首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
Fumes from a group of gas metal arc welding (GMAW) processes used on stainless steel were generated using three different metal transfer modes and four different shield gases. The objective was to identify and measure manganese (Mn) species in the fumes, and identify processes that are minimal generators of Mn species. The robotic welding system was operated in short-circuit (SC) mode (Ar/CO2 and He/Ar), axial spray (AXS) mode (Ar/O2 and Ar/CO2), and pulsed axial-spray (PAXS) mode (Ar/O2). The fumes were analyzed for Mn by a sequential extraction process followed by inductively coupled plasma-atomic emission spectroscopy (ICP-AES) analysis, and by X-ray diffraction (XRD). Total elemental Mn, iron (Fe), chromium (Cr) and nickel (Ni) were separately measured after aqua regia digestion and ICP-AES analysis. Soluble Mn2+, Fe2+, Fe3+, and Ni2+ in a simple biological buffer (phosphate-buffered saline) were determined at pH 7.2 and 5.0 after 2 h incubation at 37 C by ion chromatography. Results indicate that Mn was present in soluble form, acid-soluble form, and acid-soluble form after reduction by hydroxylamine, which represents soluble Mn0 and Mn2+ compounds, other Mn2+ compounds, and (Mn3+ and Mn4+) compounds, respectively. The dominant fraction was the acid-soluble Mn2+ fraction, but results varied with the process and shield gas. Soluble Mn mass percent in the fume ranged from 0.2 to 0.9%, acid-soluble Mn2+ compounds ranged from 2.6 to 9.3%, and acid plus reducing agent-soluble (Mn3+ and Mn4+) compounds ranged from 0.6 to 5.1%. Total Mn composition ranged from 7 to 15%. XRD results showed fumes had a crystalline content of 90-99% Fe3O4, and showed evidence of multiple Mn oxides, but overlaps and weak signals limited identification. Small amounts of the Mn2+ in the fume (<0.01 to ≈ 1% or <0.1 to ≈ 10 microg ml(-1)) and Ni2+ (<0.01 to ≈ 0.2% or <0.1 to ≈ 2 mg ml(-1)) ions were found in biological buffer media, but amounts were highly dependent on pH and the welding process. Mn generation rates for the fractions were tabulated, and the influence of ozone is discussed. The conclusions are that exposures to welding fumes include multiple Mn species, both soluble and insoluble, and that exposures to Mn species vary with specific processes and shield gases.  相似文献   

2.
A diffusive sampling method for the determination of methyl isocyanate (MIC) in air is introduced. MIC is collected using a glass fiber filter impregnated with 4-nitro-7-piperazinobenzo-2-oxa-1,3-diazole (NBDPZ). The urea derivative formed is desorbed from the filter with acetonitrile and analyzed by means of high-performance liquid chromatography (HPLC) using fluorescence detection (FLD) with lambdaex = 471 nm and lambdaex = 540 nm. Additionally, a method was developed using tandem mass spectrometric (MS-MS) detection, which was performed as selected reaction monitoring (SRM) on the transition [MIC-NBDPZ + H]+ (m/z 307) to [NBDPZ + H]+ (m/z 250). The diffusive sampler was tested with MIC concentrations between 1 and 35 microg m(-3). The sampling periods varied from 15 min to 8 h, and the relative humidity (RH) was set from 20% up to 80%. The sampling rate for all 15 min experiments was determined to be 15.0 mL min(-1) (using HPLC-FLD) with a relative standard deviation of 9.9% for 56 experiments. At 80% RH, only 15 min sampling gave acceptable results. Further experiments revealed that humidity did not affect the MIC derivative but the reagent on the filter prior to and during sampling. The sampling rate for all experiments (including long term sampling) performed at 20% RH was found to be 15.0 mL min(-1) with a relative standard deviation of 6.3% (N = 42). The limit of quantification was 3 microg m(-3) (LC-MS-MS: 1.3 microg m(-3)) for 15 min sampling periods and 0.2 microg m(-3) (LC-MS-MS: 0.15 microg m(-3)) for 8 h sampling runs applying fluorescence detection.  相似文献   

3.
Three sampling and analytical methods have been developed and evaluated for ortho-phthalaldehyde (OPA): (1) an HPLC-UV method for OPA in air, (2) a fluorimetric method for OPA on surfaces, and (3) a colorimetric method for OPA on surfaces. (1) The air sampler contains 350 mg of silica gel coated with 1 mg of acidified 2,4-dinitrophenylhydrazine (DNPH). Air sampling may be conducted at 0.03 to 1.0 L min(-1) for periods up to 8 h. Samples were eluted with ethyl acetate, and the eluents were allowed to stand for 72 h. Analysis was by high performance liquid chromatography (HPLC) with a UV detector set at 369 nm. An unusual phenomenon was the observation that the stability of the sample on a sampler at 3 degrees C tends to decrease as the total quantity of OPA collected on the sampler decreases. Elution of the samples within 24 h of air sampling is required. The detection limit (LOD) is approximately 0.02 microg of OPA per sample. OPA on surfaces may be collected with strips cut from a sheet of polyvinyl alcohol (PVA wipe). (2) In the surface wipe method with analysis by fluorescence measurement, the strips of PVA wipe were placed into dimethyl sulfoxide. An aliquot was treated with aqueous N-acetyl-l-cysteine and ethylenediamine. Analysis was performed with a portable fluorometer (excitation and emission wavelengths = 365 nm and 438 nm, respectively). The LOD is 0.2 microg per sample. (3) In the surface wipe method with visual colorimetric detection, the strips of PVA wipe were placed into 30 : 70 acetonitrile : water. An aliquot was treated with N-(1-naphthyl)ethylenediamine in 0.1 m sulfuric acid. After color development, the LOD is approximately 48 microg per sample. These methods have been field tested in a hospital.  相似文献   

4.
In a cross-sectional study, 96 welders were compared with 96 control subjects. Also 27 former welders, all diagnosed as having manganism, were examined. Exposure to welding fumes was determined in the 96 welders, while the concentration of elements in whole blood and urine was determined in all subjects. The geometric mean (GM) concentrations of manganese (Mn) and iron in the workroom air were 97 microg m(-3) (range 3-4620 microg m(-3); n=188) and 894 microg m(-3) (range 106-20 300 microg m(-3); n=188), respectively. Thus the Mn concentration in the workroom air was on average 10.6% (GM) of that of the Fe concentration. No substantial difference was observed in the air Mn concentrations when welding mild steel as compared to welding stainless steel. The arithmetic mean (AM) concentration of Mn in whole blood (B-Mn) was about 25% higher in the welders compared to the controls (8.6 vs. 6.9 microg l(-1); p < 0.001), while the difference in the urinary Mn concentrations did not attain statistical significance. A Pearson's correlation coefficient of 0.31 (p < 0.01) was calculated between B-Mn and Mn in the workroom air that was collected the day before blood sampling. Although the exposure to welding fumes in the patients had ceased on average 5.8 years prior to the study (range 4 years-7 years), their AM B-Mn concentration was still higher than in referents of similar age (8.7 microg l(-1) vs. 7.0 microg l(-1)). However, their urinary concentrations of cobolt, iron and Mn were all statistically significantly lower.  相似文献   

5.
A new method for the determination of iron, cobalt, nickel, copper, zinc and manganese in drinking water by the reversed-phase high-performance liquid chromatography (RP-HPLC) with 2-(2-quinolinylazo)-5-diethylaminophenol (QADEAP) as precolumn derivatizing reagent was studied in this paper. The iron, cobalt, nickel, copper, zinc, and manganese ions react with QADEAP to form color chelates in the presence of cetyl trimethylammonium bromide (CTMAB) and acetic acid-sodium acetic buffer solution medium of pH 4.0. These chelates were enriched by solid-phase extraction with a Waters Nova-Pak C18 cartridge and eluted the retained chelates from the cartridge with tetrahydrofuran (THF). The enrichment factor of 100 was achieved. Then the chelates were separated on a Waters Nova-Pak C18 column (3.9 x 150 mm, 5 microm) by gradient elution with methanol (containing 0.2% of acetic acid and 0.1% of CTMAB) and 0.05 mol L(-1) acetic acid-sodium acetic buffer solution (containing 0.1% of CTMAB) (pH 4.0) as mobile phase at a flow rate of 0.5 ml min(-1), and monitored with a photodiode array detector from 450 approximately 700 nm. The detection limits (S/N = 3) of iron, cobalt, nickel, copper, zinc and manganese are 0.8, 1.1, 0.9, 1.1, 1.5 and 2.0 ng L(-1), respectively, in the original sample. This method can be applied to determination at the microg L(-1) level of iron, cobalt, nickel, copper, zinc and manganese in drinking water with good results.  相似文献   

6.
A denuder/filter system constructed for solvent-free personal exposure measurements was evaluated for separation of vapour and particulate 4,4'-methylenediphenyl diisocyanate (4,4'-MDI) generated from heated PUR-foam. The two different phases were collected in the denuder and on the filter, respectively, by chemosorption on a polydimethylsiloxane (SE-30)-dibutylamine (DBA) stationary phase. Both repeatability and the total mass concentration of 4,4'-MDI were similar to that obtained from the reference method, in this case an impinger/filter system. The penetration of particles through the denuder at 300 ml min(-1) was nearly 100% in the particle size range 25 to 700 nm, which fits well with the Gormley-Kennedy equation. Denuder/filter sampling of the 4,4'-MDI aerosol at 500 ml min(-1) yielded a phase distribution that was in accordance with the results from the reference method. The method limit of detection was 6 ng m(-3) and 4 ng m(-3) for the denuder and filter, respectively, when using an air sampling flow rate of 300 ml min(-1) and a sampling period of 15 min. This is well below the Swedish occupational exposure limit (OEL) of 50 and 100 microg m(-3) for an 8-hour working day and a 5-min period, respectively.  相似文献   

7.
In the field of industrial hygiene, besides the necessity of monitoring phosphine with direct reading apparatus to prevent accidents, there is a need for a method of sampling and analysing phosphine to control workers' exposure. The use of filters impregnated with silver nitrate to collect arsine, phosphine and stibine in workplace air has been described in the literature. Having previously chosen this type of filter to collect arsine, we studied its characteristics for phosphine capture. A filter impregnated with sodium carbonate was used both as a prefilter to collect the particles and to trap arsenic trioxide. After dissolving the silver compounds in nitric acid, ICP emission spectrometry was used to carry out the analysis. This article describes the comparative sampling we performed in a microelectronic laboratory and in a fumigation chamber (130 samples) to determine the concentration of AgNO3 impregnation solution to be used, the detection limit of the method and the retention capacity of the impregnated filters. Interference with other gases reacting with silver nitrate was studied and the storage time for sampled filters and analysis solutions was checked. The detection limit of the adopted method is better than 1 microg per filter, and the retention capacity exceeds 300 microg per filter. The problem of how to sample phosphine when H2S, NH3, or HCl is present has been solved, but the problem of sampling phosphine in atmospheres where acetylene evolves remains. Sampled filters and filter solutions are stable for more than three months at ambient temperature.  相似文献   

8.
N,N-dibutyl-N1-benzoylthiourea (DBBT) impregnated onto a polymeric matrix, Amberlite XAD-16 was prepared. The separation and enrichment of Ag(I) from solution was investigated. Effective extraction conditions were optimized in column methods prior to determination by atomic absorption spectrometry. The optimum pH range for quantitative adsorption is 2-5. Quantitative recovery of Ag was achieved by stripping with 1 mol L(-1) thiourea in 1 mol L(-1) HCl. The sorption capacity of resin is 0.115 mmol Ag+ g(-1) resin. The relative standard deviation and detection limit was 3.1% for 1 microg Ag+ mL(-1) solution and 0.11 microg L(-1), respectively. The method was used for the determination of silver in geological water samples.  相似文献   

9.
To date the exposure, absorption and respiratory health effects of cast-house workers have not been described since most studies performed in the aluminium industry are focused on exposure and health effects of potroom personnel. In the present study, we assessed the external exposure and the absorbed dose of metals in personnel from the aluminium cast house. This was combined with an evaluation of respiratory complaints and the lung function of the personnel. 30 workers from an aluminium casting plant participated and 17 individuals of the packaging and distribution departments were selected as controls. The exposure was assessed by the quantification of total inhalable fume with metal fraction and by the determination of urinary aluminium, chromium, beryllium, manganese and lead concentration. Carbon monoxide (CO), carbon dioxide (CO2), aldehydes and polyaromatic hydrocarbons and man-made mineral fibres concentration were assessed as well. In order to evaluate their respiratory status each participant filled out a questionnaire and their lung function was tested by forced spirometry. Total inhalable fume exposure was maximum 4.37 mg m(-3). Exposure to the combustion gases, man-made mineral fibres and metal fume was well below the exposure limits. Beryllium could not be detected in the urine. The values of aluminium, manganese and lead in the urine were all under the respective reference value. One individual had a urinary chromium excretion above the ACGIH defined biological exposure index (BEI) of 30 microg g(-1) creatinine. There was no significant difference in any of the categories of the respiratory questionnaire and in the results of the spirometry between cast house personnel and referents (Chi-square, all p > 0.05). Exposure in cast houses seem to be acceptable under these conditions. However, peak exposure to fumes cannot be excluded and the potential risk of chromium and beryllium exposure due to the recycling of aluminium requires further attention.  相似文献   

10.
The determination of sub-ppm concentrations of aqueous perfluoroalkylsulfonate (PFSt) anions, including perfluorooctylsulfonate (PFOS), has been accomplished with a relatively simple mass spectrometric procedure that does not require extraction of the analytes into an organic solvent or a chromatographic separation prior to injection into the negative-ion electrospray ionization mass spectrometer. Sample pretreatment was minimized and consisted of dilution of the aqueous samples of groundwater, surface water, tap water, and distilled water with acetonitrile, addition of dodecylsulfate (DDS) as an internal standard, and, in some cases, addition of known amounts of perfluorobutylsulfonate (PFBS) or PFOS for standard-addition experiments. The linear-response range for PFOS is 25.0 microg L(-1) to 2.5 mg L(-1). The lower limit of this range is three orders of magnitude lower than an equally straightforward chromatographic method. The relative errors for standard aqueous solutions containing only 25.0 microg L(-1) and 2.5 mg L(-1) PFOS are +/- 14% and +/- 7%, respectively, with 133 microg L(-1) DDS as the internal standard. The detection limit and quantification limit for PFOS in these standards are 5.0 microg L(-1) and 25.0 microg L(-1), respectively. Six different PFS anions, containing three to eight carbon atoms, were identified and quantified in an aqueous film-forming foam (AFFF) formulation using the method of standard additions. Two alkylsulfate anions and two perfluoroalkylcarboxylate anions were also identified in the AFFF formulation.  相似文献   

11.
In this project, a sampling device and an analytical method have been developed to simultaneously analyse the most frequently found low molecular weight amines, including aliphatic, aromatic and alcohol amines. These amines are diethanolamine, ethanolamine, methylamine, isopropylamine, morpholine, dimethylamine, and aniline. A sampling device was developed using a 37 mm cassette with glass fibre filters impregnated with sulfuric acid. Immediately after sampling, the filter was transferred to vials containing a solution of dansyl chloride. Dansyl chloride was used for derivatisation because it forms aromatic sulfonamides that are fluorescent and easy to protonate for MS detection. The effect of using an internal standard made with the dansylated derivative of 1-(2-methoxyphenyl)piperazine (MOPIP) on the uncertainty and efficiency of the method was also evaluated. This internal standard was spiked directly onto filters. The coupling of HPLC/ESI-MS was used for the simultaneous analysis of all the derivatives. This method showed detection limits of about 0.03 microg mL(-1) to 0.3 microg mL(-1) of amine with an average expanded uncertainty of 3% to 6% depending on the amine. The methodology recoveries are close to 100% for all the amines, and the overall estimated expanded uncertainties vary between 10% and 13% depending on the amine. This new strategy will be useful in evaluating workplace air since a unique sampling system will be used, independent of the amine to be quantified.  相似文献   

12.
建立超高效液相色谱-电喷雾串联四极杆质谱快速测定水中微囊藻毒素LR(MC-LR)的方法。水样经0.2μmGHP一次性针头过滤器过滤,应用超高效液相色谱/电喷雾串联四极杆质谱仪多离子反应监测(MRM)法定量检测MC-LR。经方法学验证,该方法对MC-LR的最低检出限LOD为0.08μg/L(进样量10μl),最低定量限LOQ是0.10μg/L。在0.2~20.0μg/L的线性范围中,相关系数r=0.9982,回收率范围91.5%~110.3%。方法灵敏度高,专属性强,操作简便快速,定量准确,测定浓度范围宽,是环境水质样品中MC-LR含量检测的理想方法。  相似文献   

13.
The thermal degradation products of polyurethanes (PURs) and exposure to isocyanates were studied by stationary and personal measurements in five different occupational environments. Isocyanates were collected on glass fibre filters impregnated with 1-(2-methoxyphenyl)piperazine (2MP) and in impingers containing n-dibutylamine (DBA) in toluene. connected to a glass fibre postfilter. The derivatives formed were analysed by liquid chromatography: 2MP derivatives with UV and electrochemical detection and DBA derivatives with mass spectrometric detection. The release of aldehydes and other volatile organic compounds into the air was also studied. In a comparison of the two sampling methods, the 2MP method yielded about 20% lower concentrations for 4,4'-methylenediphenyl diisocyanate (MDI) than did the DBA method. In car repair shops, the median concentration of diisocyanates (given as NCO groups) in the breathing zone was 1.1 microg NCO m(-3) during grinding and 0.3 microg NCO m(-3) during welding, with highest concentrations of 1.7 and 16 pg NCO m(-3), respectively. High concentrations of MDI, up to 25 and 19 microg NCO m(-3), respectively, were also measured in the breathing zone during welding of district heating pipes and turning of a PUR-coated metal cylinder. During installation of PUR-coated floor covering, small amounts of aliphatic diisocyanates were detected in the air. A small-molecular monoisocyanate, methyl isocyanate, and isocyanic acid were detected only during welding and turning operations. The diisocyanate concentrations were in general higher near the emission source than in the workers' breathing zone. A sampling strategy to evaluate the risk of exposure to isocyanates is presented.  相似文献   

14.
A method using GC-MS and derivatization with N-(t-butyldimethylsilyl)-N-methyltrifluoroacetamide (MTBSTFA) was developed for the analysis of 20 phenolic compounds in atmospheric samples (gas and particles). Air sampling was carried out using a Hi-Vol sampler with glass fibre filter and XAD-2 resin at a flow rate of 60 m(3) h(-1). The particle and gas phases were collected separately over a period of 4 h. Samples were Soxhlet extracted, evaporated to dryness under nitrogen and refilled with acetonitrile. 100 microl of these extracts were derivatized with 100 microl of MTBSTFA at 80 degrees C for 1 h under strong stirring. Phenolic compounds were injected into a GC-MS in splitless mode and quantified as their TBDMS derivatives in the SIM mode. Mass spectral analysis of the derivatives of the 20 compounds studied indicates that the spectra are highly specific showing an ion at [M - 57]+ which is useful for structure confirmation or analysis at low levels using selected ion monitoring. Quantification limits varied between 5 microg l(-1) and 10 microg l(-1) which correspond to 20 pg m(-3) and 40 pg m(-3) for 250 m(3) of air sampled. This method was successfully applied to atmospheric samples.  相似文献   

15.
The use of a large volume polyurethane foam (PUF) sampler was validated for rapid extraction of persistent organic pollutants (POPs), such as polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs), in raw water and treated water from drinking water plants. To validate the recovery of target compounds in the sampling process, a (37)Cl-labeled standard was spiked into the 1st PUF plug prior to filtration. An accelerated solvent extraction method, as a pressurized liquid extractor (PLE), was optimized to extract the PUF plug. For sample preparation, tandem column chromatography (TCC) clean-up was used for rapid analysis. The recoveries of labeled compounds in the analytical method were 80-110% (n = 9). The optimized PUF-PLE-TCC method was applied in the analysis of raw water and treated potable water from seven drinking water plants in South Korea. The sample volume used was between 18 and 102 L for raw water at a flow rate of 0.4-2 L min(-1), 95 and 107 L for treated water at a flow rate of 1.5-2.2 L min(-1). Limit of quantitation (LOQ) was a function of sample volume and it decreased with increasing sample volume. The LOQ of PCDD/Fs in raw waters analyzed by this method was 3-11 times lower than that described using large-size disk-type solid phase extraction (SPE) method. The LOQ of PCDD/F congeners in raw water and treated water were 0.022-3.9 ng L(-1) and 0.018-0.74 ng L(-1), respectively. Octachlorinated dibenzo-p-dioxin (OCDD) was found in some raw water samples, while their concentrations were well below the tentative criterion set by the Japanese Environmental Ministry for drinking water. OCDD was below the LOQ in the treated drinking water.  相似文献   

16.
Exposure to asphalt fumes has a threshold limit value (TLV of 0.5 mg m(-3) (benzene extractable inhalable particulate) as recommended by the American Conference of Governmental Industrial Hygienists (ACGIH). This reflects a recent change (2000) whereby two variables are different from the previous recommendation. First is a 10-fold reduction in quantity from 5 mg m(-3) to 0.5 mg m(-3). Secondly, the new TLV specifies the "inhalable" fraction as compared to what is presumed to be total particulate. To assess the impact of these changes, this study compares the differences between measurements of paving asphalt fume exposure in the field using an "inhalable" instrument versus the historically used 'total' sampler. Particle size is also examined to assist in the understanding of the aerodynamic collection differences as related to asphalt fumes and confounders. Results show that when exposures are limited to asphalt fumes, a 1:1 relationship exists between samplers, showing no statistically significant differences in benzene soluble matter (BSM). This means that for the asphalt fume ACGIH TLV, the 'total' 37-mm sampler is an equivalent method to the "inhalable" method, referred to as IOM (Institute of Occupational Medicine), and should be acceptable for use against the TLV. However, the study found that when confounders (dust or old asphalt millings) are present in the workplace, there can be significant differences between the two samplers' reported exposure. The ratio of IOM/Total was 1.37 for milling asphalt sites, 1.41 for asphalt paving over granular base, and 1.02 for asphalt over asphalt pavements.  相似文献   

17.
A methodology for workplace air monitoring of aromatic and aliphatic, mono- and polyisocyanates by derivatisation with di-n-butylamine (DBA) is presented. Air sampling was performed using midget impinger flasks containing 10 ml of 0.01 mol l(-1) DBA in toluene and a glass-fibre filter in series after the impinger flask, thereby providing the possibility of collecting and derivatising isocyanates in both the gas and particle phases. Quantification was made by LC-MS, monitoring the molecular ions [MH]+. Air samples taken with this method in car repair shops showed that many different isocyanates are formed during thermal decomposition of polyurethane (PUR) coatings. In addition to isocyanates such as hexamethylene (HDI), isophorone (IPDI), toluene (TDI) and methylenediphenyl diisocyanate (MDI), monoisocyanates such as methyl (MIC), ethyl (EIC), propyl (PIC), butyl (BIC) and phenyl isocyanate (PhI) were found. In many air samples the aliphatic monoisocyanates dominated. During cutting and welding operations, the highest levels of isocyanates were observed. In a single air sample from a welding operation in a car repair shop, the highest concentrations found were: MIC, 290; EIC, 60; PIC, 20; BIC, 9; PhI, 27; HDI, 105; IPDI, 39; MDI, 4; and 2,4-TDI and 2,6-TDI 140 microg m(-3). Monitoring the particle size distribution and concentration during grinding, welding and cutting operations showed that ultrafine particles (< 0.1 microm) were formed at high concentrations. Isocyanates with low volatility were mainly found in the particle phase, but isocyanates with a relatively high volatility such as TDI, were found in both the particle and gas phases.  相似文献   

18.
The present work describes a simple and reproducible direct-read system for onsite monitoring of beryllium on surfaces of work areas. It is based on the colorimetric reaction of beryllium with active ingredients deposited in a swab. A color comparator consisting of beryllium color chart was designed to enable the semi-quantitative determination of beryllium in surface samples. The system provides a minimum detection limit of 0.01 microg sample(-1). Metals tested for any interference effect include Al(3+), Ba(2+), Cd(2+), Cu(2+), Co(2+), Cr(3+), Cr(6+), Fe(3+), Hg(2+), Mg(2+), Ni(2+), Pb(2+), Ti(4+) and UO(2)(2+). Validation of the system showed no significant effect from metal interferences on the quantification of beryllium.  相似文献   

19.
In this paper we demonstrate the use of SPE cartridges for sampling of organophosphate triesters in indoor air by adsorptive enrichment. The method has been optimised for the sampling and analysis of organophosphate triesters using a 25 mg aminopropyl silica SPE cartridge. The same cartridge is used for the active air sampling as well as for the subsequent extraction and clean-up of the sample. This makes the method fast and eliminates some tedious and time-consuming manual sample handling steps. Sampling and extraction efficiency was high for the investigated organophosphates, and limit of detection was in the range 0.1-0.3 ng m(-3). The method was applied to measurements of organophosphate triesters in two lecture halls and an electronics dismantling facility, and was compared with results from common filter/adsorbent sampling at each site. Analysis was made by GC with selective detection by NPD set in phosphorus mode, and by GC-MS. Thirteen organophosphate triesters (not counting isomers) were detected in the electronic dismantling facility. Chlorinated organophosphate triesters were detected in all locations with concentrations over 1 microg m(-3) in the lecture halls. This kind of adsorptive enrichment using an SPE cartridge could be adjusted to other types of analytes as well.  相似文献   

20.
A monitoring method for diesel particulate matter was published as Method 5040 by the National Institute for Occupational Safety and Health (NIOSH). Organic and elemental carbon are determined by the method, but elemental carbon (EC) is a better exposure measure. The US Mine Safety and Health Administration (MSHA) proposed use of NIOSH 5040 for compliance determinations in metal and nonmetal mines. MSHA also published a rulemaking for coal mines, but no exposure standard was provided. A standard based on particulate carbon is not considered practical because of coal dust interference. Interference may not be a problem if an appropriate size-selective sampler and EC exposure standard are employed. Submicrometer dust concentrations found in previous surveys of nondieselized, underground coal mines were relatively low. If a large fraction of the submicrometer dust is organic and mineral matter, submicrometer EC concentrations would be much lower than submicrometer mass concentrations. Laboratory and field results reported herein indicate the amount of EC contributed by submicrometer coal dust is minor. In a laboratory test, a submicrometer EC concentration of 31 microg m(-3) was found when sampling a respirable coal dust concentration over three times the US compliance limit (2 mg m(-3)). Laboratory results are consistent with surveys of nondieselized coal mines, where EC results ranged from below the method limit of detection to 18 microg m(-3) when size-selective samplers were used to collect dust fractions having particle diameters below 1.5 microm-submicrometer EC concentrations were approximate 7 microg m(-3). In dieselized mines, submicrometer EC concentrations are much higher.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号