首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
Projected changes in climate in Southern Norway include increases in summer and autumn precipitation. This may affect leaching of dissolved organic matter (DOM) from soils. Effects of experimentally added extra precipitation (10 mm week) during the growing season of 3 years (2004-2006) to small headwater catchments at Storgama (59 degrees 0'N, 550-600 m a.s.l.) on leaching of total organic carbon (TOC) and total organic nitrogen (TON) were assessed. Extra precipitation did not have a significant effect on average TOC and TON concentrations in runoff. Thus, fluxes of TOC and TON increased nearly proportionally with water fluxes. This suggests that a store of adsorbed and potentially mobile TOC and TON in catchment soils buffers the concentration of DOM in runoff. The size and dynamics of the pool of TOC and TON depends on the balance between production and leaching rates. Infrequent short droughts had only small effects on TOC and TON fluxes in runoff from the reference catchments.  相似文献   

2.
Ecosystem budgets of matter contribute to the assessment of transport and accumulation of bioavailable contaminants in a landscape, since flows of matter and energy ultimately determine the rates at which contaminants will be partitioned in the environment. This study compares ecosystem properties, such as net primary production (NPP), sequestration of matter and fluxes to food sources for humans, which are of potential interest to describe fluxes and accumulation of bioavailable radionuclides in 14 catchments within a larger catchment area in southeast Sweden. The carbon budgets, used as a proxy for organic matter, are mainly based on local estimates of pools and fluxes, which have been distributed across a landscape mosaic of different vegetation types and management regimes using a geographical information system (GIS). NPP varied by a factor close to two (432 - 709 g x Cx m(-2)x y(-1)), while net ecosystem production ranged between -124 and 159 gx C x m(-2) x y (-1) for the different catchments. Carbon sequestration mainly occurred in the vegetation while the soil organic carbon pool was mainly a source of carbon. Large herbivores consumed on average 4.5 % of the above-ground green tissue production. When arable land was present in the catchment, the flux of carbon to humans was highest from crops and, in decreasing order, milk and beef, followed by the flux from hunting and berry/fungus picking. The results can be used to estimate the potential assimilation of radionuclides in vegetation and the potential exposure to humans of bioavailable radionuclides.  相似文献   

3.
Rendek E  Ducom G  Germain P 《Chemosphere》2007,67(8):1582-1587
In order to understand the influence of organic components on the behavior of municipal solid waste incinerator bottom ash, samples from five French incinerators have been analyzed and compared. Biological and physico-chemical experiments were coupled with a view to developing a new rapid assessment method of bottom ash quality. Bottom ash had different total organic carbon contents ranging from 8.8 g kg(-1) to 37.4 g kg(-1). A part of this organic carbon can be leached into the environment or provide a substrate for microbial activity. Samples showed really different behaviors regarding these processes. Comparative results of leaching tests and biodegradation experiments showed a positive correlation between dissolved organic carbon and microbial activity. However, quantities of biodegraded or leached carbon are not representative of the samples' total organic carbon content. Thermal analyses in oxidizing conditions have revealed the presence of two fractions of organic components, showing different thermal behaviors. The associated mass losses were measured and compared to dissolved organic carbon. One of the two fractions can be directly linked to the leachable and easily biodegradable organic matter fraction. Calorimetric test is then presented as a novel analysis method that allows to provide rapid and global information concerning the characteristics of organic matter in bottom ash and its possible short and long-term evolution.  相似文献   

4.
Helland A  Holtan G  Jørgensen P 《Ambio》2003,32(6):412-417
The transport of organic and inorganic material in 10 Norwegian rivers has been monitored from 1990 to 1998. The suspended material in the rivers consisted of 40-80% organic materials. A major part of this was DOC with a C/ N mole ratio > 25. The C/N ratio of the organic material increases with increasing river flow when drained from forest-dominated catchments, in contrast to mountain dominated catchments where variation in runoff does not influence the C/N ratio. Laboratory experiments showed that more than 90% of the DOC remained in solution when salinity increased to 30. The flocculated and settled material contained less than 5% organic material with a C/N ratio of 6.7-12.4, comparable to C/N ratios in cultivated soils and coastal marine sediments. This confirms that only a minor amount of organic material carried to the sea by rivers settles in the coastal zone.  相似文献   

5.
While the existence of black carbon as part of dissolved organic matter (DOM) has been confirmed, quantitative determinations of dissolved black carbon (DBC) in freshwater ecosystem and information on factors controlling its concentration are scarce. In this study, stream surface water samples from a series of watersheds subject to different burn frequencies in Konza Prairie (Kansas, USA) were collected in order to determine if recent fire history has a noticeable effect on DBC concentration. The DBC levels detected ranged from 0.04 to 0.11 mg L?1, accounting for ca. 3.32 ± 0.51% of dissolved organic carbon (DOC). No correlation was found between DBC concentration and neither fire frequency nor time since last burn. We suggest that limited DBC flux is related to high burning efficiency, possibly greater export during periods of high discharge and/or the continuous export of DBC over long time scales. A linear correlation between DOC and DBC concentrations was observed, suggesting the export mechanisms determining DOC and DBC concentrations are likely coupled. The potential influence of fire history was less than the influence of other factors controlling the DOC and DBC dynamics in this ecosystem. Assuming similar conditions and processes apply in grasslands elsewhere, extrapolation to a global scale would suggest a global grasslands flux of DBC on the order of 0.14 Mt carbon year?1.  相似文献   

6.
Diffuse phosphorus (P) export from agricultural land to surface waters is a significant environmental problem. It is critical to determine the natural background P losses from diffuse sources, but their identification and quantification is difficult. In this study, three headwater catchments with differing land use (arable, pasture and forest) were monitored for 3 years to quantify exports of dissolved (<0.45 µm) reactive P and total dissolved P. Mean total P exports from the arable catchment ranged between 0.08 and 0.28 kg ha?1 year?1. Compared with the reference condition (forest), arable land and pasture exported up to 11-fold more dissolved P. The contribution of dissolved (<0.45 µm) unreactive P was low to negligible in every catchment. Agricultural practices can exert large pressures on surface waters that are controlled by hydrological factors. Adapting policy to cope with these factors is needed for lowering these pressures in the future.  相似文献   

7.
Drained peatlands are an important source of forest biomass in boreal regions and ditch network maintenance (DNM) operations may be needed to restore the drainage functions of ditches. By reviewing the available literature, as well as utilizing an existing hydrological model and analyzing the characteristics of eroded sediments, we assessed the impacts of DNM on runoff and exports of suspended solids (SS), dissolved organic carbon (DOC), nitrogen (N), and phosphorus (P). In general, DNM had minor impact on runoff and dissolved N and P, and it decreased rather than increased DOC exports. To increase the understanding of the hydrochemical impacts of DNM, future research should focus on the characteristics of SS and particulate nutrient exports. A major gap in knowledge is also the very limited regional representativeness of the available studies. High erosion risk in the ditches reaching the mineral soil below peat should be acknowledged when planning mitigation measures.  相似文献   

8.
To evaluate the effects of dissolved organic carbon on sorption of 3,4-dichloroaniline (3,4-DCA) and 4-bromoaniline (4-BA) on soils, batch sorption experiments were carried out. The soil used was a typical calcareous soil from south-eastern Spain. Two different types of dissolved organic carbon were used, that is, dissolved organic carbon extracts from a commercial peat (DOC-PE) and high-purity tannic acid (DOC-TA). The experiments were carried out in a 0.01 M CaCl2 aqueous medium at 25 degrees C. The results obtained from the sorption experiments show that the presence of both DOC-PE and DOC-TA, over a concentration range of 15-100 mg l-1, produced in all cases, an increase in the amount of 3,4-DCA and 4-BA adsorbed on the soil studied.  相似文献   

9.
Concentrations of aluminium and minor metals (Mn, Ni, Cu, Zn, Sr, Cd, Ba, Pb) were measured in precipitation and surface water at two upland locations (Upper Duddon Valley, UDV; Great Dun Fell, GDF) in northern England for 1 year commencing April 1998. At both locations, the loads in bulk precipitation were at the lower ends of ranges reported for other rural and remote sites, for the period 1985-1995. The deposited metals were mostly in the dissolved form, and their concentrations tended to be greatest when rainfall volumes were low. The concentrations of Cu, Zn and Pb in deposition were correlated (r2 > or = 0.40) with concentrations of non-marine sulphate. Three streams, ranging in mean pH from 5.07 to 7.07, and with mean concentrations of dissolved organic carbon (DOC) < 1 mg l(-1). were monitored at UDV, and two pools (mean pH 4.89 and 6.83, mean DOC 22 and 15 mg l(-1)) at GDF. Aluminium and the minor metals were mainly in the dissolved form, and in the following ranges (means of 49-51 samples. microg l(-1)): Al 36-530. Mn 4.4-36, Ni 0.26-2.8, Cu 0.25-1.7, Zn 2.1-30, Cd 0.03-0.16, Ba 1.9-140, Pb 0.10-4.5. Concentrations were generally higher at GDF. Differences in metal concentrations between the two locations and between waters at each location, and temporal variations in individual waters, can be explained qualitatively in terms of sorption to solid-phase soil organic matter and mineral surfaces, complexation and transport by DOC, and chemical weathering. The UDV catchments are sinks for Pb and sources of Al, Mn, Sr, Cd and Ba. The GDF catchments are sources of Al, Mn, Ni, Zn, Sr, Cd and Ba. Other metals measured at the two locations are approximately in balance. Comparison of metal:silicon ratios in the surface waters with values for silicate rocks indicates enrichment of Ni and Cu, and substantial enrichment of Zn, Cd and Pb. These enrichments, together with high metal deposition in the past, make it likely that concentrations of the metals in the surface waters are governed by release from catchment pools of atmospherically-deposited metal. The catchments appear to be responding on a time scale of decades, possibly centuries, to changes in metal deposition. For the more acid waters at UDV, the calculated free-ion concentrations of Al are similar to published LC50 values for acute toxicity towards fish. The free-ion concentrations of Ni, Cu, Zn and Cd in all the surface waters are one-to-four orders of magnitude lower than reported LC50 values for fish.  相似文献   

10.
Relating dissolved organic matter fluorescence and functional properties   总被引:4,自引:0,他引:4  
Baker A  Tipping E  Thacker SA  Gondar D 《Chemosphere》2008,73(11):1765-1772
The fluorescence excitation–emission matrix properties of 25 dissolved organic matter samples from three rivers and one lake are analysed. All sites are sampled in duplicate, and the 25 samples include ten taken from the lake site, and nine from one of the rivers, to cover variations in dissolved organic matter composition due to season and river flow. Fluorescence properties are compared to the functional properties of the dissolved organic matter; the functional assays provide quantitative information on photochemical fading, buffering capacity, copper binding, benzo[a]pyrene binding, hydrophilicity and adsorption to alumina. Optical (absorbance and fluorescence) characterization of the dissolved organic matter samples demonstrates that (1) peak C (excitation 300–350 nm; emission 400–460 nm) fluorescence emission wavelength; (2) the ratio of peak T (excitation 220–235 nm; emission 330–370 nm) to peak C fluorescence intensity; and (3) the peak C fluorescence intensity: absorbance at 340 nm ratio have strong correlations with many of the functional assays. Strongest correlations are with benzo[a]pyrene binding, alumina adsorption, hydrophilicity and buffering capacity, and in many cases linear regression equations with a correlation coefficient >0.8 are obtained. These optical properties are independent of freshwater dissolved organic carbon concentration (for concentrations <10 mg L−1) and therefore hold the potential for laboratory, field and on-line monitoring and prediction of organic matter functional properties.  相似文献   

11.
Oxalate and root exudates enhance the desorption of p,p'-DDT from soils   总被引:3,自引:0,他引:3  
Luo L  Zhang S  Shan XQ  Zhu YG 《Chemosphere》2006,63(8):1273-1279
The abiotic desorption of p,p'-DDT from seven Chinese soils spiked with p,p'-DDT and the effects of oxalate at 0.001-0.1M and the root exudates of maize, wheat, and ryegrass were evaluated using batch experiments. Soil organic carbon played a predominant role in the retention of DDT. Oxalate significantly increased the desorption of p,p'-DDT, with the largest increments ranging from 11% to 54% for different soils. Oxalate addition also resulted in the increased release of dissolved organic carbon and inorganic ions from soils. Root exudates had similar effects to those of oxalate. Root exudates significantly increased DDT desorption from the soils, and the general trend was similar among the plant species studied for all the soils (p > 0.05). Low molecular weight dissolved organic carbon amendments caused partial dissolution of the soil structure, such as the organo-mineral linkages, resulting in the release of organic carbon and metal ions and thus the subsequent enhanced desorption of DDT from the soils. The enhancing effects of oxalate and root exudates on DDT desorption were influenced by the contents of soil organic carbon and dissolved organic carbon in soils.  相似文献   

12.
Rainwater contains a complex mixture of organic compounds which may influence climate, terrestrial and maritime ecosystems and thus human health. In this work, the characteristics of DOM of bulk deposition at a coastal town on the southwest of Europe were assessed by UV–visible and three-dimensional excitation–emission matrix fluorescence spectroscopies and by dissolved organic carbon (DOC) content. The seasonal and air mass trajectory effects on dissolved organic matter (DOM) of bulk deposition were evaluated. The absorbance at 250 nm (UV250nm) and integrated fluorescence showed to be positively correlated with each other, and they were also positively correlated to the DOC in bulk deposition, which suggest that a constant fraction of DOM is likely to fluoresce. There was more chromophoric dissolved organic matter (CDOM) present in summer and autumn seasons than in winter and spring. Bulk deposition associated with terrestrial air masses contained a higher CDOM content than bulk deposition related to marine air masses, thus highlighting the contribution of terrestrial/anthropogenic sources.  相似文献   

13.

Background, aim, and scope  

Dissolved organic matter, measured as dissolved organic carbon (DOC), is an important component of aquatic ecosystems and of the global carbon cycle. It is known that changes in DOC quality and quantity are likely to have ecological repercussions. This review has four goals: (1) to discuss potential mechanisms responsible for recent changes in aquatic DOC concentrations; (2) to provide a comprehensive overview of the interactions between DOC, nutrients, and trace metals in mainly boreal environments; (3) to explore the impact of climate change on DOC and the subsequent effects on nutrients and trace metals; and (4) to explore the potential impact of DOC cycling on climate change.  相似文献   

14.
Extensive production of ethanol and vehicular use of this biofuel have recently been suggested as possible sources of elevated volatile organic carbon (VOC) in rain in Brazil (Campos, M.L.A.M., Nogueira, R.F.P., Dametto, P.R., Francisco, J.G., Coelho, C.H., 2007. Dissolved organic carbon in rainwater: glassware decontamination and sample preservation and volatile organic carbon. Atmos. Environ. 41, 8924–8931; Coelho, C.H., Francisco, J.G., Nogueira, R.F.P., Campos, M.L.A.M., 2008. Dissolved organic carbon in rainwater from areas heavily impacted by sugar cane burning. Atmos. Environ. 42, 7115–7121). Furthermore, these studies suggested that the global flux of rainwater dissolved organic carbon (DOC) may be underestimated since most DOC analytical methods do not measure VOC. The current study examined rain VOC in Wilmington, North Carolina USA in order to assess the importance of rain VOC in a location that does not have the unique conditions of ethanol production and usage found in Brazil. VOC was observed in one of six whole rain events analyzed in the current study. This event had an air mass back trajectory that originated over the Midwestern USA, the primary region where ethanol is produced and used as fuel. The other five storms which had no influence from the central US prior to arrival at the rain collection site had non-detectable VOC suggesting that air mass back trajectory has a dramatic impact on the VOC content of rainwater. VOC was also observed in the initial 1 mm of rain from two of these events but was not detectable in the whole event samples suggesting VOC is efficiently washed out of the atmosphere and is not rapidly resupplied in rainwater at this location. Considering the results of the previous Brazilian studies and the current study, and the likelihood of increased global production and consumption of ethanol based biofuels, it is imperative that future measurements of rainwater DOC include measurement of VOC. Monitoring changes in the VOC contribution to rain DOC will provide an assessment of the impact of increased ethanol biofuel usage on rainwater composition and allow for future refinements of global rainwater DOC flux estimates.  相似文献   

15.
《Chemosphere》2009,74(11):1765-1772
The fluorescence excitation–emission matrix properties of 25 dissolved organic matter samples from three rivers and one lake are analysed. All sites are sampled in duplicate, and the 25 samples include ten taken from the lake site, and nine from one of the rivers, to cover variations in dissolved organic matter composition due to season and river flow. Fluorescence properties are compared to the functional properties of the dissolved organic matter; the functional assays provide quantitative information on photochemical fading, buffering capacity, copper binding, benzo[a]pyrene binding, hydrophilicity and adsorption to alumina. Optical (absorbance and fluorescence) characterization of the dissolved organic matter samples demonstrates that (1) peak C (excitation 300–350 nm; emission 400–460 nm) fluorescence emission wavelength; (2) the ratio of peak T (excitation 220–235 nm; emission 330–370 nm) to peak C fluorescence intensity; and (3) the peak C fluorescence intensity: absorbance at 340 nm ratio have strong correlations with many of the functional assays. Strongest correlations are with benzo[a]pyrene binding, alumina adsorption, hydrophilicity and buffering capacity, and in many cases linear regression equations with a correlation coefficient >0.8 are obtained. These optical properties are independent of freshwater dissolved organic carbon concentration (for concentrations <10 mg L−1) and therefore hold the potential for laboratory, field and on-line monitoring and prediction of organic matter functional properties.  相似文献   

16.
A novel laboratory microcosm test was developed to measure the diffusion of native PAHs and PCBs from sediments in the presence and absence of a capping layer. Diffusive flux of 15 PAHs and 7 PCBs from uncapped sediment from Oslo harbour was 3.8+/-0.9 microg m(-2)d(-1) and 0.010+/-0.003 microg m(-2)d(-1), respectively. The flux from sediments capped with 1cm mineral cap (crushed limestone or crushed gneiss (0-2mm)), observed during the first 410 d, was 3.5-7.3% of the flux from uncapped sediments. By measuring freely dissolved pore water concentrations of 10 PAHs the flux in the microcosm was modelled with steady state and transient diffusion models. The measured flux from uncapped sediment was 27-290% of modelled steady state flux. Good agreement was also found between the measured flux of pyrene from capped sediment and the flux modelled with the transient model when fitting only with the distribution coefficients for pyrene between the cap material and water (Kd_pyr). Fitted Kd_pyr, (210 and 23 l kg(-1) for limestone and gneiss, respectively) was in the same order of magnitude as K(d) calculated from organic carbon content in the cap materials (68 and 14 l kg(-1) respectively). Calculation of the efficiency of a hypothetical cap with 10 cm diffusion path shows that the increased diffusion path length alone can yield a flux reduction >99% through a strong increase in the stagnant diffusive boundary layer from <1 to 100mm.  相似文献   

17.
We determined the organic carbon released by roots of maize plants (Zea mays L.) when grown in soils amended with compost and its soluble fractions. In rhizobox systems, soil and roots are separated from the soil of a lower compartment by a nylon membrane. Treatments are applied to the upper compartment, while in the lower compartment luminescent biosensors measure the bioavailable organic carbon released by roots (rhizodeposition). The rhizobox-plants systems were amended with a compost (COM), its water extract (TEA), the hydrophobic (HoDOM) and hydrophilic (HiDOM) fractions of the dissolved organic matter (DOM) extracted from the compost. After root development, the lower untreated compartments were sampled and sliced into thin layers. The bioavailable organic carbon in each layer was assessed with the lux-marked biosensor Pseudomonas fluorescens 10586 pUCD607, and compared with total organic carbon (TOC) analyses. The TOC values ranged between 8.4 and 9.6 g kg(-1) and did not show any significant differences between bulk and rhizosphere soil samples in any treatment. Conversely, the biosensor detected significant differences in available C compounds for rhizosphere soils amended with various organic materials. Concentrations of available organic compounds in the first 2 mm of soil rhizosphere were 1.69 (control), 1.09 (COM), 2.87 (HiDOM), 4.73 (HoDOM) and 2.14 (TEA)micromol Cg(-1) soil g(-1) roots. The applied rhizobox-biosensor integrated method was successful in detecting and quantifying effects of organic amendments on organic carbon released by maize plant roots. This approach may become important in assessing the carbon cycle in agricultural soils and soil-atmosphere compartments.  相似文献   

18.
Water, suspended particulate matter (SPM), and sediment samples were collected from ten rivers in Tianjin and analyzed for 16 polycyclic aromatic hydrocarbons (PAHs), dissolved organic carbon (DOC), particulate organic carbon (POC) in SPM and total organic carbon (TOC) in sediment. The behavior and fate of PAHs influenced by these parameters were examined. Generally, organic carbon was the primary factor controlling the behavior of the 16 PAH species. Partitioning of PAHs between SPM and water phase was studied, and K(OC) for some PAH species were found to be significantly higher than the predicted values. The source of PAHs contamination was diagnosed by using PAH isomer ratios. Coal combustion was identified to be a long-term and prevailing contamination source for sediment, while sewage/wastewater source could reasonably explain a short-term PAHs contamination of SPM.  相似文献   

19.
Short-term variability in stream water dissolved organic carbon (DOC) concentrations is controlled by hydrology, climate and atmospheric deposition. Using the Riparian flow-concentration Integration Model (RIM), we evaluated factors controlling stream water DOC in the Swedish Integrated Monitoring (IM) catchments by separating out hydrological effects on stream DOC dynamics. Model residuals were correlated with climate and deposition-related drivers. DOC was most strongly correlated to water flow in the northern catchment (Gammtratten). The southern Aneboda and Kindla catchments had pronounced seasonal DOC signals, which correlated weakly to flow. DOC concentrations at Gårdsjön increased, potentially in response to declining acid deposition. Soil temperature correlated strongly with model residuals at all sites. Incorporating soil temperature in RIM improved model performance substantially (20–62% lower median absolute error). According to the simulations, the RIM conceptualization of riparian processes explains between 36% (Kindla) and 61% (Aneboda) of the DOC dynamics at the IM sites.  相似文献   

20.
Volatile fatty acids (VFAs) represent the major organic constituent of landfill leachate and provide the greatest potential for leachate induced organic contamination of groundwater (e.g. as represented by an increase in the concentration of dissolved organic carbon and chemical oxygen demand). Long-term diffusion tests were performed for laboratory-compacted clayey soil plugs exposed to continuous supply of synthetic leachate containing VFAs. Significant microbial activity developed upon exposure of the soil's indigenous microorganisms to these degradable contaminants. The growth of heterotrophic aerobic bacteria (HAB, which include facultative anaerobes), sulfate reducing bacteria (SRB) and methanogenic bacteria carrying out fermentation and mineralization of the VFAs became evident after 30-50 days of testing. The maximum microbial counts of (2-8) x 10(8) and (0.1-1) x 10(8) cfu/g for HAB and SRB were localized in the soil layer at the interface with the source of organic and inorganic nutrients. Regardless of this rapid growth in microbial population, the VFA consumption was small and measurable only after a lag of 140-180 days. It is considered that this lag of otherwise readily degradable organic compounds (such as VFAs) persisted due to a combination of the effects of a high initial concentration of these acids (2.4 g/l as dissolved organic carbon, DOC) applied to carbon starved soil microorganisms and the small pore size of the compacted clay. Once the significant amounts of gas were generated from fermentation, conditions developed for improved mass transport and exchange of the nutrients and bacteria and the outcome of the intrinsic degradation was more apparent. The breakdown of VFAs that followed after the lag was localized near the top of the soil and was characterized by a short half-life of 0.75-5 days for DOC (total VFAs as dissolved organic carbon).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号