首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Korean water quality managers are required to promptly develop national assessment standards for freshwater sediment quality due to the Four Major River Restoration Project in Korea in 2009. We conducted this study to develop sediment management standards (SMSs), determining obviously and severely polluted sediment, which could have adverse impacts on water quality and aquatic ecosystem. The SMSs values were derived from the 95th percentile of concentration distribution for organic matter and nutrients in sediment quality database. For the SMSs of metals, foreign sediment quality guidelines (SQGs) were adopted. As a result, 13 % for loss on ignition (LOI), 1,600 mg/kg for total phosphorus (TP), and 5,600 mg/kg for total nitrogen (TN) were set as the SMSs for freshwater sediment in Korea. These values were higher than the range of heavily polluted sediment from USEPA Region 5 guideline derived by the similar approaches for the Great Lakes harbor sediments, and similar or lower than the severe effect level (SEL) from provincial sediment quality guideline (PSQG) of Ontario, Canada by screening level concentration (SLC) approach. However, SMSs in the present study are appropriate considering the concentration ranges and the Korean SMSs’ definition for freshwater sediments in Korea. The Puget Sound marine sediment cleanup screening level (CSL) in Washington State, USA were adopted as the Korean SMSs for As (93 mg/kg), Cd (6.7 mg/kg), Cr (270 mg/kg), Cu (390 mg/kg), Pb (530 mg/kg), and Zn (960 mg/kg) in freshwater sediments. Hg concentration (0.59 mg/kg) of CSL was too low to determine the polluted freshwater sediments in Korea, and the SEL of Ontario, Canada for mercury concentration (2 mg/kg) was selected as the SMS for Hg. These values were found reasonable through the assessment of applicability with the datasets from locations directly affected by obvious point sources. These results indicate that SMSs for organic matter, nutrient, and metals derived within the present study can successfully determine obviously and severely polluted sediment in Korea. However, the SMSs have limits to specifically determine the effects of polluted sediment on water quality and aquatic ecosystem in Korea. Thus, we will revise and specify SMSs considering those effects and further sediment quality assessment framework in the near future.  相似文献   

2.
底泥污染物释放动力学研究   总被引:13,自引:1,他引:13  
采用模拟试验方式和新型微生物数量测定方法 ,研究了沼泽化湖泊底泥和受污染河流底泥在不同扰动状态下 ,底泥耗氧速率、氮和磷污染物释放动力学过程。结果表明 :( 1)底泥耗氧速率是同样条件下上覆水耗氧速率的 48倍 ,而在扰动状态下 ,底泥耗氧速率达到上覆水耗氧速率的 5 96— 93 6倍 ,扰动底泥显著增大其耗氧速率 ,底泥污染越严重 ,其耗氧速率越大 ,对水体产生的影响也越大。 ( 2 )扰动底泥可以显著增大底泥的氮磷释放速率 ,氮的释放受有机氮的氨化、氨氮的硝化、硝酸盐氮的反硝化以及氨氮被微生物吸收转化为有机氮等的影响 ;磷的释放过程受厌氧过程和底泥颗粒吸附的影响 ,耗氧速率高的底泥具有更大的氮磷释放潜力。 ( 3 )微生物数量在底泥污染物释放动力学中起着关键性作用 ,新型方法可以快速检测微生物总量。试验结果对于水环境的管理、受污染水体的修复 ,以及底泥的处理处置等都具有重要的指导意义  相似文献   

3.

Nickel (Ni) in small plateau lake sediments plays an important role in influencing the quality of lake ecosystems with a high degree of endemism and toxicity. This paper focuses on the spatial distribution and ecological risks of nickel in the sediments of Jianhu Lake, a small plateau lake in China, and the influence of pH and total organic carbon (TOC) on nickel concentrations. The results showed that average total nickel concentrations were 138.99 ± 57.57 mg/kg (n = 38) and 184.31 ± 92.12 mg/kg (n = 60) in surface sediments (0–10 cm top layer) and sediment cores (0–75 cm depth), respectively, and that the residual fraction was the main form of nickel. Simultaneously, through a semivariogram model, strong spatial dependence among pH, TOC, and the oxidizable fraction was revealed, whereas total nickel, exchangeable and the weak acid soluble fraction, reducible fraction, and residual fraction showed moderate spatial dependence. The vertical distribution revealed that nickel accumulated mainly in the bottom 5 cm (70-75 cm) of the sediment layer and that the pH was higher there, whereas TOC was concentrated mainly in the top 5 cm of sediment. Using geoaccumulation and a potential ecological risk index, moderate nickel pollution and moderate risk levels were found in most surface sediments, but moderate nickel pollution and high risk levels were observed in most sediment cores. In addition, pH and TOC were found to have a strong effect on the distribution and concentration of nickel and its fractions in the small plateau lake. In summary, nickel posed a certain degree of pollution and ecological risk, which deserves attention in the sediments of small plateau lakes.

  相似文献   

4.
Variation with depth and time of organic matter (carbon, nitrogen, phosphorus), inorganic pollutant (mercury), as well as bacterial abundance and activity, were investigated for the first time in sediment profiles of different parts of Lake Geneva (Switzerland) over the last decades. The highest organic contents (about 32%), mercury concentration (27 mg kg−1), bacterial abundance (in order of 9 × 109 cell g−1 dry sediment), and bacterial activity (1299 Relative Light Units (RLU)) were found in the highly polluted sediments contaminated by the waste water treatment plant (WWTP) discharge, which deposited during the period of cultural eutrophication. Such data, which contrast with the other sampled sites from deeper and more remote parts of the lake, prove that the organic matter and nutrients released from the municipal WWTP have considerable effects on bacterial abundance and activities in freshwater sediments. In fact, the relatively unpolluted deepwater sites and the coastal polluted site show large synchronous increases in bacterial densities linked to the anoxic conditions in the 1970s (lake eutrophication caused by external nutrient input) that subsequently increased the nutrient loading fluxes. These results show that the microbial activities response to natural or human-induced changing limnological conditions (e.g., nutrient supply, oxygen availability, redox conditions) constitutes a threat to the security of water resources, which in turn poses concerns for the world’s freshwater resources in the context of global warming and the degradation of water quality (oxygen depletion in the bottom water due to reduced deep waters mixing). Moreover, the accumulation of inorganic pollutants such as high mercury (methyl-mercury) concentration may represent a significant source of toxicity for sediment dwelling organisms.  相似文献   

5.
Sediment accumulation of organic halogen was studied in two forest lakes, one pristine and one which received 30 m3 of biologically purified bleaching wastewater from a kraft pulp mill in 1979 equivalent to ca. 2 kg of adsorbable organic halogen (AOX). Lake sediments were dated with210Pb,134Cs and137Cs and the annual deposition rates of organic halogens and organic matter were calculated. Organic bound halogen contents of the sediment aged 150 years was 180 μg Cl g?1 d.w. in both lakes. The concentration of organic bound halogen at the topmost 6 cm of the sediments (less than 20-years-old) ranged from 45 to 80 μg Cl g?1 d.w. This suggests that solvent extractable halogen had enriched in the older sediment layers. The deposition of extractable organic halogen (EOX) in the lakes in 1950’s was 4 to 5 mg Cl m?2 a?1. Since then, the depositon of EOX doubled in both lakes. The deposition of organic matter increased concomitantly from 50 g m?2 a?1 to 110 g m?2 a?1 in Lake Mustalampi and from 35 g m?2 a?1 to 62 g m?2 a?1 in Lake Pyylampi suggesting that the increase in the deposition of organic halogen followed the increase in the deposition of organic matter. Of the 2 kg of organic halogen discharged into the lake, 5% or less was detected in the sediment in tetrahydrofuran extractable form 15 years later.  相似文献   

6.
Rush Lake (WI, USA), the largest prairie-pothole lake east of the Mississippi River, has been contaminated with lead pollution as a result of over 140 years of waterfowl hunting. We examined: (1) the extent of lead pollution in Rush Lake sediments and (2) whether lead pollution in Rush Lake is affecting the abundance and community structure of indigenous sediment bacteria. Sediment lead concentrations did not exceed 59 mg Pb kg(-1) dry sediment. No relationship was observed between sediment lead concentration and the abundance of aerobic (P=0.498) or anaerobic (P=0.416) heterotrophic bacteria. Similarly, lead did not appear to affect bacterial community structure when considering both culturable and nonculturable community members. In contrast, the culturable fraction of sediment bacteria in samples containing 59 mg Pb kg(-1) exhibited a unique community structure. While factors other than lead content likely play roles in determining bacterial community structure in the sediments of Rush Lake, these data suggest that the culturable fraction of sediment bacterial communities is affected by elevated lead levels.  相似文献   

7.
Background, Aims and Scope Sediments of the Spittelwasser creek are highly polluted with organic compounds and heavy metals due to the discharge of untreated waste waters from the industrial region of Bitterfeld-Wolfen, Germany over the course of more than one century. However, relatively few data have been published about the chloroorganic contamination of the sediment. This paper reports on the content of different (chloro)organic compounds with special emphasis on polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/F), and chlorobenzenes. Existing concepts for the remediation of Spittelwasser sediment include the investigation of natural attenuation processes, which largely depend on the presence of an intact microbial food web. In order to gain more insight in terms of biological activity, we analyzed the capacity of sediment microflora to degrade organic matter by measuring the activities of extracellular hydrolytic enzymes involved in the biogeochemical cycling of carbon, nitrogen, phosphorus and sulfur. Furthermore, the detection of physiologically active bacteria in the sediment, particularly of those known for their capability to reductively dehalogenate organochlorine compounds, illustrates the potential for intrinsic bioremediation processes. Methods PCDD/F and chlorobenzenes were analyzed by gas chromatography(GC)/mass spectrometry and GC/flame ionization detection, respectively. The activities of hydrolytic enzymes were determined from freshly sampled sediment layers using 4-methylumbelliferyl (MUF) or 7-amino-4-methylcoumarin-conjugated model compounds and kinetic fluorescence measurements. Physiologically active bacteria from different sediment layers were microscopically visualized by fluorescence in situ hybridization (FISH). Specific bacteria were identified by 16S rRNA gene amplification and sequencing. Results and Discussion The PCDD/F congener profile was dominated by dibenzofurans. In addition, the presence of specific tetra and pentachlorinated dibenzofurans supported the assumption that extensive magnesium production was one possible source for the high contamination. A range of other chloroorganic compounds, including several isomers of chlorobenzenes, hexachlorocyclohexane and 1,1,1-trichloro-2,2-bis (p-chloro-phenyl)ethane (DDT), was present in the sediment. Activities of extracellular hydrolytic enzymes showed a strong decrease in those sediment layers that were characterized by high contents of absorbable organic halogen (AOX), indicating disturbed organic matter decay. Interestingly, an abnormal increase of cellulolytic enzyme activities below the organochlorine-rich layers was observed, possibly caused by residual cellulose from discharges of sulfite pulping wastes. FISH revealed physiologically active bacteria in most sediment layers from the surface down to the depth of about 60 cm, including members of Desulfitobacterium (D.) and Sulfurospirillum. The presence of D. dehalogenans was confirmed by its partial 16S rRNA gene sequence. Conclusions Results of chemical sediment analyses demonstrated high loads of organochlorine compounds, particularly of PCDD/F. Several years after stopping the waste water discharge to Spittelwasser creek, this sediment remains a main source for pollution of the downstream river system by way of the ongoing mobilization of sediment during high floods. As indicated by our enzyme activity measurements, the decomposition potential for organic matter is low in organochlorine-rich sediment layers. In contrast, the comparably higher enzyme activities in less organochlorine-polluted sediment layers as well as the presence of physiologically active bacteria suggest a considerable potential for natural attenuation. Recommendations and Perspectives From our data we strongly recommend to explore the degradative capacity of sediment microorganisms and the limits for in situ activity towards specific sediment pollutants in more detail. This will give a sound basis for the integration of bioremediation approaches into general concepts to reduce the risk that permanently radiates from this highly contaminated sediment. Submission Editor: Dr. Henner Hollert (Henner.Hollert@urz.uniheidelberg.de)  相似文献   

8.
Hexachlorocyclohexane (HCH) concentrations in sediments and sediment trap fluxes of particulate organic carbon and HCHs were measured bi-weekly from March 31 to October 18, 2006 in an urban eutrophic lake in Tianjin, China, in order to investigate sedimentation and seasonal variation of HCHs in sediments. HCH concentrations (dry weight basis) ranged from 2.2 to 20.2 ng/g (mean 7.7 ng/g) in surface sediments and from 26.6 to 972.7 ng/g (mean 187.0 ng/g) in settling particles, respectively. A clear seasonal variation in HCH sedimentation and HCH concentrations in sediments was observed. The maximal HCH deposition occurred following a spring phytoplankton bloom. The average flux of HCHs to sediment was approximately 21-fold higher in April to mid-June as compared to late June to October. This was attributed to the high vertical fluxes at the end of the spring phytoplankton bloom. The maximum values of HCH concentrations in sediments were observed in mid-June to late July. Concentrations of HCHs in sediments from the eutrophic lake were well-correlated with organic carbon contents in sediments. The annual sediment trap flux of HCHs in the eutrophic lake, which was estimated using data obtained in the eutrophic lake, was 117 microg/m2 yr, about 72% of which was attributed to the sedimentation corresponding to spring bloom phytoplankton deposition in late May to mid-June. The high sediment trap flux of HCHs in the eutrophic lake was related to serious local contamination.  相似文献   

9.
Hexachlorocyclohexane (HCH) concentrations in sediments and sediment trap fluxes of particulate organic carbon and HCHs were measured bi-weekly from March 31 to October 18, 2006 in an urban eutrophic lake in Tianjin, China, in order to investigate sedimentation and seasonal variation of HCHs in sediments. HCH concentrations (dry weight basis) ranged from 2.2 to 20.2 ng/g (mean 7.7 ng/g) in surface sediments and from 26.6 to 972.7 ng/g (mean 187.0 ng/g) in settling particles, respectively. A clear seasonal variation in HCH sedimentation and HCH concentrations in sediments was observed. The maximal HCH deposition occurred following a spring phytoplankton bloom. The average flux of HCHs to sediment was approximately 21-fold higher in April to mid-June as compared to late June to October. This was attributed to the high vertical fluxes at the end of the spring phytoplankton bloom. The maximum values of HCH concentrations in sediments were observed in mid-June to late July. Concentrations of HCHs in sediments from the eutrophic lake were well-correlated with organic carbon contents in sediments. The annual sediment trap flux of HCHs in the eutrophic lake, which was estimated using data obtained in the eutrophic lake, was 117 μ g/m2 yr, about 72% of which was attributed to the sedimentation corresponding to spring bloom phytoplankton deposition in late May to mid-June. The high sediment trap flux of HCHs in the eutrophic lake was related to serious local contamination.  相似文献   

10.
In urban area, the accumulation of polluted stormwater sediments (SWS) in retention ponds may be a source of dissolved pollutants and nutrients for the aquatic ecosystems. Our objective was to quantify the influence of the thickness of SWS layer and the occurrence of tubificid worms on organic matter processing (O(2) uptake and fluxes of NH(4)(+), NO(3)(-), PO(4)(3-), and dissolved organic carbon between sediment and water), releases of 17 PAHs and 4 heavy metals, and microbial characteristics. Results showed that oxidation of SWS organic matter (O(2) and NO(3)(-) uptakes) and releases of nutrients were significantly increased by the quantity of accumulated SWS and the worm bioturbation. Releases of acenaphtene and naphthalene from sediments were significantly increased by the thickness of the SWS layer. In contrast, tubificid worms did not promote the mobilization of pollutants. In conclusion, biological activities and stormwater sediment characteristics need to be assessed to quantify the fate of pollutants and nutrients in stormwater retention ponds.  相似文献   

11.
Degradation of three sulfonamides (SAs), namely sulfamethoxazole (SMX), sulfamethazine (SMZ), and sulfadimethoxine (SDM) in surface water and sediments collected from Taihu Lake and Dianchi Lake, China was investigated in this study. The surface water (5–10 cm) was collected from the east region of Taihu Lake, China. Two sets of degradation experiments were conducted in 3-L glass bottles containing 2 L of fresh lake water and 100 μg/L of individual SAs aerated by bubbling air at a rate of approximately 1.2 L/min, one of which was sterilized by the addition of NaN3 (0.1 %). Sediment samples were taken from Taihu Lake and Dianchi Lake, China. For the sediment experiment, 5 g of sediment were weighed into a 50-mL glass tube, with 10 mg/kg of individual SAs. Different experimental conditions including the sediment types, sterilization, light exposure, and redox condition were also considered in the experiments. The three SAs degraded in lake water with half-lives (t 1/2) of 10.5–12.9 days, and the half-lives increased significantly to 31.9–49.8 days in the sterilized water. SMZ and SDM were degraded by abiotic processes in Taihu and Dianchi sediments, and the different experimental conditions and sediments characteristics had no significant effect on their declines. SMX, however, was mainly transformed by facultative anaerobes in Taihu and Dianchi sediments under anaerobic conditions, and the degradation rate of SMX in non-sterile sediment (t 1/2 of 9.6–16.7 days) were higher than in sterilized sediment (t 1/2 of 18.7–135.9 days). Under abiotic conditions, degradation of SMX in Dianchi sediment was faster than in Taihu sediment, probably due to the higher organic matter content and inorganic photosensitizers concentrations in Dianchi sediment. High initial SAs concentration inhibited the SAs degradation, which was likely related to the inhibition of microorganism activities by high SAs levels in sediments. Results from this study could provide information on the persistence of commonly used sulfanomides antibiotics in lake environment.  相似文献   

12.
The toxicity of a polycyclic aromatic hydrocarbon (PAH) mixture was assessed on the indigenous microbial communities of a natural freshwater sediment. The fate and effects of the PAH mixture (phenanthrene, fluoranthene and benzo(k)fluoranthene) were studied over 28 days. Bacterial communities were described by bacterial counts (total bacteria and viable bacteria), and by some hydrolytic enzyme activities (beta-glucosidase and leucine-aminopeptidase), PAH concentrations were measured in the overlying waters and in the sediments. No effect of PAH was detected at 30 mg/kg for all bacterial parameters. At 300 mg/kg, the quantity of total bacteria and the proportion of viable bacteria markedly decreased, compared to the control (0 mg PAH/kg). At 300 mg/kg, an increase of the beta-glucosidase activity and a decrease of the leucine-aminopeptidase activity were observed. For all treatments, the benzo(k)fluoranthene concentration in the sediment was stable over 28 days whereas, in the same time, only 3-6% of the initial concentrations of phenanthrene and fluoranthene remained. This study shows that (1) PAH induce perturbations of sediment microbial communities in terms of density and metabolism (but not always as an inhibition), (2) indigenous bacteria of sediments might be used for toxicity assessment of specific organic pollutants, (3) native microorganisms of sediment seem to have a high capacity for PAH degradation, depending on the physico-chemical properties and the bioavailability of the substance encountered.  相似文献   

13.
Metal (Cu, Zn, Pb, Cd, Ni, Co, and Fe) contamination in sediments from a tropical estuary (Ébrié Lagoon, Ivory Coast) was assessed using pollution indices, multivariate analyses and sediment quality guidelines (SQGs). The results demonstrate that increased input of the studied metals occurred over the past 6 years compared to that from 20 years ago, due to rapid population growth, along with the increase of industrial and agricultural activities in the vicinity of the estuary. Ébrié Lagoon was also found to be one of the most contaminated tropical coastal estuaries. Very high average total organic carbon (TOC) content was found (1.9–3.70%) with significant spatial variation as a result of the influence of anthropogenic activities. This study also found that TOC plays an important role in the distribution of Cu, Zn, Co, and Cd in the Ébrié Lagoon sediments. Moderate to high sediment contamination was observed for Cd and Cu, moderate contamination was observed for Zn and Pb, while low contamination was observed for Ni, Co, and Fe. Cluster analysis (CA) and principal component analysis (PCA) investigation revealed that Cu, Zn, Cd, and Co result mainly from anthropogenic sources while Pb, Ni, and Fe may be of natural origin. The pollution-loading index (PLI) indicated that all of the sites close to wastewater discharges were highly polluted. The sediments are likely to be an occasional threat to aquatic organisms due to Cu, Zn, Pb, Cd, and Ni contents, based on the SQGs approach.  相似文献   

14.
Féray C  Montuelle B 《Chemosphere》2003,50(7):919-928
Nitrification is a microbial key step of the nitrogen cycle, which performs the oxidation of ammonium to nitrate, via nitrite. In aquatic environments, it mainly takes place in the sediment or is associated with suspended particles. Wastewater treatment plant (WTP) discharges in rivers may disrupt sediment nitrification: this impact is related to nitrogen inputs (mainly NH(4)(+) and organic nitrogen) but could also depend on the nitrifying bacteria inputs which have been proved to survive downstream WTP discharge points. The aim of the present study was to assess the effect of NH(4)(+) and nitrifying bacteria inputs on the two steps of nitrification in freshwater sediments.To avoid natural sites constraints and to control the main environmental parameters, we used microcosms to simulate a river receiving different types of WTP discharges. These microcosms were composed of five glass dual-walls reactors (6 l) containing sediment and continuously filled (controlled flow) with river water and WTP effluent. Two types of effluents were tested: a non-nitrified one (high NH(4)(+) input, very few nitrifying bacteria) and a nitrified one (low NH(4)(+) input, more nitrifying bacteria), at different effluent/freshwater ratios (0/100, 20/80, 40/60 and 80/20). Changes in the ammonium- and nitrite-oxidizing communities were assessed by the Most Probable Number method, and changes in potential ammonium-oxidizing activity and potential nitrite-oxidizing activity were determined by incubations with specific inhibitors (sodium chlorate and allylthiourea).In most of the cases the presence of effluent induced significant changes of the nitrifying bacteria densities and potential activities in the sediment. This effect indicates generally a loss of specific potential activity and in most of the time is significant for a high effluent/river water ratio (40% to 80%). In our experimental conditions and in the case of a large WTP discharge, the nitrifying potential in freshwater sediments could thus be significantly modified.  相似文献   

15.
Kodaikkanal, India, suffered mercury contamination due to emissions and waste from a thermometer factory. Kodai Lake is situated to the north of the factory. The present study determined mercury in waters, sediment and fish samples and compared the values with those from two other lakes, Berijam and Kukkal. Total mercury (Hg(T)) of 356-465 ng l(-1), and 50 ng l(-1) of mercury in methyl mercury form were seen in Kodai waters while Berijam and Kukkal waters showed significantly lower values. Kodai sediment showed 276-350 mg/kg Hg(T) with about 6% methyl mercury. Berijam and Kukkal sediments showed Hg(T) of 189-226 mg/kg and 85-91 mg/kg and lower methylation at 3-4% and 2%, respectively. Hg(T) in fish from Kodai lake ranged from 120 to 290 mg/kg. The results show that pollution of the lake has taken place due to mercury emissions by the factory.  相似文献   

16.
Background Acid-volatile sulfide (AVS) is operationally defined as sulfides in sediment, which are soluble in cold acid, and is reported as the most active part of the total sulfur in aquatic sediments. It is a key partitioning phase controlling the activities of divalent cationic heavy metals in sediment. Methods In order to examine this in mangrove environments, six sites were selected along the Jiulong River Estuary in Fujian, China, which had previously been reported to be polluted by heavy metals. Sediments were sampled from 0–60 cm depth at each site, and the spatial distribution of AVS and SEM (simultaneously extracted metals: copper, cadmium, zinc, and lead) were determined. Results and Discussion The results indicate that the AVS concentrations had a spatial variation, ranging from 0.24 to 16.10 μmol g−1 sediment dry weight. The AVS concentration in the surface layer is lower than that of the deeper sediment, with peak values in the 15–30 cm horizon. There was no correlation between the AVS value and organic matter content or total dissolved salts, but a significant positive correlation of AVS with surface sediment (0–5 cm) moisture content was found. This indicates that water logged sediments tend to have a high AVS value. The amount of SEM was within the range of 0.33–2.80 μmol g−1 sediment dry weight and decreased with sediment depth. Conclusions There was a marked variation in AVS and SEM among different sites studied. AVS concentrations were generally lower in the surface sediments, while SEM concentrations slightly decreased with the depth. Higher concentrations of SEM found in the upper layers of the sediments confirm the earlier suggestions that this study area may suffer from increasing heavy metal pollution. Recommendations and Perspectives When monitoring environmental impacts by using AVS, the micro and large-scale spatial variation as well as vertical distribution need to be estimated to avoid misleading results. Both AVS and SEM concentrations in different sediment layers should be taken into account in assessing the potential impact of heavy metals on the biotic environment.  相似文献   

17.
Status of trace elements in paddy soil and sediment in Taihu Lake region   总被引:14,自引:0,他引:14  
Wang XC  Yan WD  An Z  Lu Q  Shi WM  Cao ZH  Wong MH 《Chemosphere》2003,50(6):707-710
Thirteen paddy soil profiles and river sediments which are sources of irrigation water were collected around the Taihu Lake, and the trace elements were estimated. The content of La and Ce in paddy soil and sediment were 39.3 and 68.6 mg/kg soil and 36.9 and 65.1 mg/kg soil, being within the range of background values. The values for Pb, Cu, Ni, Cr, Co, Mn, Zn, Se in paddy soil were 23.3, 27.8, 25.5, 63.5, 10.2, 386, 68.7 and 0.25 mg/kg soil respectively, all below the national permission level. There was a decline of Zn in paddy soil. Some of the river sediments were seriously polluted. The river in Yangjin site was most contaminated with 5.47 g Cu/kg and 7.4 g Zn/kg. The high concentration of Pb and Ni also was observed in this sediment. River in Weitang, Huashi, Xinzhuang and Meiyan were contaminated with Pb, Cu and Ni to some extent. Zn, Cu and Pb were the main pollutants in present experiment sites. The fast development of village/township industries have caused severe environmental pollution in the Taihu Lake region, especially irrigation river sediments. Se content in plant and seed was 0.04 and 0.03 mg/kg respectively, showed Se-deficiency in paddy soil in the Taihu Lake region.  相似文献   

18.
Climate change and land use may significantly influence metal cycling in dynamic river systems. We studied temporal variation of sediment characteristics in a floodplain lake, including concentrations of dissolved organic carbon, acid volatile sulfide and trace metals. The sampling period included a severe winter inundation and a dramatic water level drop during summer. Temporal changes were interpreted using multivariate analysis and chemical equilibrium calculations. Metal concentrations in sediment increased with depth, indicating a gradual improvement of sediment quality. In contrast, dissolved metal concentrations were highest in top layers due to mobilization from oxyhydroxides and precipitation with sulfides in deeper layers. Inundation had a mobilizing effect as it stimulated resuspension and oxygenation of sediment top layers. Water table lowering combined with organic matter decomposition led to immobilization due to sulfide formation. The chemistry of the sediments was consistent with model calculations, especially for macro-elements. The results illustrate the importance of seasonality for metal risk assessment.  相似文献   

19.
Environmental properties of organic matter contained halogen and sulfur were studied in sediments of bleached kraft pulp mill effluent (BKME) recipient lakes and 2 m3 outdoor enclosures (mesocosms). The BKME contributed to 1% (v/v) of the total water flow in the lake downstream of the pulp mill where the sediments contained 1.7 to 4 mg of tetrahydrofuran extractable organic halogen (EOX-Cl) and 0.6 to 0.8 mg of tetrahydrofuran extractable organic sulfur (EOS-S) g−1 of organic matter. Upstream sediment contained 0.03 mg of EOXCl and 0.7 mg of EOS-S g−1 of organic matter. EOX was a better indicator for the influence of BKME in the recipient sediment than EOS. The polarity of BKME contained EOX corresponded to log Kow of < 1, and that of the downstream sediment contained EOX to > 4.5. HP-SEC analysis of the molecular weight distribution (MWD) of the EOX showed a peak between 300 to 600 g mol−1 for the BKME and between 1000 to 2000 g mol−1 for the downstream sediment. The MWD of the BKME contained EOS peaked at 300 to 1000 g mol−1, and that of the downstream sediment contained EOS at 1000 to 5000 g mol−1. These results indicate that BKME contained organic halogen and sulfur undergo major structural transformations when incorporated into sediment. The biota-to-sediment accumulation factor (BSAF) of EOX from sediments formed downstream of the mill and in the mesocosms to the lipids ofLumbriculus variegatus was 0.4 to 0.7. This is of a similar order of magnitude to the BSAF reported for 2,3,7,8-tetrachlorodibenzop-dioxin and 2,3,7,8-tetrachlorodibenzofuran.  相似文献   

20.
Trihalomethanes (THMs) are potential carcinogens formed from the reaction of the disinfectant chlorine with organic matter in the source water. This study of Kansas drinking water supply lakes evaluates the relationship among THM formation potential (THMFP), organic carbon and lake trophic state (LTS). THMFP was positively correlated to organic carbon. Total THMFP and total organic carbon were positively correlated to LTS, an estimator of lake enrichment, when very turbid lakes were omitted. These very turbid lakes (due to high suspended solids concentrations) had higher than expected THMFP, based on LTS, and higher organic carbon concentrations. THM data measured in the treated drinking water were positively correlated to THMFP, total organic carbon and LTS. The levels of organic carbon that contribute to THMs are a result of lake and watershed factors related to increasing levels of enrichment and suspended sediments. These factors are controllable by appropriate management practices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号