot, short-term 60-day growth chamber study. The soils were amended with different Pb concentrations, ranging from 0 to 900mgkg(-1) soil. The experimental design was a 2 soilx2 vegetation/non-vegetationx6 treatments (Pb)x3 replicate factorial experiment. At 60 days the study was terminated and soils were analyzed for microbial parameters, namely, microbial biomass, basal respiration and PLFAs. The results indicated that the application of Pb at lower concentrations (100 and 300mgkg(-1)) as lead acetate resulted in a slight increase in soil microbial biomass, whereas Pb concentrations >500mgkg(-1) caused an immediate gradual significant decline in biomass. However, the degree of impact on soil microbial biomass and basal respiration by Pb was related to management (plant vegetation) or the contents of clay and organic matter in soils. The profiles of 21 phospholipid fatty acids (PLFAs) were used to assess whether observed changes in functional microbial parameters were accompanied by changes in the composition of the microbial communities after Pb application at 0, 300 and 900mg Pbkg(-1) soil. The results of principal component analyses (PCA) indicated that there were significant increases in fungi biomarkers of 18:3omega6c, 18:1omega9c and a decrease in cy17:0, which is an indicator of gram-negative bacteria for the high levels of Pb treatments In a word, soil microbial biomass and community structure, therefore, may be sensitive indicators reflecting environmental stress in soil-Pb-plant system. However, further studies will be needed to better understand how these changes in microbial community structure might actually impact soil microbial community function.  相似文献   

20.
Zhou Q  Li B  Chen Y 《Ambio》2011,40(7):807-818
This study investigates environmental change over a 30-year period and attempts to gain a better understanding of human impacts on an arid environment and their consequences for regional development. Multi-temporal remotely sensed imagery was acquired and integrated to establish the basis for change detection and process analysis. Land cover changes were investigated in two categories, namely categorical change using image classification and quantitative change using a vegetation index. The results show that human-induced land cover changes have been minor in this remote area. However, the pace of growth of human-induced change has been accelerating since the early 1990s. The analysis of the multi-temporal vegetation index also shows no overall trend of rangeland deterioration, although local change of vegetation cover caused by human activities was noticeable. The results suggest that the current trend of rapid growth may not be sustainable and that the implementation of effective counter-measures for environmentally sound development is a rather urgent matter.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号