首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The treedyn3 forest simulation model is a process model of tree growth, carbon and nitrogen dynamics in a single-species, even-aged forest stand. It is based on the treedyn model. Major changes include the computation of sun angle and radiation as a function of latitude and day of the year, the closed-form integration of canopy production as a function of day and hour, the introduction of tree number, height, and diameter as separate state variables, and different growth strategies, mortalities, and resulting self-thinning as function of crowding competition.The tree/soil system is described by a set of nonlinear ordinary differential equations for the state variables: tree number, base diameter, tree height, wood biomass, nitrogen in wood, leaf mass, fine root mass, fruit biomass, assimilate, carbon and nitrogen in litter, carbon and nitrogen in soil organic matter, and plant-available nitrogen. The model includes explicit formulations of all relevant ecophysiological processes such as: computation of radiation as a function of seasonal time, daytime and cloudiness, light attenuation in the canopy, and canopy photosynthesis as function of latitude, seasonal time, and daytime, respiration of all parts, assimilate allocation, increment formation, nitrogen fixation, mineralization, humification and leaching, forest management (thinning, felling, litter removal, fertilization etc.), temperature effects on respiration and decomposition, and environmental effects (pollution damage to photosynthesis, leaves, and fine roots). Only ecophysiological parameters which can be either directly measured or estimated with reasonable certainty are used. treedyn3 is a generic process model which requires species- and site-specific parametrization. It can be applied to deciduous and coniferous forests under tropical, as well as temperate or boreal conditions.The paper presents a full documentation of the mathematical model as well as representative simulation results for spruce and acacia.  相似文献   

2.
We present here a terrestrial carbon cycle model based on a scheme of the phytomass change, which is continuous in time. The experimental information about net primary production, living and dead phytomass, and soil organic matter for various ecosystems is used for calibration of the model. The suggested model enables to characterize terrestrial ecosystems as carbon sources or carbon sinks and to evaluate intensity of these sources and sinks. The model is applied for the European territory of Russia as a case study. Intensity of the total exchange carbon flux for this territory is evaluated. The obtained results allow to conclude that the given territory is the sink of carbon.  相似文献   

3.
Efficient and sustainable management of complex forest ecosystems   总被引:1,自引:0,他引:1  
A large range of models has been developed for the analysis of optimal forest management strategies, with the well-known Faustmann models dating back to the mid-19th century. To date, however, there has been relatively little attention for the implications of complex ecosystem dynamics for optimal forest management. This paper examines the implications of irreversible ecosystem responses for efficient and sustainable forest management. The paper is built around two forest models that comprise two ecosystem components, forest cover and topsoil, the interactions between these components, and the supply of the ecosystem services ‘wood’ and ‘erosion control’. The first model represents a forest that responds in a reversible way to overharvesting. In the second model, an additional ecological process has been included and the ecosystem irreversibly collapses below certain thresholds in forest cover and topsoil depth. The paper presents a general model, and demonstrates the implications of pursuing efficient as well as sustainable forest management for the two forest ecosystems. Both fixed and variable harvesting cycles are examined. Efficient and sustainable harvesting cycles are compared, and it is shown that irreversible ecosystem behaviour reduces the possibilities to reconcile efficient and sustainable forest management through a variable harvesting cycle.  相似文献   

4.
A model of nitrogen and phosphorus cycles in the sediment of a lagoon has been developed. This model was applied to the Thau lagoon (southern France). Sediment was sliced in three layers to reproduce the oxygen profile, which is simulated within the model. Following an equilibrium hypothesis, the model was calibrated against field data. State variables and fluxes were estimated in the sediment and across the sediment-water interface. A Monte Carlo sensitivity analysis was performed to determine the most sensitive parameters and sediment state variables. A dynamic simulation with varying oxygen concentrations then showed the influence of anoxia on the phosphorus and nitrogen fluxes between water and sediment.  相似文献   

5.
The individual-based stand-level model EFIMOD was used for large-scale simulations using standard data on forest inventories as model inputs. The model was verified for the case-study of field observations, and possible sources of uncertainties were analysed. The approach developed kept the ability for fine-tuning to account for spatial discontinuity in the simulated area. Several forest management regimes were simulated as well as forest wildfires and climate changes. The greatest carbon and nitrogen accumulations were observed for the regime without cuttings. It was shown that cuttings and wildfires strongly influence the processes of carbon and nitrogen accumulations in both soil and forest vegetation. Modelling also showed that the increase in annual average temperatures resulted in the partial relocation of carbon and nitrogen stocks from soil to plant biomass. However, forest management, particularly harvesting, has a greater effect on the dynamics of forest ecosystems than the prescribed climate change.  相似文献   

6.
When the development of gap models began about three decades ago, they became a new category of forest productivity models. Compared with traditional growth and yield models, which aim at deriving empirical relationships that best fit data, gap models use semi-theoretical relationships to simulate biotic and abiotic processes in forest stands, including the effects of photosynthetic active radiation interception, site fertility, temperature and soil moisture on tree growth and seedling establishment. While growth and yield models are appropriate to predict short-term stemwood production, gap models may be used to predict the natural course of species replacement for several generations. Because of the poor availability of historical data and knowledge on species-specific allometric relationships, species replacement and death rate, it has seldom been possible to develop and evaluate the most representative algorithms to predict growth and mortality with a high degree of accuracy. For this reason, the developers of gap models focused more on developing simulation tools to improve the understanding of forest succession than predicting growth and yield accurately.In a previous study, the predictions of simulations in two southeastern Canadian mixed ecosystem types using the ZELIG gap model were compared with long-term historical data. This exercise highlighted model components that needed modifications to improve the predictive capacity of ZELIG. The updated version of the model, ZELIG-CFS, includes modifications in the modelling of crown interaction effects, survival rate and regeneration. Different algorithms representing crown interactive effects between crowns were evaluated and species-specific model components that compute individual-tree mortality probability rate were derived. The results of the simulations were compared using long-term remeasurement data obtained from sample plots located in La Mauricie National Park of Canada in Quebec. In the present study, three forest types were studied: (1) red spruce-balsam fir-yellow birch, (2) yellow birch-sugar maple-balsam fir, and (3) red spruce-balsam fir-white birch mixed ecosystems. Among the seven algorithms that represented individual crown interactions, two better predicted the changes in basal area and individual-tree growth: (1) the mean available light growing factor (ALGF), which is computed from the proportion of light intercepted at different levels of individual crowns adjusted by the species-specific shade tolerance index, and (2) the ratio of mean ALGF to crown width. The long-term predicted patterns of change in basal area were consistent with the life history of the different species.  相似文献   

7.
The scientific community, forest managers, environmental organizations, carbon-offset trading systems and policy-makers require tools to account for forest carbon stocks and carbon stock changes. In this paper we describe updates to the Carbon Budget Model of the Canadian Forest Sector (CBM-CFS3) implemented over the past years. This model of carbon-dynamics implements a Tier 3 approach of the Intergovernmental Panel on Climate Change (IPCC) Good Practice Guidance for reporting on carbon stocks and carbon stock changes resulting from Land Use, Land-use Change and Forestry (LULUCF). The CBM-CFS3 is a generic modelling framework that can be applied at the stand, landscape and national levels. The model provides a spatially referenced, hierarchical system for integrating datasets originating from different forest inventory and monitoring programs and includes a structure that allows for tracking of land areas by different land-use and land-use change classes. Ecosystem pools in CBM-CFS3 can be easily mapped to IPCC-defined pools and validated against field measurements. The model uses sophisticated algorithms for converting volume to biomass and explicitly simulates individual annual disturbance events (natural and anthropogenic). Several important scientific updates have been made to improve the representation of ecosystem structure and processes from previous versions of CBM-CFS. These include: (1) an expanded representation of dead organic matter and soil carbon, particularly standing dead trees, and a new algorithm for initializing these pools prior to simulation, (2) a change in the input data requirement for simulating growth from biomass to readily available merchantable volume curves, and new algorithms for converting volume to biomass, (3) improved prediction of belowground biomass, and (4) improved parameters for soil organic matter decay, fire, insect disturbances, and forest management. In addition, an operational-scale version of CBM-CFS3 is freely available and includes tools to import data in standard formats, including the output of several timber supply models that are commonly used in Canada. Although developed for Canadian forests, the flexible nature of the model has enabled it to be adapted for use in several other countries.  相似文献   

8.
Forest development can be predicted by the use of forest simulators based on various statistical models describing the forest and its dynamics. One potential approach to study the reliability of the simulators is to utilise Monte Carlo simulation techniques to generate a predictive distribution of a forest characteristic. One problem in examining the effect of model uncertainty in forestry decision making, however, is correlation between the models. If this is not taken into account, predictions of the model systems may become biased, and the effect of errors on decision making may be underestimated. In reality, the models often are interdependent, but the correlations usually are not known because the models have been estimated in separate studies. The aim of this paper is to study the impacts of between-model dependencies on the predictive distribution of forest characteristics by Monte Carlo simulation techniques. We utilise a case of predicting seedling establishment of planted Norway spruce (Picea abies (L.) Karst.) stands as an example with multivariate multilevel model structures. Regardless of low cross-correlations between the models, ignoring them led to significant underestimation of the amount of competing broadleaves to be removed in pre-commercial thinning. Therefore, we recommend that between-model dependencies are clarified and considered in stochastic simulations. In our case, between-model interdependencies can be reliably estimated with a limited dataset. In addition, estimating the models separately and using the model residuals to estimate interdependencies between models were also sufficient to take the between-model dependencies into account when producing stochastic predictions for silvicultural decision making.  相似文献   

9.
Forest gap models have been applied widely to examine forest development under natural conditions and to investigate the effect of climate change on forest succession. Due to the complexity and parameter requirements of such models a rigorous evaluation is required to build confidence in the simulation results. However, appropriate data for model assessment are scarce at the large spatial and temporal scales of successional dynamics. In this study, we explore a data source for the evaluation of forest gap models that has been used only little in the past, i.e., large-scale National Forest Inventory data. The key objectives of this study were (a) to examine the potentials and limitations of using large-scale forest inventory data for evaluating the performance of forest gap models and (b) to test two particular models as case studies to derive recommendations for their future improvement.  相似文献   

10.
This article describes a new forest management module (FMM) that explicitly simulates forest stand growth and management within a process-based global vegetation model (GVM) called ORCHIDEE. The net primary productivity simulated by ORCHIDEE is used as an input to the FMM. The FMM then calculates stand and management characteristics such as stand density, tree size distribution, tree growth, the timing and intensity of thinnings and clear-cuts, wood extraction and litter generated after thinning. Some of these variables are then fed back to ORCHIDEE. These computations are made possible with a distribution-based modelling of individual tree size. The model derives natural mortality from the relative density index (rdi), a competition index based on tree size and stand density. Based on the common forestry management principle of avoiding natural mortality, a set of rules is defined to calculate the recurrent intensity and frequency of forestry operations during the stand lifetime. The new-coupled model is called ORCHIDEE-FM (forest management).The general behaviour of ORCHIDEE-FM is analysed for a broadleaf forest in north-eastern France. Flux simulation throughout a forest rotation compare well with the literature values, both in absolute values and dynamics.Results from ORCHIDEE-FM highlight the impact of forest management on ecosystem C-cycling, both in terms of carbon fluxes and stocks. In particular, the average net ecosystem productivity (NEP) of 225 gC m−2 year−1 is close to the biome average of 311 gC m−2 year−1. The NEP of the “unmanaged” case is 40% lower, leading us to conclude that management explains 40% of the cumulated carbon sink over 150 years. A sensitivity analysis reveals 4 major avenues for improvement: a better determination of initial conditions, an improved allocation scheme to explain age-related decline in productivity, and an increased specificity of both the self-thinning curve and the biomass-diameter allometry.  相似文献   

11.
12.
13.
Dissolved organic carbon (DOC) concentrations in south-western Nova Scotia streams, sampled at weekly to biweekly intervals, varied across streams from about 3 to 40 mg L−1, being highest mid-summer to fall, and lowest during winter to spring. A 3-parameter model (DOC-3) was proposed to project daily stream DOC concentrations and fluxes from modelled estimates for daily soil temperature and moisture, year-round, and in relation to basin size and wetness. The parameters of this model refer to (i) a basin-specific DOC release parameter “kDOC, related to the wet- and open-water area percentages per basin, (ii) the lag time “τ” between DOC production and subsequent stream DOC emergence, related to the catchment area above the stream sampling location; and (iii) the activation energy “Ea”, to deal with the temperature effect on DOC production. This model was calibrated with the 1988-2006 DOC concentration data from three streams (Pine Marten, Moosepit Brook, and the Mersey River sampled at or near Kejimkujik National Park, or KNP), and was used to interpret the biweekly 1999-2003 DOC concentrations data (stream, ground and lake water, soil lysimeters) of the Pockwock-Bowater Watershed Project near Halifax, Nova Scotia. The data and the model revealed that the DOC concentrations within the streams were not correlated to the DOC concentrations within the soil- and groundwater, but were predictable based on (i) the hydrologically inferred weather-induced changes in soil moisture and temperature next to each stream, and (ii) the topographically inferred basin area and wet- and open-water area percentages associated with each stream (R2 = 0.53; RMSE = 3.5 mg L−1). Model-predicted fluxes accounted 74% of the hydrometrically determined DOC exports at KNP.  相似文献   

14.
Shifts in the spatio-temporal growth dynamics of shortleaf pine   总被引:2,自引:0,他引:2  
Previous studies focusing on the growth history of Pinus echinata at the edge of its geographical range have suggested that changes in growth correspond to climatic and non-climatic (e.g., anthropogenic) factors. We employ a regime-dependent state-space model that allows us to detect and characterize the changes in tree growth dynamics over space and time using readily available dendrochronological and climatic data in the presence of various sources of uncertainty. We utilize methods common in atmospheric sciences but relatively unknown in ecology and forestry to develop a hierarchical model for tree growth and describe the growth dynamics. The utility of such methods for addressing ecological problems will grow as more high dimensional spatio-temporal processes are considered and datasets become more readily available.  相似文献   

15.
The gap model ZELIG was validated for red spruce–balsam fir–yellow birch and yellow birch–sugar maple–balsam fir forest types in southern Quebec, Canada. Long-term historical data originating from the Lake Edward Experimental Forest, La Mauricie National Park, were used. The effect of the variation in plot size, representing the space within which trees uptake site resources, was also examined. Several species were included in both forest types: red spruce (Picea rubens Sarg.), balsam fir (Abies balsamea (L.) Mill.), yellow birch (Betula alleghaniensis Britton), white birch (Betula papyrifera Marsh.), red maple (Acer rubrum L.), sugar maple (Acer saccharum Marsh.), American beech (Fagus grandifolia Ehrh.), eastern hemlock (Tsuga canadensis (L.) Carr.) and northern white cedar (Thuja occidentalis L.). The pattern of change in basal area growth varied among species, ranging from a steady increase to a more or less rapid decline. There was a good agreement between observations and predictions for yellow birch, red spruce, red maple, sugar maple, balsam fir and northern white cedar. Plot size had a significant impact on the dynamics of the different species. Depending on the species, the decline was accelerated, the amplitude of the fluctuations varied, or the maximum basal area reached changed. Predicted regeneration varied among species and the number of seedlings generally increased with increase in plot size. The pattern of development for most species was related to their life characteristics. The results highlighted the fact that there is a critical lack of knowledge and data on the dynamics of regeneration from the seedling to the sapling stages for the two forest types studied, which resulted in poor predictions for some species. As the life characteristics varied among species, the use of only one plot size for all species may not be realistic.  相似文献   

16.
Forest succession is the base of establishing restoration reference which plays an important role in forest restoration and restoration estimation. The study presented the establishment of a Markov successional model (MSM) and its application to restoration reference in lower subtropical forest in China. The compositions of successional system in MSM were divided into three species types: pioneering pine trees, heliophytic trees and mesophytic trees. The successional system was divided into three subsystems: early successional stage, mid-successional stage and late-successional stage. Based on the site survey on the changes in the species and their individuals in 25 years, the transition matrices in various subsystems were determined. The predicted results were used to establish the restoration reference of the vegetation restoration in lower subtropical China. According to the ecological restoration reference established in this study, it would take 150 years for the forest to change from pioneer to mature communities in the region. Successional change of tree composition was forecast by the model, and the scenario forecast by the model reflects the actual conditions observed through 52 years of long-term permanent site research. The restoration experience in the region matches the forecast results. The application of a restoration reference model indicates that forest restoration can be accelerated by taking measures which change forest structure. The above results imply that a restoration reference established on the rule of regional forest succession could be very useful not only in directing, but also in assessing and managing regional forest restoration. Previously, one “ideal reference ecosystem” was used as a restoration reference in all correlative studies. In this study, the restoration “process” was used as the restoration reference.  相似文献   

17.
In order to simulate forest growth response to pre-commercial thinning (PCT), TRIPLEX1.0 - a process-based model designed to predict forest growth as well as carbon (C) and nitrogen (N) dynamics - was modified and improved to also simulate managed forest ecosystem thinning practices. A three-parameter Weibull distribution model was integrated to simulate thinning treatments within the newly developed TRIPLEX-Management model. The thinning intensity component within the model allows users to simulate thinning treatments by applying basal area, stand density and volume to quantify thinning intensity. Natural mortality decreased following thinning due to an increase in growing space for residual stems. Predicted litterfall pools also increased after thinning events took place. The TRIPLEX-Management model was tested against published observational data for Jack Pine (Pinus banksiana Lamb.) stands subjected to PCT in Northwestern Ontario, Canada. The coefficients of determination (R2) between the predicted and observed variables including stand density, mean DBH (diameter at breast height), the quadratic mean DBH, total volume and merchantable volume as well as belowground, aboveground, and total biomass ranged from 0.50 to 0.88 (n = 20, P < 0.001) with the exception of mean tree height (R2 = 0.25, n = 20, P < 0.05). Overall, the Willmott index of agreement between predicted and observed variables ranged from 0.97 to 1.00. Results show that the TRIPLEX-Management model is generally capable of simulating growth response to PCT for Jack Pine stands.  相似文献   

18.
Forest reference levels (FRLs) provide a benchmark for assessing reduced emissions from deforestation and forest degradation (REDD+), and they are central to demonstrate additionality of REDD+. Attaining realistic FRLs, however, is challenging, especially in complex mosaic landscapes. We established FRLs in northern Laos for different reference periods and tested them against actual carbon stock changes. Annual time series of Landsat satellite images were used to capture the subtle changes in carbon stocks in complex landscapes characterized by shifting cultivation. We found that FRLs differ considerably depending on the reference period chosen. Abrupt land-use changes occurred when hybrid maize replaced traditional shifting cultivation and forests, and this invalidated carbon stock trends that would have been predicted had the FRL been projected into the future. We conclude that demonstrating additionality of REDD+ in fast developing areas is difficult and that payment systems rewarding potential emission reductions against hypothetical extrapolation of FRLs are unlikely to be a cost-effective strategy.  相似文献   

19.
As interest grows in the quantification of global carbon cycles, Light Use Efficiency (LUE) model predictions of the forest net primary production (NPP) are being developed at an accelerating rate. Such models can provide useful predictions at large scales, but evaluating their performance has been difficult. In this study, a remote sensing-based LUE model was established to estimate forest NPP. Using the forest inventory data (FID) from the regional forest inventory survey in China and established allometric biomass equations, we calculated the biomass, the biomass increment, and the NPP of Eucalyptus urophylla (E. urophylla) plantation plots in the forestry jurisdiction of the Leizhou Forestry Bureau, Southern China. The FID-based NPP and the NPP from LUE model predictions were then compared to each other. Results show that the NPP from model predictions at a spatial resolution of 30 m × 30 m varied from 0 to 265 gC/(m2 month) and showed regional differences. In addition, the stand age had variable effects on the average individual biomass of the E. urophylla plantation plots. The average individual biomass of the young and mid-age forests increased exponentially and logarithmically with the stand age (R2 = 0.9178 and R2 = 0.8683), respectively. For young and mid-age E. urophylla plantation plots, the LUE model-predicted NPP was fairly consistent with the FID-based NPP, but the model predictions of the NPP were higher than the estimates from FID. Through the analysis of the causes of uncertainty and the possible reasons for the discrepancy between the model-based NPP and FID-based NPP, the FID-derived estimates provided a foundation for model evaluation.  相似文献   

20.
The construction of a new forest management module (FMM) within the ORCHIDEE global vegetation model (GVM) allows a realistic simulation of biomass changes during the life cycle of a forest, which makes many biomass datasets suitable as validation data for the coupled ORCHIDEE-FM GVM. This study uses three datasets to validate ORCHIDEE-FM at different temporal and spatial scales: permanent monitoring plots, yield tables, and the French national inventory data. The last dataset has sufficient geospatial coverage to allow a novel type of validation: inventory plots can be used to produce continuous maps that can be compared to continuous simulations for regional trends in standing volumes and volume increments. ORCHIDEE-FM performs better than simple statistical models for stand-level variables, which include tree density, basal area, standing volume, average circumference and height, when management intensity and initial conditions are known: model efficiency is improved by an average of 0.11, and its average bias does not exceed 25%. The performance of the model is less satisfying for tree-level variables, including extreme circumferences, tree circumference distribution and competition indices, or when management and initial conditions are unknown. At the regional level, when climate forcing is accurate for precipitation, ORCHIDEE-FM is able to reproduce most productivity patterns in France, such as the local lows of needleleaves in the Parisian basin and of broadleaves in south-central France. The simulation of water stress effects on biomass in the Mediterranean region, however, remains problematic, as does the simulation of the wood increment for coniferous trees. These pitfalls pertain to the general ORCHIDEE model rather than to the FMM. Overall, with an average bias seldom exceeding 40%, the performance of ORCHIDEE-FM is deemed reliable to use it as a new modelling tool in the study of the effects of interactions between forest management and climate on biomass stocks of forests across a range of scales from plot to country.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号