首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到2条相似文献,搜索用时 0 毫秒
1.
基于环境一号卫星CCD传感器性能,从生态景观角度入手,针对江苏省地形地貌特征,开展了环境一号卫星CCD数据在生态环境监测和评价工作中的应用可行性研究,结果表明环境一号卫星CCD数据可以满足江苏省生态环境监测和评价工作需要,其时间分辨率和幅宽是开展生态监控和预警的重要优势。  相似文献   

2.
Screening-level ecological risk assessments of di(2-ethylhexyl)phthalate (DEHP) for aquatic organisms in Japan were conducted using estimated statistical values based on surface water and sediment monitoring data and effect threshold values based on a large aquatic toxicity database. An alternative method is proposed to handle monitoring data that contain nondetects including multiple detection limits and to determine the statistical values of DEHP concentrations in Japanese surface waters. The No-Observed-Effect-Concentration (NOECwater) of DEHP for aquatic life of 77 μ g/L was determined giving equal importance to both physical effects probably caused by undissolved DEHP and to the intrinsic toxicity potentially caused by DEHP. The NOECsediment of 615,000 μg/kg was determined by the Equilibrium Partitioning (EqP) theory, conservatively assuming a threshold effect level in the water column as the water solubility of 3 μ g/L. The potential risks of DEHP in Japanese water environments were characterized simply by comparing the margin of exposure (MOE) with a specified uncertainty multiplier (UM). The MOE is expressed as the ratio of NOECwater or NOECsediment to the expected environmental concentrations such as the 95th percentiles of the estimated DEHP concentration distributions for surface water or sediment. The results of risk characterization show that all MOE values calculated using the statistical values of DEHP concentrations in Japanese surface waters and sediments are above 10, indicating minimal risk. Although the DEHP concentrations of some surface water samples showed MOE values of less than 10, considering environmental chemistry such as bioavailable fractions and the form of existence of DEHP in a water environment, we conclude that the current levels of DEHP are of little concern to aquatic life in the majority of Japanese surface waters and sediments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号