首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 15 毫秒
1.
The operation of Trinity and Lewiston Dams on the Trinity River in northern California in the United States, combined with severe watershed erosion, has jeopardized the existence of prime salmonid fisheries. Extreme streamflow depletion and stream sedimentation below Lewiston have resulted in heavy accumulation of coarse sediment on riffle gravel and filling of streambed pools, causing the destruction of spawning, nursery, and overwintering habitat for prized chinook salmon (Salmo gairdnerii) and steelhead trout (Oncorhynchus tschawytscha). Proposals to restore and maintain the degraded habitat include controlled one-time remedial peak flows or annual maintenance peak flows designed to flush the spawning gravel and scour the banks, deltas, and pools. The criteria for effective channel restoration or maintenance by streambed flushing and scouring are examined here, as well as the mechanics involved.The liabilities of releasing mammoth scouring-flushing flows approximating the magnitude that preceded reservoir construction make this option unviable. The resulting damage to fish habitat established under the postproject streamflow regime, as well as damage to human settlements in the floodplain, would be unacceptable, as would the opportunity costs to hydroelectric and irrigation water users. The technical feasibility of annual maintenance flushing flows depends upon associated mechanical and structural measures, particularly instream maintenance dredging of deep pools and construction of a sediment control dam on a tributary where watershed erosion is extreme. The cost effectiveness of a sediment dam with a limited useful economic life, combined with perpetual maintenance dredging, is questionable.  相似文献   

2.
The Neebing-McIntyre floodway in Thunder Bay, Ontario, Canada, has been constructed with a relatively straight and uniform trapezoidal channel, compared with the prechannelized sinuous reaches of the Neebing and the McIntyre rivers. The flow regime of the floodway also contrasts significantly with the prechannelized regime, because of the combination of discharges from these rivers into a new channel and the regulation of flows by a diversion structure. The maximum channel capacity of the floodway is about 284 m3 s–1 (175-year regional flood), compared with about 40 m3 s–1 and 60 m3 s–1, respectively, for the Neebing and the McIntyre. According to regime theories, the construction of a straight and trapezoidal channel has upset the equilibrium of the stream system and therefore should lead to some accelerated erosion and sedimentation processes in the new channel immediately after construction. Erosion potential is particularly high during higher discharge events, when flow velocities are expected to be greater than the prechannelized velocities of the Neebing and the McIntyre. The overall sediment yield of the watershed is low (71t km–2 yr–1), compared with other documented watersheds of North America, but the rates of deposition in the floodway are relatively high, mainly due to the backwater effect of Lake Superior. Unless maintained by constant channel work, the floodway will tend to fill up with sediment, until a postconstructional equilibrium is reestablished.  相似文献   

3.
6 m3) following extensive gravel extraction from the channel, this evolution appears to be reversed today, showing that this river is capable of rehabilitating itself. The watershed supplies the river with 50,000 m3/yr of material and part of this load (30,000 m3/yr) is extracted. Although it is theoretically possible to reverse this phenomenon, it is unacceptable for the local economy as man-made installations unadapted to flooding were developed along the river during the period of incision. Today, the development policy is in conflict with the maintenance and the preservation of natural sediment transport and deposition.  相似文献   

4.
Vulnerability of river channels to urbanization has been lessened by the extensive construction of artificial water control improvements. The challenge, however, is that traditional engineering practices on isolated parts of a river may disturb the hydrologic continuity and interrupt the natural state of ecosystems. Taking the Xiaoqinghe River basin as a whole, we developed a river channel network design to mitigate river risks while sustaining the river in a state as natural as possible. The river channel risk from drought during low-flow periods and flood during high-flow periods as well as the potential for water diversion were articulated in detail. On the basis of the above investigation, a network with “nodes” and “edges” could be designed to relieve drought hazard and flood risk respectively. Subsequently, the shortest path algorithm in the graph theory was applied to optimize the low-flow network by searching for the shortest path. The effectiveness assessment was then performed for the low-flow and high-flow networks, respectively. For the former, the network connectedness was evaluated by calculating the “gamma index of connectivity” and “alpha index of circuitry”; for the latter, the ratio of flood-control capacity to projected flood level was devised and calculated. Results show that the design boosted network connectivity and circuitry during the low-flow periods, indicating a more fluent flow pathway, and reduced the flood risk during the high-flow periods.  相似文献   

5.
A linear engineering project--i.e. a pipeline--has a potential long- and short-term impact on the environment and on the inhabitants therein. We must find better, less expensive, and less time-consuming ways to obtain information on the environment and on any modifications resulting from anthropic activity. We need scientifically sound, rapid and affordable assessment and monitoring methods. Construction companies, industries and the regulating government organisms lack the resources needed to conduct long-term basic studies of the environment. Thus there is a need to make the necessary adjustments and improvements in the environmental data considered useful for this development project. More effective and less costly methods are generally needed. We characterized the landscape of the study area, situated in the center and north-east of Argentina. Little is known of the ecology of this region and substantial research is required in order to develop sustainable uses and, at the same time, to develop methods for reducing impacts, both primary and secondary, resulting from anthropic activity in this area. Furthermore, we made an assessment of the environmental impact of the planned linear project, applying an ad hoc impact index, and we analyzed the different alternatives for a corridor, each one of these involving different sections of the territory. Among the alternative corridors considered, this study locates the most suitable ones in accordance with a selection criterion based on different environmental and conservation aspects. We selected the corridor that we considered to be the most compatible--i.e. with the least potential environmental impact--for the possible construction and operation of the linear project. This information, along with suitable measures for mitigating possible impacts, should be the basis of an environmental management plan for the design process and location of the project. We pointed out the objectivity and efficiency of this methodological approach, along with the possibility of integrating the information in order to allow for the application thereof in this type of study.  相似文献   

6.
Understanding how hydraulic factors control alluvial river meander migration can help resource managers evaluate the long-term effects of floodplain management and bank stabilization measures. Using a numerical model based on the mechanics of flow and sediment transport in curved river channels, we predict 50 years of channel migration and suggest the planning and ecological implications of that migration for a 6.4-km reach (river miles 218–222) of the Sacramento River near the Woodson Bridge State Recreation Area, California, USA. Using four different channel management scenarios, our channel migration simulations suggest that: (1) channel stabilization alters the future channel planform locally and downstream from the stabilization; (2) rock revetment currently on the bank upstream from the Woodson Bridge recreation area causes more erosion of the channel bank at the recreation area than if the revetment were not present; (3) relocating the channel to the west and allowing subsequent unconstrained river migration relieves the erosion pressure in the Woodson Bridge area; (4) the subsequent migration reworks (erodes along one river bank and replaces new floodplain along the other) 26.5 ha of land; and (5) the river will rework between 8.5 and 48.5 ha of land in the study reach (over the course of 50 years), depending on the bank stabilization plan used. The reworking of floodplain lands is an important riparian ecosystem function that maintains habitat heterogeneity, an essential factor for the long-term survival of several threatened and endangered animal species in the Sacramento River area.  相似文献   

7.
Since the 1970s, the sediment flux of the Yellow River to the sea has shown a marked tendency to decrease, which is unfavorable for wetland protection and oil extraction in the Yellow River delta. Thus, an effort has been made to elucidate the relation between the sediment flux to the sea and the drainage basin factors including climate and human activities. The results show that the sediment flux to the sea responds to the changed precipitation in different ways for different runoff and sediment source areas in the drainage basin. If other factors are assumed to be constant, when the annual precipitation in the area between Longmen and Sanmenxia decreases by 10 mm, the sediment flux to the sea will decrease by 27.5 million t/yr; when the precipitation in the area between Hekouzhen and Longmen decreases by 10 mm, the sediment flux to the sea will decrease by 14.3 million t/yr; when the precipitation in the area above Lanzhou decreases by 10 mm, the sediment flux to the sea will decrease by 17.4 million t/yr. A multiple regression equation has been established between the sediment flux to the sea and the influencing factors, such as the area of land terracing and tree and grass planting, the area of the land created by the sediment trapped by check dams, the annual precipitation, and the annual quantity of water diversion by man. The equation may be used to estimate the change in the sediment flux to the sea when the influencing variables are further changed, to provide useful knowledge for the environmental planning of the Yellow River drainage basin and its delta.  相似文献   

8.
An 11-year period of water quality data, collected by the Directorate of Sate Water Works of Turkey are thoroughly analyzed for the purpose of implementing water quality classes to water resources in the Meric Basin, located on the European land mass of Turkey. Water quality parameters are divided into four groups as physical, organic, inorganic, and bacteriological. The quality class of each group is evaluated by taking into account the poorest quality of any parameter in the group, after which a quality rank is assigned to the sampling station and the waterbody in question. This method of water quality classification imposed by the Turkish Water Quality Act, is then criticized with respect to a statistical approach.  相似文献   

9.
Land change is often studied with Markov models to develop a probability transition matrix. The existing methods dependent on such matrixes cannot effectively characterize some important aspects associated with land change such as status, direction, trend and regional variations. This study presents mathematical models to quantify these elements, defining unbalanced, quasi-balanced and balanced status, one- and two-way transitions and the rising or falling trends. Using these models and remote-sensing imageries, the landscape was studied for a case area, the oasis of Sangong River in Xinjiang, Northwest China where typical arid conditions prevail. Land expansion and contraction among various land types and for the entire oasis were analyzed for the periods of 1978-1987, 1978-1998 and 1987-1998. The changes were closely related to a strong economic growth after the land-reform campaign and adoption of the market economy in China in the 1980s to early 1990s, a process not strictly Markovian that requires stationarity and randomness. Information on land-change status and trend is important for a better understanding of the underlying driving processes but also for land-use planning and decision-making.  相似文献   

10.
River damming provides a dominant human impact on river environments worldwide, and while local impacts of reservoir flooding are immediate, subsequent ecological impacts downstream can be extensive. In this article, we assess seven research strategies for analyzing the impacts of dams and river flow regulation on riparian ecosystems. These include spatial comparisons of (1) upstream versus downstream reaches, (2) progressive downstream patterns, or (3) the dammed river versus an adjacent free-flowing or differently regulated river(s). Temporal comparisons consider (4) pre- versus post-dam, or (5) sequential post-dam conditions. However, spatial comparisons are complicated by the fact that dams are not randomly located, and temporal comparisons are commonly limited by sparse historic information. As a result, comparative approaches are often correlative and vulnerable to confounding factors. To complement these analyses, (6) flow or sediment modifications can be implemented to test causal associations. Finally, (7) process-based modeling represents a predictive approach incorporating hydrogeomorphic processes and their biological consequences. In a case study of Hells Canyon, the upstream versus downstream comparison is confounded by a dramatic geomorphic transition. Comparison of the multiple reaches below the dams should be useful, and the comparison of Snake River with the adjacent free-flowing Salmon River may provide the strongest spatial comparison. A pre- versus post-dam comparison would provide the most direct study approach, but pre-dam information is limited to historic reports and archival photographs. We conclude that multiple study approaches are essential to provide confident interpretations of ecological impacts downstream from dams, and propose a comprehensive study for Hells Canyon that integrates multiple research strategies.  相似文献   

11.
Increased water-dependent development and utilization have led to significant environmental and hydrological degradation of the Tarim River in western China and its dependent ecosystems. Between the 1950s and 1970s, 350 km of the lower reaches were drained and between 1960 and 1980 the water-table fell from between −2 and −3 m to between −8 and −10 m. Subsequently, riparian ecosystems were seriously degraded. In 2000, the Chinese government launched a program to restore the lower reaches of the river. Four environmental flows of 1034×106 m3 were released from 2000 to 2002. This paper interprets and discusses the ecological significance of changes following the releases and identifies the relationship between water-table dynamics and vegetation responses. Short-term objectives for river restoration are proposed with possible monitoring parameters suggested.  相似文献   

12.
The management of urban transportation systems represents one of the most formidable challenges for local government that generates several problems related to the well-being and the comfort of the public that commute and travel in their daily life. Improvements to various policies and practical measures can move us closer to the ideal of sustainable urban areas with sustainable urban transportation systems. Nevertheless, these aspirations in no way ensure unanimity over the most effective actions to take and the extent of their benefits. In response, a mathematical model has been developed for decision-taking purposes using multi-criteria analysis adapted to urban transportation systems. This model not only takes account of environmental parameters, but also examines economic, social and urban models, the characteristics and condition of the transport fleet and freight distribution vehicles, in order to generate a sustainability index value for the transportation system of urban areas.  相似文献   

13.
An ecological risk assessment was performed on salinity levels of the Hunter River and its tributaries to respond to concerns that high salinity may be damaging aquatic ecosystems. Probabilistic techniques were used to assess likelihood and consequence, and hence the risk to aquatic biota from salinity. Continuous electrical conductivity distributions were used to describe the likelihood that high salinity would occur (exposure dataset) and toxicity values were compiled from the limited literature sources available to describe the consequence of high salinity (effects dataset). The assessment was preliminary in the sense that it modelled risk on the basis of existing data and did not undertake site-specific toxicity testing.  相似文献   

14.
In this paper we quantify the additional water quality benefits that can be achieved through coordinated cumulative impact management. To do this we simulate coordinated and un-coordinated revegetation investments and compare their impact on achieving regional water quality goals. Our results show that coordination between multiple mining companies achieves additional benefits since prioritization is enabled across a broader range of investment opportunities. Additionally, when coordinated investment is permitted beyond the boundaries of coal mining leases, results show that additional benefits are greatly enhanced since these regions provide more rewarding investment opportunities. Results illustrate (a) how regional coordination may influence reputational benefits of investments, and (b) that coordination is beneficial when investment opportunities are unevenly distributed across the landscape. When additional benefits are achievable, we suggest that mining companies should develop collective investment projects with an understanding of how coordination influences project costs. Similarly, investment projects should be developed with an understanding of investment tradeoffs and how these may adversely impact on regional stakeholders and hence industry reputation. The mining industry has significant potential to contribute to regional wellbeing; however, land management policies must be flexible and promote incentives to enable companies to invest beyond compliance.  相似文献   

15.
Separate collection of municipal solid waste has overcome the 50% threshold in the Asti District in northern Italy, nearly one-third being composed of household and green organic waste. In order to address present and future solutions, it becomes therefore fundamental to assess the environmental performances of the current management of organic waste from separate collection. A from-gate-to-cradle life cycle assessment (LCA) model has been developed by expanding system boundaries, in order to carry out the assessment in the context of the whole waste management streamline. The environmental performances of an existing aerobic plant were made available, based on field measured data, by paying attention to the role and contribution of waste management subsystems. The need for actual and reliable data on materials and energy input, as well as gross and net gains from materials recovery, including benefits arising from use of compost in farming activities, was probably the major drawback that had to be faced. The study integrated the findings of different investigations from the literature with field measured data in order to obtain a more comprehensive framework representative of the area under study. The results may help public administrators to better understand the suitability of using LCA tools when dealing with solid waste management strategies.  相似文献   

16.
The increasing growth of the economy in each country necessitates a great amount of investment in infrastructure. The belief that projects involve various uncertainties, such as technical skills, management quality, and the like, indicates that most projects fail to achieve their aims, interests, costs, as well as their timeframes and space requirements. As the environment can pose significant uncertainty to any project, environmental risks should be deeply studied by project management departments. This study intends to analyze as a case the environmental risk management system within a consulting firm. From this analysis, each aspect of a project's environmental risk management is ranked using a fuzzy analytical network process (ANP), a neural network algorithm, and a decision‐making trial and evaluation laboratory (DEMATEL) methodology. From the organizational aspect, budget risk is the most significant. From the technical aspect, the risk of regulations is the most important one. Finally, the risk of project failure from poor communication is another identified main risk in this research. By studying high‐ranking items in this hierarchy, it can be understood that these criteria exist in different aspects; therefore, all aspects of the risk should be taken into account to cover and assess risk. A neural network algorithm for validating and reassessment of ranking is employed. Results of this application showed that, based on Spearman's rank correlation method, two different approaches resulted in similar rankings. Finally, some practical implications for responding to the most highly ranked risks are proposed.  相似文献   

17.
Recycled water is a valuable resource that has potential to free up potable water supplies and recharge systems while improving the environment. Recycled water for washing machine could be one of the options as new end use of recycled water to alleviate the demand on existing and limited water supplies. This paper summarizes the findings of a research survey in Sydney, Australia to explore the attitudes and opinions of community towards the use of recycled water for different purposes, especially for the washing machine. The survey showed that 97% of the respondents were aware of the persisting water shortage problem while more than 60% of the respondents supported the use of recycled water for washing clothes. This paper exposes the basic concern of participants for using recycled water in washing machine. Health issue was found as the most concerns of the community. The survey also presents the further conditions to be considered for using recycled water for washing machine according to the participants’ opinions. Correlation between knowledge and attitudes of respondents was also found in this survey.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号