首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A greenhouse trial was conducted to investigate the role of mycorrhizal and resistant fungi on heavy metal phytoextraction from different concentrations of tannery solid waste amended soil (10, 20, 50, and 100%) by Tagetes patula. The four treatments included were, the control (C) without any inoculum, mycorrhizal (M) inoculated with strongly mycorrhizal roots of Cynodon dactylon, fungal (F) inoculated with Trichoderma pseudokoningii and the combined inoculation with both mycorrhizal and fungal inocula (M + F). The dual inoculation increased plant biomass and phytoextraction ability of plant for metals like Cd, Cr, Cu, and Na. Plants given only fungus (F) and only mycorrhizal (M) treatment also showed significant growth rate as compared with control treatment. The statistical analysis of data indicated synergistic interaction between mycorrhizal and fungal inoculum promoting high biomass and enhanced metal phytoextraction. Thus using more than one group of rhizosphere fungi in association with a high biomass producing plant may be employed for rendering tannery solid waste free of metals.  相似文献   

2.
This paper reviews progress in phytoextraction of soil elements and illustrates the key role of hyperaccumulator plant species in useful phytoextraction technologies. Much research has focused on elements which are not practically phytoextracted (Pb); on addition of chelating agents which cause unacceptable contaminant leaching and are cost prohibitive; and on plant species which offer no useful phytoextraction capability (e.g., Brassica juncea Czern). Nickel phytoextraction by Alyssum hyperaccumulator species, which have been developed into a commercial phytomining technology, is discussed in more detail. Nickel is ultimately accumulated in vacuoles of leaf epidermal cells which prevents metal toxicity and provides defense against some insect predators and plant diseases. Constitutive up-regulation of trans-membrane element transporters appears to be the key process that allows these plants to achieve hyperaccumulation. Cadmium phytoextraction is needed for rice soils contaminated by mine wastes and smelter emissions with 100-fold more soil Zn than Cd. Although many plant species can accumulate high levels of Cd in the absence of Zn, when Cd/Zn>100, only Thlaspi caerulescens from southern France has demonstrated the ability to phytoextract useful amounts of Cd. Production of element-enriched biomass with value as ore or fertilizer or improved food (Se) or feed supplement may offset costs of phytoextraction crop production. Transgenic phytoextraction plants have been achieved for Hg, but not for other elements. Although several researchers have been attempting to clone all genes required for effective hyperaccumulation of several elements, success appears years away; such demonstrations will be needed to prove we have identified all necessary processes in hyperaccumulation.  相似文献   

3.
Mahogany, a high biomass fast-growing tropical tree, has recently garnered considerable interest for potential use in heavy metal phytoremediation. This study performed hydroponic experiments with Cd concentration gradients at concentrations of 0, 7.5, 15, and 30 mg L(-1) to identify Cd accumulation and tolerance of mahogany (Swietenia macrophylla) seedlings as well as their potential for phytoextraction. Experimental results indicate that Cd inhibited mahogany seedling growth at the highest Cd exposure concentration (30 mg L(-1)). Nevertheless, this woody species demonstrated great potential for phytoextraction at Cd concentrations of 7.5 and 15 mg L(-1). The roots, twigs, and leaves had extremely large bioaccumulation factors at 10.3-65.1, indicating that the plant extracted large amounts of Cd from hydroponic solutions. Mahogany seedlings accumulated up to 154 mg kg(-1) Cd in twigs at a Cd concentration of 15 mg L(-1). Although Cd concentrations in leaves were <100 mg kg(-1), these concentrations markedly exceed the normal ranges for other plants. Due to the high biomass production and Cd uptake capacity of mahogany shoots, this plant is a potential candidate for remediating Cd-contaminated sites in tropical regions.  相似文献   

4.
For heavy metal-contaminated agricultural land, low-cost, plant-based phytoextraction measures can be a key element for a new land management strategy. When agents are applied into the soil, the solubility of heavy metals and their subsequent accumulation by plants can be increased, and, therefore, phytoextraction enhanced. An overview is given of the state of the art of enhancing heavy metal solubility in soils, increasing the heavy metal accumulation of several high-biomass-yielding and metal-tolerant plants, and the effect of these measures on the risk of heavy metal leaching. Several organic as well as inorganic agents can effectively and specifically increase solubility and, therefore, accumulation of heavy metals by several plant species. Crops like willow (Salix viminalis L.), Indian mustard [Brassica juncea (L.) Czern.], corn (Zea mays L.), and sunflower (Helianthus annuus L.) show high tolerance to heavy metals and are, therefore, to a certain extent able to use the surpluses that originate from soil manipulation. More than 100-fold increases of lead concentrations in the biomass of crops were reported, when ethylenediaminetetraacetic acid (EDTA) was applied to contaminated soils. Uranium concentrations could be strongly increased when citric acid was applied. Cadmium and zinc concentrations could be enhanced by inorganic agents like elemental sulfur or ammonium sulfate. However, leaching of heavy metals due to increased mobility in soils cannot be excluded. Thus, implementation on the field scale must consider measures to minimize leaching. So, the application of more than 1 g EDTA kg(-1) becomes inefficient as lead concentration in crops is not enhanced and leaching rate increases. Moreover, for large-scale applications, agricultural measures as placement of agents, dosage splitting, the kind and amount of agents applied, and the soil properties are important factors governing plant growth, heavy metal concentrations, and leaching rates. Effective prevention of leaching, breeding of new plant material, and use of the contaminated biomass (e.g., as biofuels) will be crucial for the acceptance and the economic breakthrough of enhanced phytoextraction.  相似文献   

5.
Phytoextraction of toxic metals: a review of biological mechanisms   总被引:7,自引:0,他引:7  
Remediation of sites contaminated with toxic metals is particularly challenging. Unlike organic compounds, metals cannot be degraded, and the cleanup usually requires their removal. However, this energy-intensive approach can be prohibitively expensive. In addition, the metal removing process often employs stringent physicochemical agents which can dramatically inhibit soil fertility with subsequent negative impacts on the ecosystem. Phytoremediation has been proposed as a cost-effective, environmental-friendly alternative technology. A great deal of research indicates that plants have the genetic potential to remove many toxic metals from the soil. Despite this potential, phytoremediation is yet to become a commercially available technology. Progress in the field is hindered by a lack of understanding of complex interactions in the rhizosphere and plant-based mechanisms which allow metal translocation and accumulation in plants. In this paper, four research areas relevant to metal phytoextraction from contaminated soil are reviewed. The review concludes with an assessment of the current status of technology deployment and suggestions for future phytoremediation research.  相似文献   

6.
Effective management of tidal wetlands requires periodic data on the boundaries, extent, and condition of the wetlands. In many states, wetlands are defined wholly, or in combination with other criteria, by the presence of particular emergent halophytic plants. Many important characteristics of the wetlands ecosystem are related directly to the production of emergent plant material or may be inferred from knowledge of the distribution of emergent plant species. Remote-sensing techniques have been applied to mapping of the distribution of wetland vegetation but not to quantitative evaluation of the condition of that vegetation.Recent research in the tidal wetlands of Delaware and elsewhere has shown that spectral canopy reflectance properties can be quantitatively related to the emergent green biomass ofSpartina alterniflora (salt marsh cord grass) throughout the peak growing season (April through September, in Delaware). Periodic measurements of this parameter could be applied to calculations of net aerial primary productivity for large areas ofS. alterniflora marsh in which conventional harvest techniques may be prohibitively time consuming. The method is species specific and, therefore, requires accurate discrimination ofS. alterniflora from other vegetation types. Observed seasonal changes in species spectral signatures are shown to have potential for improving multispectral categorization of tidal wetland vegetation types.  相似文献   

7.
Field experiments were conducted to optimize the phytoextraction of weathered p,p'-DDE (p,p'-dichlorodiphenyldichloroethylene) by Cucurbita subspecies. The effects of two soil amendments, mycorrhizae or a biosurfactant, on p,p'-DDE accumulation was determined. Also, p,p'-DDE uptake was assessed during plant growth (12, 26, 38, and 62 d), and cultivars that accumulate weathered p,p'-DDE were intercropped with cultivars known not to have that ability. Cucurbita pepo L. ssp. pepo accumulated large amounts of the contaminant, having stem bioconcentration factors, amounts of p,p'-DDE translocated, and contaminant phytoextraction that were 14, 9.9, and 5.0 times greater than C. pepo L. ssp. ovifera (L.) D.S. Decker, respectively. During 62 d, the stem BCF (bioconcentration factor) for p,p'-DDE in subspecies pepo remained constant and the total amount of contaminant accumulated was correlated with plant biomass (r(2) = 0.86). For subspecies ovifera, the stem BCF was highest at 12 d (1.5) but decreased to 0.39 by 62 d, and p,p'-DDE removal was not correlated with plant biomass. Mycorrhizal inoculation increased p,p'-DDE accumulation by both subspecies by an average 4.4 times. For subspecies pepo, mycorrhizae increased the percentage of contaminant extracted from 0.72 to 2.1%. Biosurfactant amendment also enhanced contaminant accumulation by both subspecies, although treatment reduced subspecies ovifera biomass by 60%. The biosurfactant had no effect on the biomass of subspecies pepo, increased the average contaminant concentration by 3.6-fold, and doubled the overall amount of p,p'-DDE removed from the soil. Soil amendments that enhance the mobility of weathered persistent organic pollutants will significantly increase the amount of contaminant phytoextraction by Cucurbita pepo.  相似文献   

8.
The effect of pH on metal accumulation in two Alyssum species   总被引:1,自引:0,他引:1  
Nickel phytoextraction using hyperaccumulator plants offers a potential for profit while decontaminating soils. Although soil pH is considered a key factor in metal uptake by crops, little is known about soil pH effects on metal uptake by hyperaccumulator plants. Two Ni and Co hyperaccumulators, Alyssum murale and A. corsicum, were grown in Quarry muck (Terric Haplohemist) and Welland (Typic Epiaquoll) soils contaminated by a Ni refinery in Port Colborne, Ontario, Canada, and in the serpentine Brockman soil (Typic Xerochrepts) from Oregon, USA. Soils were acidified and limed to cover pH from strongly acidic to mildly alkaline. Alyssum grown in both industrially contaminated soils exhibited increased Ni concentration in shoots as soil pH increased despite a decrease in water-soluble soil Ni, opposite to that seen with agricultural crop plants. A small decrease in Alyssum shoot Ni concentration as soil pH increased was observed in the serpentine soil. The highest fraction of total soil Ni was phytoextracted from Quarry muck (6.3%), followed by Welland (4.7%), and Brockman (0.84%). Maximum Ni phytoextraction was achieved at pH 7.3, 7.7, and 6.4 in the Quarry, Welland, and Brockman soils, respectively. Cobalt concentrations in shoots increased with soil pH increase in the Quarry muck, but decreased in the Welland soil. Plants extracted 1.71, 0.83, and 0.05% of the total soil Co from Welland, Quarry, and Brockman, respectively. The differences in uptake pattern of Ni and Co by Alyssum from different soils and pH were probably related to the differences in organic matter and iron contents of the soils.  相似文献   

9.
The ability of free and polysulphone immobilized biomass of Arthrobacter sp. to remove Cu2+ ions from aqueous solution was studied in batch and continuous systems. The Langmuir and Freundlich isotherm models were applied to the data. The Langmuir isotherm model was found to fit the sorption data indicating that sorption was monolayer and uptake capacity (Qo) was 175.87 and 158.7 mg/g for free and immobilized biomass respectively at pH 5.0 and 30 °C temperature, which was also confirmed by a high correlation coefficient, a low RMSE and a low Chi-square value. A kinetic study was carried out with pseudo-first-order reaction and pseudo-second-order reaction equations and it was found that the Cu2+ uptake process followed the pseudo-second-order rate expression. The diffusivity of Cu2+ on immobilized beads increased (0.402 × 10−4 to 0.435 × 10−4 cm2/s) with increasing concentration from 50 to 150 mg/L. The maximum percentage Cu2+ removal (89.56%) and uptake (32.64 mg/g) were found at 3.5 mL/min and 20 cm bed height. In addition to this the Bed Depth Service Time (BDST) model was in good agreement with the experimental data with a high correlation coefficient (>0.995). Furthermore, sorption and desorption studies were also carried out which showed that polysulphone immobilized biomass could be reused for up to six sorption–desorption cycles.  相似文献   

10.
Increasing demands on freshwater and challenges in disposal of wastewaters encourage their use for irrigation. The study evaluated the effects of irrigation of signal grass (Urochloa decumbens) with sludgewater on leaching, uptake and retention of a range of elements in two contrasting soils in columns. The grass was grown on a sandy loam and a clay soil packed in plastic columns and irrigated for 119 days with either undiluted, diluted sludgewater or tap water. The sludgewater had a pH of 6.9 and high aluminum (Al), manganese (Mn), iron (Fe), and boron (B). Analyses were conducted on leachates, above-ground plant biomass (two harvests), and soils at the end of the experiment. Sludgewater treatments increased grass biomass yield and uptake of nitrogen (N), phosphorus (P), potassium (K), and magnesium (Mg) in both soils with a greater nutrient uptake from the clay than the sandy loam. The application of sludgewater increased Mn and reduced P (sandy loam only) in the leachate with no effects on Al, Fe, or B. Uptake of Al, Fe, and B was increased by sludgewater application. Even when diluted, the sludgewater increased extractable Mn, particularly in the clay soil. The findings showed that irrigation of the soils with sludgewater increased Mn and B concentrations and uptake by signal grass, with no negative effects on biomass production. Leaching and accumulation in the soils of toxic elements were minimal in the short term. Sludgewater can therefore be used to grow signal grass in both soils although these effects need to be evaluated under field conditions.  相似文献   

11.
China is rich in energy plant resources. In this article, 64 plant species are identified as potential energy plants in China. The energy plant species include 38 oilseed crops, 5 starch-producing crops, 3 sugar-producing crops and 18 species for lignocellulosic biomass. The species were evaluated on the basis of their production capacity and their resistance to salt, drought, and/or low temperature stress. Ten plant species have high production and/or stress resistance and can be potentially developed as the candidate energy plants. Of these, four species could be the primary energy plants in China: Barbados nut (Jatropha curcas L.), Jerusalem artichoke (Helianthus tuberosus L.), sweet sorghum (Sorghum bicolor L.) and Chinese silvergrass (Miscanthus sinensis Anderss.). We discuss the use of biotechnological techniques such as genome sequencing, molecular markers, and genetic transformation to improve energy plants. These techniques are being used to develop new cultivars and to analyze and manipulate genetic variation to improve attributes of energy plants in China.  相似文献   

12.
土壤重金属污染的植物修复及超富集植物的研究进展   总被引:2,自引:0,他引:2  
土壤重金属污染的植物修复是污染整治的重要手段之一。近年来对植物修复的研究日益增加,工业、农业和交通是土壤中污染物的三大主要来源。目前重金属污染土壤植物修复主要包括植物稳定、植物提取和植物挥发。由于超富集植物存在生物量小、生长缓慢的缺点,更应该关注具有高生物量的重金属耐(抗)性植物。  相似文献   

13.
Roots of salt marsh plant speciesSpartina alterniflora, S. patens, Distichlis spicata, and others were examined for the presence of vesicular-arbuscular mycorrhizal (VAM) fungi. Samples were taken from introduced planted material in a salt marsh restoration project and from native material in adjacent marsh areas along the Indian River, Clinton, Connecticut, USA. After ten years the replanted area still has sites devoid of vegetation. The salt marsh plants introduced there were devoid of VAM fungi, while high marsh species from the adjacent undisturbed region showed consistent infection, leading the authors to suggest that VAM fungal infection of planting stocks may be a factor in the success of marsh restoration.  相似文献   

14.
Phytoremediation of Soil Polluted by Nickel Using Agricultural Crops   总被引:3,自引:0,他引:3  
Soil pollution due to heavy metals is widespread; on the world scale, it involves about 235 million hectares. The objectives of this research were to establish the uptake efficiency of nickel by some agricultural crops. In addition, we wanted to establish also in which part of plants the metal is stored for an eventual use of biomass or for recycling the metal. The experiments included seven herbaceous crops such as: barley (Hordeum vulgaris), cabbage (Brassica juncea), spinach (Spinacea oleracea), sorghum (Sorgum vulgare), bean (Phaseolus vulgaris), tomato (Solanum lycopersicum), and ricinus (Ricinus communis). We used three levels of treatment (150, 300, and 600 ppm) and one control. At the end of the biological cycle of the crops, the different parts of plants, i.e., roots, stems, leaves, fruits, or seeds, were separately collected, oven dried, weighed, milled, and separately analysed. The leaves and stems of spinach showed a very good nickel storage capacity. The ricinus too proved to be a very good nickel storer. The ability of spinach and ricinus to store nickel was observed also in the leaves of cabbage, even if with a lower storage capacity. The bean, barley, and tomato, in decreasing order of uptake and storage capacity, showed a high concentration of nickel in leaves and stems, whereas the sorghum evidenced a lesser capacity to uptake and store nickel in leaves and stems. The bean was the most efficient in storing nickel in fruits or grains. Tomato, sorghum, and barley have shown a storage capacity notably less than bean. The bean appeared to be the most efficient in accumulating nickel in the roots, followed in decreasing order by sorghum, ricinus, and tomato. With regard to the removal of nickel, spinach was the most efficient as it contains the highest level of this metal per gram of dry matter. The ricinus, cabbage, bean, sorghum, barley, and tomato evidenced a progressively decreasing efficiency in the removal of nickel.  相似文献   

15.
Distillery effluent can be converted into biogas and the residue can be utilized as a fertilizer if it is detoxified. Several nitrifying bacteria were screened for detoxification of distillery effluent rich in chloride, nitrogen compounds, free ammonia and monovalent cations. Nitrosococcus oceanus collected from a brackish water lake (Chilka, Orrisa) was noticed to be a potential candidate for detoxification of distillery effluent. The detoxified distillery effluent was used in rice plant culture. The growth and development of rice plants was examined in terms of DCPIP—Hill activity, total carbohydrate, total protein and biomass of rice plants. The detoxified effluent-treated rice plants showed better growth and development as compared with control plant grown in full nutrient solution (Hoagland solution).  相似文献   

16.
The USDA’s Conservation Reserve Program (CRP) has predominantly used only a few species of dominant prairie grasses (CP2 practice) to reduce soil erosion, but recently has offered a higher diversity planting practice (CP25) to increase grassland habitat quality. We quantified plant community composition in CP25 and CP2 plantings restored for 4 or 8 years and compared belowground properties and processes among restorations and continuously cultivated soils in southeastern Nebraska, USA. Relative to cultivated soils, restoration increased soil microbial biomass (P = 0.033), specifically fungi (P < 0.001), and restored soils exhibited higher rates of carbon (C) mineralization (P = 0.010). High and low diversity plantings had equally diverse plant communities; however, CP25 plantings had greater frequency of cool-season (C3) grasses (P = 0.007). Older (8 year) high diversity restorations contained lower microbial biomass (P = 0.026), arbuscular mycorrhizal fungi (AMF) biomass (P = 0.003), and C mineralization rates (P = 0.028) relative to 8 year low diversity restorations; older plantings had greater root biomass than 4 year plantings in all restorations (P = 0.001). Low diversity 8 year plantings contained wider root C:N ratios, and higher soil microbial biomass, microbial community richness, AMF biomass, and C mineralization rate relative to 4 year restorations (P < 0.050). Net N mineralization and nitrification rates were lower in 8 year than 4 year high diversity plantings (P = 0.005). We attributed changes in soil C and N pools and fluxes to increased AMF associated with C4 grasses in low diversity plantings. Thus, reduced recovery of AMF in high diversity plantings restricted restoration of belowground microbial diversity and microbially-mediated soil processes over time.  相似文献   

17.
Arbuscular mycorrhizal (AM) fungi and a residue from dry olive cake (DOC) supplemented with rock phosphate (RP) and treated with either Aspergillus niger (DOC-A) or Phanerochaete chrysosporium (DOC-P), were assayed in a natural, semi-arid soil using Trifolium repens or Dorycnium pentaphyllum plants. The effects of the AM fungi and/or DOC-A were compared with P-fertilisation (P) over eleven successive harvests to evaluate the persistence of the effectiveness of the treatments. The biomass of dually-treated plants after four successive harvests was greater than that obtained for non-treated plants or those receiving the AM inoculum or DOC-A treatments after eleven yields. The AM inoculation was critical for obtaining plant growth benefit from the application of fermented DOC-A residue. The abilities of the treatments to prevent plant drought stress were also assayed. Drought-alleviating effects were evaluated in terms of plant growth, proline and total sugars concentration under alternative drought and re-watering conditions (8th and 9th harvests). The concentrations of both compounds in plant biomass increased under drought when DOC-A amendment and AM inoculation were employed together: they reinforced the plant drought-avoidance capabilities and anti-oxidative defence. Water stress was less compensated in P-fertilised than in DOC-A-treated plants. DOC-P increased D. pentaphyllum biomass, shoot P content, nodule number and AM colonisation, indicating the greater DOC-transforming ability of P. chrysosporium compared to A. niger. The lack of AM colonisation and nodulation in this soil was compensated by the application of DOC-P, particularly with AM inoculum. The management of natural resources (organic amendments and soil microorganisms) represents an important strategy that assured the growth, nutrition and plant establishment in arid, degraded soils, preventing the damage that arises from limited water and nutrient supply.  相似文献   

18.
Revegetation of arsenic (As)-rich mine spoils is often impeded by the lack of plant species tolerant of high As concentrations and low nutrient availability. Basin wildrye [Leymus cinereus (Scribner & Merr.) A. L?ve] has been observed to establish naturally in soils with elevated As content and thus may be useful for the stabilization of As-contaminated soils. An experiment was conducted to evaluate how variable phosphorus (P) concentrations and inoculation with site-specific arbuscular mycorrhizal fungi influence As tolerance of basin wildrye. Basin wildrye was grown in sterile sand in the greenhouse for 16 weeks. Pots of sterile sand were amended to create one of four rates of As (0, 3, 15, or 50 mg As kg(-1)), two rates of P (3 or 15 mg P kg(-1)), and +/-mycorrhizal inoculation in a 2 x 4 x 2 factorial arrangement. After 16 weeks of growth, plants were harvested, shoots and roots thoroughly washed, and the tissue analyzed for total shoot biomass, total root and shoot As and P concentrations, and degree of mycorrhizal infection. Basin wildrye was found to be tolerant of high As concentrations allowing for vigorous plant growth at application levels of 3 or 15 mg As kg(-1). Arsenic was sequestered in the roots, with 30 to 50 times more As in the roots than shoots under low P conditions. Mycorrhizal infection did not confer As tolerance in basin wildrye nor did mycorrhizal fungi influence biomass production. Phosphorus concentrations of 15 mg kg(-1) effectively inhibited As accumulation in basin wildrye. Basin wildrye has the potential to be used for stabilization of As-rich soils while minimizing exposure to grazing animals following reclamation.  相似文献   

19.
The theoretical basis for using measurements of metal uptake by the technique of diffusive gradients in thinfilms (DGT) to mimic processes in soils that affect uptake of metals by plants is examined. The uptake of metals by plants and DGT were compared conceptually and quantitatively by using the classic Barber model of plant uptake and the DIFS (DGT-induced fluxes in soils) model of uptake by DGT. For most metals and plants considered, uptake fluxes were similar to those induced by DGT using the most common gel layer thicknesses of 0.2 to 2 mm. Consequently DGT perturbs the chemical equilibrium of metals in the soil solution and between soil solution and solid phase, to a similar extent to plants, and therefore induces a similar balance in supply by diffusion and by release from the solid phase. DIFS was used to show that desorption kinetics, which are not considered by the plant uptake model, are likely important for uptake when the capacity of the soil solid phase is large. Model calculations showed that mass flow into a plant root would only contribute appreciably to the total flux of metal under circumstances when the solid phase reservoir of metal was very low. Generally, however, DGT is likely to emulate supply processes from the soil that govern uptake of metal by plants. Exceptions are likely to be found in poorly buffered soils (typically sandy and/or low pH), and at very high concentrations of metals in soil solution, such that the soil solution concentration at the plant root interface is higher than the Michaelis-Menten constant (Km).  相似文献   

20.
Although changes in depth to groundwater occur naturally, anthropogenic alterations may exacerbate these fluctuations and, thus, affect vegetation reliant on groundwater. These effects include changes in physiology, structure, and community dynamics, particularly in arid regions where groundwater can be an important water source for many plants. To properly manage ecosystems subject to changes in depth to groundwater, plant responses to both rising and falling groundwater tables must be understood. However, most research has focused exclusively on riparian ecosystems, ignoring regions where groundwater is available to a wider range of species. Here, we review responses of riparian and other species to changes in groundwater levels in arid environments. Although decreasing water tables often result in plant water stress and reduced live biomass, the converse is not necessarily true for rising water tables. Initially, rising water tables kill flooded roots because most species cannot tolerate the associated low oxygen levels. Thus, flooded plants can also experience water stress. Ultimately, individual species responses to either scenario depend on drought and flooding tolerance and the change in root system size and water uptake capacity. However, additional environmental and biological factors can play important roles in the severity of vegetation response to altered groundwater tables. Using the reviewed information, we created two conceptual models to highlight vegetation dynamics in areas with groundwater fluctuations. These models use flow charts to identify key vegetation and ecosystem properties and their responses to changes in groundwater tables to predict community responses. We then incorporated key concepts from these models into EDYS, a comprehensive ecosystem model, to highlight the potential complexity of predicting community change under different fluctuating groundwater scenarios. Such models provide a valuable tool for managing vegetation and groundwater use in areas where groundwater is important to both plants and humans, particularly in the context of climate change.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号