首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Responses to ozone of insects feeding on a crop and a weed species   总被引:1,自引:0,他引:1  
The influence of ozone on insect herbivore growth and population development was investigated. Fumigation of both pea (Pisum sativum L.) and dock (Rumex obtusifolius L.) at a range of O(3) concentrations between 21-206 nl litre(-1) produced changes in mean relative growth rates of the aphids Acyrthosiphon pisum Harris and Aphis rumicis L. of between 24 and -6% relative to controls. However, there was no evidence of a dose-related response to O(3) fumigation and no clear differences in aphid response when fumigated with the plant on prefumigated or previously unfumigated plant material. It is suggested that this may, in part, be due to the presence of NO contamination during O(3) fumigation. However, the MRGR of dock aphids was found to be greater on new compared to old leaves as well as the increase on the new growth and decrease on the old growth of fumigated plants relative to unfumigated controls. The size of egg batches of the chrysomelid beetle Gastrophysa viridula Degeer were found to be larger, survival and productivity of larvae was higher, and the food consumption lower on R. obtusifolius fumigated with 70 nl litre(-1) O(3) compared with unfumigated controls. This meant that these beetle larvae consumed less leaf area per mg of production on fumigated leaves probably because of their better nutritional quality and/or reduced leaf defences. However, the rate of development of larvae was similar on fumigated and control plants.  相似文献   

2.
A series of experiments was carried out in controlled environment cabinets to investigate the effects of SO(2) dose on the mean relative growth rate (MRGR) of pea aphids, Acyrthosiphon pisum, feeding on the pea plant, Pisum sativum. There was a significant linear increase in the MRGR of aphids feeding on SO(2)-fumigated plants, relative to control aphids feeding on plants in charcoal-filtered air. The increase in MRGR reached a maximum of 11% at SO(2) concentrations between 90 and 110 nl litre(-1). MRGR declined at higher SO(2) concentrations until above 220 nl litre(-1) it was below that of the controls. The dose-response curve is discussed in relation to reported changes in the nitrogen metabolism of plants subject to air pollution, the response of aphids to host plant nitrogen and possible toxic effects of high concentrations of SO(2) on the aphid.  相似文献   

3.
The responses of four major aphid pest species feeding on three major crops were studied in a series of experimental chambers on the roof of Imperial College in South Kensington, London. The experimental chambers were continually circulated with air which had been subjected to a variety of filtration treatments. In the first series of experiments there were three chambers subject to ambient air, charcoal-filtered air, and charcoal plus 'Purafil'-filtered air; in the subsequent experiments there were four chambers, a charcoal plus 'Purafil' plus charcoal treatment being added. These treatments provided a range of concentrations and mixtures of the ambient gases present at the site. The growth rate of aphids was measured both during filtration and post-filtration, the plants being exposed from sowing for either 42 or 84 days. In all cases there were significant effects on aphid performance which seemed to be most strongly linked to absolute and relative NO concentrations. The pattern of responses by the aphids accorded extremely well with those observed in closed-chamber fumigation experiments with stimulation of performance in relatively polluted air in all cases except Acyrthosiphon pisum (Harris) feeding on Vicia faba L. where the opposite effect was recorded.  相似文献   

4.
Both an open-air fumigation system and a laboratory-based system were used to expose decomposing Scots pine (Pinus sylvestris L.) needles to controlled concentrations of SO(2) (arithmetic mean 相似文献   

5.
One-year-old cherry trees were fumigated with propene and gas-phase hydrogen peroxide, singly and in combination, in controlled-environment chambers for an 8-week period during the summer season. A UV light source was included with the combined propene and hydrogen peroxide regime to provide a source of hydroxyl radicals and ozone, and thus all the constituents of a photochemical smog. Measurements were made of soluble protein concentration and of glutathione reductase activity in leaf extracts from two or three leaf classes in plants from each treatment regime at the end of each fumigation period. Significant increases in soluble protein concentration with respect to the controls were found in plants fumigated with propene and hydrogen peroxide. The occurrence and extent of these differences depended on the leaf class and on the timing of the fumigation period over the summer with respect to bud break. The activity of glutathione reductase was found to be significantly increased in mature lower leaves of plants which had been fumigated with hydrogen peroxide. This effect was independent of the timing of fumigation with respect to bud break. Enzyme activity was also increased in propene and in propene plus hydrogen peroxide treatments, but only when plants were fumigated early in the growth season.  相似文献   

6.
Pea aphids feeding from birth to maturity on pea plants (Pisum sativum) exposed to SO(2) concentrations of 50 nl litre(-1) or 80 nl litre(-1) showed a significant 19% increase in the rate of nymph production during the reproductive period, compared to control aphids feeding on plants in charcoal-filtered air. The higher nymph production resulted in a mean 4.6% increase in the intrinsic rate of population increase (rm). In longer term glasshouse fumigation experiments pea aphid populations were, on average, 1.8 times greater on pea plants in ambient air plus 45 nl litre(-1) SO(2) than in ambient air alone. Aphid infestation in ambient air caused a 42% reduction in pea yield and affected most plant parameters adversely. Ambient air plus SO(2) had no direct effect on yield, but, in combination with aphid infestation, a further 10% reduction in yield was recorded.  相似文献   

7.
The effects of ambient air compared to filtered air on the reproduction of females and mean relative growth rate (MRGR) of nymphs of C. pilicornis on Norway spruce was determined in open-top chambers at Wengernalp in the Swiss Alps (1900 m a.s.l.) and at Sch?nenbuch near the city of Basle (400 m a.s.l.). The ambient concentration of O(3), the main pollutant at both sites, varied between 45 and 120 microg m(-3) (24-h mean) at both sites. A 5-8 day exposure of spruce saplings to ambient compared to filtered air enhanced the MRGR of nymphs of C. pilicornis of local and northern origins at Sch?nenbuch. The cumulative numbers of offspring of C. pilicornis were higher in ambient air chambers than in filtered air chambers at Sch?nenbuch, but not at Wengernalp. Filtration of ambient air did not affect significantly the levels of total free amino acids or reducing sugars in phloem sap or concentration of total phenolics in needles at the end of the growing season. The results suggest that ambient air with elevated O(3) and with high daily fluctuations, as it can be observed in Sch?nenbuch, affects aphid performance on conifers more than ambient air with also elevated, but rather constant levels of O(3), as it can be observed in mountain forest areas.  相似文献   

8.
The native ground vegetation of a beech forest was fumigated with moderate doses of SO(2), NO(2), and O(3) in open-top chambers. The effects of fumigants on growth and above-ground development were dependent on species. The treatments caused early senescence in several of the species present. The epicuticular waxes were attacked by fumigation, which was shown by higher wettability of the leaf surfaces and by leaching of ions. Interspecific differences were observed in the responses of transpiration and photosynthesis to fumigation. Similar patterns of effects on transpiration and photosynthesis, however, were found in the same species. Carbohydrate metabolism was altered by fumigation, leading to starch accumulation in the leaves. Besides effects on higher plants, fumigations also resulted in alterations of the soil microflora. The bacteria/fungi ratio was depressed at the fumigation plots.  相似文献   

9.
The impact of air pollutants on plant/parasite-interactions has been investigated. It could be demonstrated that fumigation of Vicia faba L. with 0.15 ppm SO2 (400 microg m(-3)) or 0.2 ppm NO2 (400 microg m(-3)) during 7 days caused changes in plant metabolism which resulted in higher growth rates of the aphid Aphis fabae Scop. feeding on these plants. Fumigation of V. faba with 0.085 ppm O3 during 2 or 3 days, however, caused decreased aphid growth on fumigated plants. That result could be reversed by higher O3 concentrations or through the presence of NOx during O3 fumigation. Ambient air comprising a mixture of pollutant gases had a strong enhancing effect on aphid performance. Thus, the growth of A. fabae on field bean plants was significantly higher in ambient summertime. London air than in charcoal-filtered air. Similarly, the growth of Macrosiphon rosae L. on rose bushes (Rosa sp., cv. Nina Weibull) was improved in ambient summertime Munich air; the increase in growth rate averaged about 20%.  相似文献   

10.
Young wheat plants were fumigated with 170 microg m(-3) ozone for 3 days, or with 210 microg m(-3) ozone for 7 days, for 7 hours a day. At the end of the fumigation period the plants were inoculated with brown rust (Puccinia recondita f. sp. tritici) uredospores. The development of new uredospore pustules on fumigated and control plants was evaluated as a measure of rust disease potential. The number of pustules on the ozone fumigated plants was greatly reduced in comparison with the number of plants treated with charcoal-filtered air.  相似文献   

11.
Much attention has been paid to ozone as a major cause of novel forest decline in Europe. In combination with acidic mist, O(3) has been observed to increase ion leaching. Besides cations lake Mg(2+), Ca(2+), K(+), NH(4)(+), considerable amounts of nitrate were found to be leached by acidic mist from needles of Norway spruce. Controlled fumigation experiments, with 100, 300, and 600 microg O(3)m(-3) over 22 days continuously, have led to a nitrate accumulation of 94.1 +/- 14.8, 119.4 +/- 28.7 and 198.9 +/- 14.9 microg NO(3)(-1) g(-1) FW, respectively, in leaves of Quercus robur. Similar values were found in leaves of Fagus sylvatica and current and previous year needles of Picea abies. Nitrate levels of controls receiving charcoal filtered air were well below 40 microg NO(3)(-) g (-1) FW. Statistically significant elevated nitrate levels were observed after only 48 h of continuous fumigation with 600 microg O(3)m(-3), in all tree species tested, and after 144 h in the 100 microg O(3)m(-3) treatment. In another experiment, trees of Picea abies were kept in two charcoal (C) and two Purafil plus charcoal (P/C) ventilated chambers, and fumigated with O and 500 microg O(3)m(-3) in cabinets of each filter-type in order to eliminate NO(x) from chamber air. After 29 days of continuous ozone fumigation, NO(3)(-) accumulation in needles amounted to 102.0 +/- 37.7 and 137.4 +/- 40.5 microg g(-1) FW in P/C and C-filtered chambers, respectively. Nitrate contents of controls were below 30 microg NO(3)(-)g(-1) FW at the end of the experiment. No significant differences in NO(3)(-) accumulation between filter treatments were observed. Since NO(x) was reduced by more than 95% in the Purafil/charcoal versus the charcoal treatment, NO(3)(-) accumulation in needles can be attributed predominantly to the influence of ozone and not to direct NO(2) uptake of needles by the possible oxidation of NO to NO(2) in the presence of ozone.  相似文献   

12.
CO(2) assimilation rate, stomatal conductance and chlorophyll content of current and previous years' needles of Norway spruce were measured in May 1988, 205 days after the cessation of ozone fumigation during the summer of 1987. Rates of assimilation were consistently higher for both needle year age classes for ozone fumigated trees in comparison to control trees, although only statistically significant for part of the day for current year's needles. A 26% and 48% stimulation, overall, in mean daily rates of assimilation for current and previous years' needles of ozone fumigated trees was observed. This was due to an enhanced apparent quantum yield and light saturated rate of assimilation of ozone fumigated trees. The temperature response regression of assimilation versus temperature was also greater, such that at any given temperature, assimilation was higher for ozone treated trees than control trees. Stomatal conductance was greater for ozone fumigated trees than the controls, but this was only marginally statistically significant. Moreover, there was a consistent increase in chlorophyll content in both year classes in ozone-treated trees. These results are discussed in relation to a possible long term effect of ozone fumigation upon the processes of conifer winter hardening and spring de-hardening.  相似文献   

13.
Spring wheat (Triticum aestivum L. cv. Turbo) was exposed in open-top chambers to six different ozone levels (8-h daily means from 12.4 to 122 microg m(-3)), to non-filtered air and to chamberless field conditions for 31 days from seedling stage through ear emergence. Powdery mildew (Erysiphe graminis DC. f.sp. tritici Marchal) which developed during the exposure period was significantly enhanced from 0.3/0.6% (two chamber replicates), 1.2/2.1%, 0.9/2.2% in charcoal-filtered air (CF) to 1.5/1.6%, 3.7/4.3%, 4.4/4.6% at the highest level of ozone, on the flag leaf, second and third leaf position, respectively. Post-exposure inoculation with Septoria nodorum Berk. led to increases of disease severity on the flag leaf from 40.9/43.6% in CF to 66.3/70.6% at the highest ozone concentration and on the ears from 15.7/16.5% to 26.3/26.6%. In the same comparison, severity of spot blotch following inoculation with Bipolaris sorokiniana (Sacc.) Shoem. (syn. Helminthosporium sativum Pamm., King et Bakke) was increased on the flag leaf from 3.6/8.9% to 12.3/23.4%. The three diseases examined correlated significantly with the ozone treatments in fumigated chambers. Disease severity was enhanced even on undamaged plant tissue (flag leaves). Infections of the two facultative pathogens on lower leaf positions started only in part from visible ozone lesions, mildew did not start from such lesions. No significant effects of ozone in the chambers on the saprobial colonization of the phyllosphere were detected, whereas there were marked differences in this respect between plants from the field and the chambers. At the highest ozone treatment, contents of chlorophyll a and carotenoids on the second leaf position declined significantly, which was associated with symptoms of premature senescence. Senescing effects of ozone are therefore assumed to be one major factor in predisposing wheat for necrotrophic leaf pathogens. Surprisingly, injurious and predisposing effects of ozone were completely absent in chambers supplied with non-filtered air containing ambient ozone at doses equivalent to those in CF + ozone chambers. Evidently, biological effects of ozone in pure air and in ambient air may differ markedly.  相似文献   

14.
This paper describes a relationship between ozone exposure, biomass, visual symptoms and a chlorophyll a fluorescence performance index for young beech trees (Fagus sylvatica). The plants were exposed to four levels of ozone in open-top fumigation chambers (50, 85, 100% of ambient, and 50% of ambient+30 nl l(-1) ozone) that fluctuated in parallel with ambient ozone during a single growing season. The trees were fumigated in the four treatments with ozone levels corresponding to an AOT40 (accumulated exposure above a threshold of 40 nl l(-1)) of 0.01, 3.35, 7.06 and 19.70 microl l(-1) h, respectively. Highly significant differences were found between the 50% of ambient+30 nl l(-1) ozone treatment and all other treatments, with a 70.5% reduction in primary photosynthetic performance, as measured with the PI index. The reduction of the PI values demonstrated a high correlation with visual symptom development (r(2)=0.98), and by the end of September with biomass loss (r(2)=0.99). A significant ozone exposure-response relationship was found between AOT40 and primary photochemistry (r(2)=0.97). Thus, analysis of PI provides an alternative method for regional monitoring of tree health within the context of the currently employed AOT40.  相似文献   

15.
Photochemical oxidant injury to ponderosa pine (Pinus ponderosa Laws) is a severe problem in the southern California mountains. Three-year-old ponderosa pines fumigated in controlled environment chambers with ozone at 0.15, 0.30, or 0.45 ppm had apparent photosynthesis rates reduced by 10, 70, and 85%, respectively, after 30 days exposure. A fumigation with 0.30 ppm ozone for 33 days depressed the cold perchloric acid extracted polysaccharides of both current and one-year-old needles by 40%. The 80% ethanol soluble sugar concentration of current year, ozone-injured needles increased 16% and that of the one-year-old needles decreased slightly. Both carbohydrate fractions of control trees in carbon-filtered air increased moderately. Higher, endogenous concentrations of ascorbic acid in needles did not protect the tissue from ozone injury. Apparent photosynthesis rate was a sensitive index for ozone dosage response. Needle carbohydrate depletion probably induces premature abscission.  相似文献   

16.
During three consecutive seasons (1987-1989), the effects of low-levels of O3, SO2 and NO2 singly and in all possible combinations (NO2 in 1988 and 1989 only) on growth and yield of potted plants of spring rape (Brassica napus L. var. napus, 'callypso') were investigated by means of factorial fumigation experiments in open-top chambers. Plants were exposed from the early vegetative stage of development until seed harvest, to charcoal-filtered air (CF; control) and CF which was supplemented for 8-h per day (8.00-16.00) with O3, for 16-h per day with NO2 (16.00-8.00) and continuously with SO2. Including the controls, the 24-h daily mean concentrations [microg m(-3)] ranged between 6-44 (O3), 9-88 (SO2) and 10-43 (NO2). The corresponding daily mean concentrations during the time of fumigation were 10-121 and 11-60 microg m(-3) for O3 and NO2, respectively. Single effects of O3 on growth and yield parameters were mostly negative and the magnitude of this effect was dependent on the season. O3 reduced plant dry weight by 11.3-18.6% and yield of seeds by 11.4-26.9%. While medium levels of SO2 stimulated the weight of pods up to 33%, higher concentrations (88 microg m(-3)) caused a decline of yield of 12.3%. From the significant interactive effects which were observed, it could be established that SO2 and NO2 alone mostly acted positively, but that their interaction with each other and especially with O3 was antagonistic, as some of the detrimental effects of O3 were mitigated by these pollutants. An important antagonistic effect between SO2 and O3 or NO2 was observed on yield. While 56 microg m(-3) SO2 increased yield by 9.9% compared to the control treatment, it aggravated the yield loss caused by O3 from -16.18% to -21.4%, and it reduced the yield stimulation caused by NO2 from +11.8% to +4.2%. Leaf area was the only parameter which was negatively affected by all pollutants, their joint action being synergistic.  相似文献   

17.
Three-year-old Douglas firs (Pseudotsuga menziesii) were fumigated with 180 microg m(-3) NH3 or clean (charcoal-filtered) air. During these fumigations the plants received 15 mm artificial rain weekly, supplemented with 20, 500 or 2500 micromol litre(-1) (NH4)2SO4. Exposure to NH3 and NH4+ for 14 weeks resulted in a change of the nutrient status of the needles. The most remarkable effect was the increase in the N/K ratio, due to both uptake of N and leaching of K. The action of NH3 was stronger than that of NH4+. Both NH3 and (NH4)2SO4 affected the epicuticular wax layer and decreased mycorhiza frequency. Following fumigation and artificial rain treatments, needles were incubated for 8 h in a medium containing 0, 50, 250, 500 and 2500 micromol litre(-1) (NH4)2SO4. Almost no exchange of Ca, Mg and K for NH4+ was found. Therefore this ion exchange probably explains only a minor part of the changes in nutrient status of the whole trees.  相似文献   

18.
Sitka spruce trees, with and without the aphid Elatobium abietinum and/or drought treatment, were subjected to 25 nl litre(-1) of sulphur dioxide over a 2-month period. Aphids became three times as abundant on the fumigated trees if they were well watered and twice as abundant on trees from which water was withheld, compared with unfumigated controls. Growth parameters of the trees were little affected by pollution alone, but were substantially reduced by either aphids or drought. There was a significant interaction between SO(2) and aphids in a further reduction of both leader extension and root weight. Root weight was also reduced by 24% more than expected from the additive effects of the combined SO(2) and drought treatment.  相似文献   

19.
The lichen species Anaptychia ciliaris, Collema nigrescens, Evernia prunastri, Hypogymnia bitteri, Lobaria pulmonaria, Pseudevernia furfuracea and Usnea rigida s.l. were fumigated with site-relevant concentrations (for Central Europe) of ozone over 80 days (180 microg m(-3) during daytime, 80 microg m(-3) during the night). Chlorophyll fluorescence measurements revealed a significant reduction of Fv/Fm after ozone fumigation in five of the species investigated, indicating severe stress on photosystem II due to ozone. The physiological impairment paralleled our fine structural investigations, revealing a significantly higher percentage of collapsed photobiont cells. This indicates that the effects of ambient ozone concentrations under experimental conditions included biophysical and physiological, as well as structural impairment in the lichens studied.  相似文献   

20.
Investigations using chlorophyll fluorescence induction kinetics provide the parameters Rfd, L, and Ap to characterize different specifications of the photosynthetic system (PS). The application of ozone, with concentrations between 100 microg m(-3) and 2000 microg m(-3) to spruce in closed chambers yields a reduction of Rfd between 6% and 23% for the current year's needles, which indicates a reduced potential photosynthetic capacity. Further measurements on the current year's needles of spruce of the damage classes S0/S1, S2 and S3 show also a reduction of Rfd of between 7% and 14% in 2 successive years. In addition, the parameter L increases for damaged trees by between 11% and 49%, indicating a change of the chlorophyll content and of the internal energy distribution between PSI and PSII. As no effect of L can be observed with ozone fumigation, it is concluded that the change of some specifications of the PS can be simulated well by ozone fumigation (e.g. Rfd) while other specifications cannot (e.g. L).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号