首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
In much of sub-Saharan Africa (SSA), the lack of organic soil amendments constitutes one of the principal causes for declining soil fertility in intensifying farming systems. The challenge, therefore, remains to increase the availability of organic inputs and to develop recommendations for their combination with inorganic fertilizers. An on-farm experiment was conducted in the northern Guinea savanna of Nigeria to evaluate the fertilizer effect of rice (Oryza sativa L.) mill waste (RMW) on a degraded Alfisol. The decomposition and nutrient (N and P) release patterns of RMW were studied using the litterbag technique, and the effect on maize yield and soil properties was determined. The RMW was applied at rates of 0, 5, 10, and 15 Mg DM ha−1 and was applied either unburnt or burnt (farmers’ practice). In both years, compound fertilizer was broadcast during land preparation on all plots at rates of 40 kg N ha−1, 17 kg P ha−1, and 33 kg K ha−1.Results obtained in the litterbag study showed that, at maize harvest, more than 90% of the P had been released from the decomposing RMW. However, around 60% of the organic C and 45% of the N still remained. Compared to the control treatment (0 Mg ha−1 RMW), which yielded 0.55 Mg ha−1, maize (Zea mays L.) grain yields were increased by 95% when 10 Mg ha−1 of unburnt RMW was applied, and by 147% with 15 Mg ha−1 (mean of 2 years). In contrast, burnt RMW did not result in significant yield increases. The cumulative application of 30 Mg ha−1 of unburnt RMW significantly increased the soil organic carbon in the surface soil from 0.7% (0 Mg ha−1 RMW) to 1.3%.The results of this investigation indicate that RMW constitutes a valuable organic input in the Guinea savanna if applied unburnt at rates of 10–15 Mg ha−1 in combination with inorganic fertilizer. The repeated application of unburnt RMW may contribute to the rehabilitation of degraded soils through the buildup of soil organic matter.  相似文献   

2.
Productivity of maize–pigeonpea cropping systems is dependent on facilitative and competitive interactive effects on resource availability. Controlling these interactions may benefit farmers through increased productivity associated with optimized crop yields. Previous research on maize–pigeonpea culture in Sub-Saharan Africa has focused on yield and soil fertility, but provided inadequate information on the mechanisms of possible interspecific competition. We employed a factorial field experiment to examine yield and nutritional responses of maize and pigeonpea to cropping systems (sole maize, intercropping, and improved fallow), N and P fertilizer additions, and cattle manure additions in Dodoma, Tanzania. The study objectives were to assess competition between crops and to determine how manure or fertilizer inputs may mitigate such interactions to improve yields. Intercropping enhanced maize yield over sole maize only when fertilized, reflecting probable nutrient competition. Improved fallows alone or with fertilizers (1.2–1.6 Mg ha−1) increased maize yields over sole maize (0.6 Mg ha−1). These increases were attributed to pigeonpea facilitation through soil nutrient replenishment, reduced competition associated with sequential cropping arrangements, and added nutrients from fertilization. Combined fertilizer and manure applications also improved maize and pigeonpea yields. Plant nutrient diagnosis indicated primary and secondary P and Ca deficiencies, respectively associated with P-fixation and leaching of cations due to high soil acidity and exchangeable Al. Maize competed strongly in mixture suppressing biomass and grain yields of the unfertilized pigeonpea by 60% and 33%, respectively due to limited soil nutrients and/or moisture. These yield reductions suggest that the intercropped pigeonpea did not recover from competition after maize harvesting that reduced competition. Optimizing yields of both maize and pigeonpea would require the addition of prescribed fertilizer when intercropped, but applications can be reduced by half under the improved fallow system due to alleviating interspecific competition.  相似文献   

3.
This paper reports on the influence that residue and fertilizer management have on nutrient balances, soil organic matter (SOM) dynamics, and crop yields of a flooded rice system in northeast Thailand (1992–1997) and a wheat–forage legume rotation in eastern Australia (1992–1998). Both soils had been subject to at least 18 years of cultivation and had lost up to 90% of the original labile (CL) and 85% of the total carbon (CT).For the rainfed rice cropping systems of northeast Thailand, a system is described in which small applications of leaf litter from locally grown trees are applied annually to rice paddy soils prior to transplanting. Annual applications of 1500 kg ha−1 of leaf litter from different locally grown shrubs for five seasons resulted in increases in rice grain yield in 1997 of between 20 and 26% above the no-leaf litter control. Nutrient balances, determined by the difference between the inputs (fertilizer and added leaf litters) and outputs (grain and straw), indicated net positive balances of up to 457 kg N ha−1, and 60 kg P ha−1, after five seasons of leaf litter applications. Sulfur and potassium balances resulted in net deficits of up to −13 kg S ha−1 and −52 kg P ha−1, where no leaf litter was applied and rice straw was removed following harvest. Soil carbon (C) concentrations increased significantly only where higher fertilizer rate and rice stubble retention were combined.The poor management of fertilizers and crop residues, and excessive cultivation has also resulted in large soil fertility losses in the grain growing areas of Eastern Australia. After five wheat and two legume/fallow crops, negative N balances of up to −303 kg ha−1 were calculated for the treatments where wheat stubble was not retained and bare fallow leys were used. The balance of nutrients such as K, which are contained in larger proportions in stubble, were found to be up to −362 kg ha−1 on the straw-removed treatments and up to +29 kg ha−1 on the straw-retained treatments. Forage legume leys resulted in short term increases in CL and the carbon management index (CMI).Sustainable farming systems require that crop yields are stable through the maintenance of soil fertility and the balance of nutrients in the system. Increases in soil C levels require sustained periods of balanced fertilization and residue retention.  相似文献   

4.
Soybean (Glycine max (L.) Merr.) is becoming increasingly important in the cereal-based cropping system of the Nigerian Guinea savanna zone and this justifies research on its effects on soil N. Although soybean can obtain 50% or more of its N requirement from the atmosphere, the N contribution of the crop to the system depends on the amount of N contained in roots, haulms, and fallen leaves after grain harvest. At four sites in the northern Guinea savanna, the effects on N balance of P fertilizer and soybean varieties of different duration were tested. The varieties received P fertilizer at the rates of 0, 30, and 60 kg P ha−1. The total N accumulated aboveground at harvest averaged 104 kg N ha−1 in the early and medium varieties, and 135 kg N ha−1 in the late varieties. Across all varieties and sites, total N content was increased by 40–47% when P was applied. Apparent N harvest index averaged 85% but was not significantly affected by variety or P rate. When only grain was exported, the calculated N balance of the early and the medium varieties was −2.6 to −12.2 kg N ha−1 while the longer duration varieties had positive N balances ranging from 2 to 10.9 kg N ha−1. The N accrual was negative when P was not applied and ranged from 2.4 to 5.2 kg N ha−1 with P application. The interaction of variety and site on the N balance was significant at P<0.05. N balance at the southernmost site was −14.2 kg N ha−1 compared with 2.6–10 kg N ha−1 at the northern sites where N2 fixation was higher. The estimate of N balance is reduced when soybean haulms are exported. A positive N contribution by soybean is, therefore, possible in a soybean–cereal rotation when: (i) P is applied, (ii) the soybean variety is late maturing, and (iii) only grain is exported.  相似文献   

5.
The processes of nutrient depletion and soil degradation that limit productivity of smallholder African farms are spatially heterogeneous. Causes of variability in soil fertility management at different scales of analysis are both biophysical and socio-economic. Such heterogeneity is categorised in this study, which quantifies its impact on nutrient flows and soil fertility status at region and farm scales, as a first step in identifying spatial and temporal niches for targeting of soil fertility management strategies and technologies. Transects for soil profile observation, participatory rural appraisal techniques and classical soil sampling and chemical analysis were sampled across 60 farms in three sub-locations (Emuhaia, Shinyalu, Aludeka), which together represent much of the variability found in the highlands of western Kenya. Five representative farm types were identified using socio-economic information and considering production activities, household objectives and the main constraints faced by farmers. Soil fertility management and nutrient resource flows were studied for each farm type and related to differences in soil fertility status at farm scale. Farm types 1 and 2 were the wealthiest; the former relied on off-farm income and farmed small pieces of land (0.6–1.1 ha) while the latter farmed relatively large land areas (1.6–3.8 ha) mainly with cash crops. The poorest farm type 5 also farmed small pieces of land (0.4–1.0 ha) but relied on low wages derived from working for wealthier farmers. Both farm types 1 and 5 relied on off-farm earnings and sold the least amounts of farm produce to the market, though the magnitude of their cash, labour and nutrient flows was contrasting. Farms of types 3 and 4 were intermediate in size and wealth, and represented different crop production strategies for self-consumption and the market. Average grain yields fluctuated around 1 t ha−1 year−1 for all farm types and sub-locations. Grain production by farms of types 4 and 5 was much below annual family requirements, estimated at 170 kg person−1 year−1. Household wealth and production orientation affected the pattern of resource flow at farm scale. In the land-constrained farms of type 1, mineral fertilisers were often used more intensively (ca. 50 kg ha−1), though with varying application rates (14–92 kg ha−1). The use of animal manure in such small farms (e.g. 2.2 t year−1) represented intensities of use of up to 8 t ha−1, and a net accumulation of C and macronutrients brought into the farm by livestock. In farms of type 5, intensities of use of mineral and organic fertilisers ranged between 0–12 kg ha−1 and 0–0.5 t ha−1, respectively. A consistent trend of decreasing input use from farm types 1–5 was generally observed, but nutrient resources and land management practices (e.g. fallow) differed enormously between sub-locations. Inputs of nutrients were almost nil in Aludeka farms. Both inherent soil properties and management explained the variability found in soil fertility status. Texture explained the variation observed in soil C and related total N between sub-locations, whereas P availability varied mainly between farm types as affected by input use.  相似文献   

6.
Biological nitrogen fixation (BNF) by promiscuous cultivars of soybeans (Glycine max (L.) Merr.) in cereal-based cropping systems of Nigeria’s moist savanna zone offers a potential for minimizing the investment made by resource-poor farmers on nitrogen fertilizers. A 3-year trial was conducted on five farmers’ fields in the southern Guinea savanna zone of Nigeria to assess the residual effects of two successive crops of promiscuous soybean cultivars on the yield of a following maize (Zea mays L.) crop. The soybean cultivars, TGX1456-2E (medium maturity) and TGX1660-19F (late maturity), were grown in 1996 and 1997. Treatments, imposed only in the first year of the trial, were: (i) uninoculated, (ii) inoculated with a mixture of two Bradyrhizobium strains, and (iii) fertilized with 60 kg N ha−1. A fourth treatment was a plot left to fallow. In 1998, all the previous soybean and fallow plots were sown to maize without any fertilizer application. Results in 1996 and 1997 showed a soybean response to inoculation in the first year, but differences due to the residual effect of inoculation in the second year were not significant. Both cultivars showed a similar response to inoculation but responses at the five sites were varied. Soybean cultivar 1456-2E fixed 43–52% of its N amounting to 56–70 kg N ha−1 and cultivar 1660-19F derived 39–54% of its N from N2-fixation which amounted to 51–78 kg N ha−1. Both cultivars had a high N harvest index resulting in a net removal of 52–95 kg N ha−1 when both grain and stover were exported. Even when the stover was returned, there was a depletion of 23–65 kg N ha−1, with 1456-2E removing more N than 1660-19F. Arbuscular-mycorrhizal infection on maize roots was 11–27% and dependent on previous soybean treatments and farmers’ fields. Plant height, shoot biomass, grain yield, and N uptake of maize were significantly greater in plots previously sown to soybean than in the fallow plots. In general, plots sown to the late maturing cultivar 1660-19F exhibited better residual effect, producing larger yield parameters than the plots planted with medium maturing 1456-2E.  相似文献   

7.
In northeast Thailand, the sustainability of rainfed lowland rice-based systems, the dominant land-use system (LUS) in the region, is a concern for the welfare of the population in this relatively poor region. Poor soil fertility and low inputs are seen as major causes of this lack of sustainability. In this context, the assessment of nutrient budgets is seen as a powerful tool for the assessment of critical components of the sustainability of this particular LUS. Biophysical, socioeconomic, and management-related data on the farming systems were collected for 30 farms in Ubon Ratchathani Province, northeast Thailand. A relational database system (RDBS) was developed to manage and analyze the data. The RDBS includes a calculation procedure for the semi-automatic generation of partial nutrient balances. Partial nutrient balances are good indicators for some critical components of sustainability, and important for decision support on soil fertility management when considered with the additional factors that are required for a full nutrient balance.For the rice-based systems of 30 farms, mean partial balances were 12 kg N ha−1, 8 kg P ha−1, and 7 kg K ha−1 per year. Large variations in partial N, P, and K balances exist among different farms and, even more so, for different land utilization types (LUTs). The LUTs are distinct cropping system–management combinations that occur down to the subfield level. Many of the partial balances assessed were negative.Farmers manage nutrients for similar parcels of land in very different ways. This results in the observed large variation in partial nutrient balances, even for the same type of land use within the same farm. These results confirm the high inter-farm and intra-farm variability for partial balances of N, P, and K of several preliminary studies. Farmer interviews and field surveys revealed that different socioeconomic factors appear to be related with inter- and intra-farm variability in nutrient budgets. In addition, the socioeconomic component of the case study revealed that diversification of income sources, particularly off-farm employment, had a larger impact on household income than rice production. Furthermore, while many less well-off households had a greater reliance on rice production, many farms with high off-farm and non-rice farm income had a higher total production of rice.The nutrient balance approach, starting with partial nutrient balances, may become an important component of a dynamic and site-specific decision support tool (DST) for nutrient management, and a relational database of the form used in this study may become a key element.  相似文献   

8.
Agricultural sources of atmospheric methane include flooded rice (Oryza sativa L.) paddies. However, certain soil nutrient management and cultural practices offer opportunities to reduce methane emissions. The effect of application of ammonium thiosulphate, a potential source of nitrogen and sulphur and also an inhibitor of nitrification and urease on methane production and emission from flooded alluvial (Typic Haplaquept) rice soil in India, was examined. Methane production and emission from control and urea-amended soil samples were almost identical. Application of ammonium thiosulphate to laboratory-incubated flooded soil (30 and 60 μg N g−1 soil) and flooded rice fields (45.6 and 60 kg N ha−1) effected a distinct inhibition of methane production and emission. Ammonium thiosulphate stimulated the population of sulphate-reducing bacteria (SRB) to a greater extent at 60 μg N g−1 soil than at 30 μg N g−1 soil. In ammonium thiosulphate-applied rice field plots, mean methane efflux decreased by about 38 and 60% at 45.6 and 60 kg N ha−1, respectively, over that of control. Inhibition of methane production by ammonium thiosulphate is, at least in part, due to the stimulation of SRB. Results suggest the mitigation potential of ammonium thiosulphate on methane emission from flooded rice paddies.  相似文献   

9.
Nitrate is prone to leaching in the sandy soils of the West African moist savannas. Better management of nitrogen (N) resources and maize cultivars with enhanced genetic capacity to capture and utilize soil and fertilizer N are strategies that could improve N-use efficiency. In two field experiments conducted at Zaria, northern Nigeria, five maize (Zea mays L.) cultivars planted early in the season were assessed under various N levels for differences in N uptake, soil N dynamics, and related N losses. Cultivar TZB-SR accumulated more N in the aboveground plant parts in both years than the other cultivars. All, except the semi-prolific late (SPL) variety, met about 50–60% of their N demand by the time of silking (64–69 DAP). In both years, SPL had the greatest capacity to take up N during the grain filling period, and it had the highest grain-N concentration and the least apparent N loss through leaching in the second year. There were no significant differences in soil N dynamics among cultivars in both years. At harvest, the residual N in the upper 90 cm of the profile under all the cultivars ranged from 56 to 72 kg ha−1 in the first year and from 73 to 83 kg ha−1 in the second year. Apparent N loss from 0 to 90 cm soil profile through leaching ranged from 35 to 122 kg ha−1 in both years. N application significantly increased N uptake by more than 30% at all sampling dates in the second year of the experiment, but had no effect on apparent N loss. Results indicate that the use of maize cultivars with high N uptake capacity during the grain filling period when maximum leaching losses occur could enhance N recovery and may be effective in reducing leaching losses of mineral N in the moist savanna soils.  相似文献   

10.
Atmospheric deposition of nutrients within agricultural watersheds has received scant attention and is poorly understood compared to nutrient transport in surface and subsurface water flow pathways. Thus, we determined the deposition of phosphorus (P), nitrogen (N), and sediment in a mixed land use watershed in south-central Pennsylvania (39.5 ha; 50% corn–wheat–soybean rotation, 20% pasture, and 30% woodland), in comparison with stream loads at several locations along its reach between 2004 and 2006. There was a significant difference in deposition rates among land uses (P < 0.05) with more P and N deposited on cropland (1.93 kg P and 10.71 kg N ha−1 yr−1) than pasture (1.10 kg P and 8.06 kg N ha−1 yr−1) and woodland (0.36 and 2.33 kg N ha−1 yr−1). Although not significant, sediment showed the same trends among land uses. A significant relationship was found between P in deposition and P in soil <10-m away from the samplers suggesting much of the deposited sample was derived from local soil. Samplers adjacent to the stream channel showed deposition rates (1.64 kg P and 8.83 kg N ha−1 yr−1) similar to those on cropland. However, accounting for the surface area of the stream, direct deposition of P, N, and sediment probably accounted for <3% of P and <1% of N and sediment load in stream flow from the watershed (1.41 kg P, 27.09 kg N, and 1343 kg sediment ha−1 yr−1 at the outlet). This suggests that strategies to mitigate nutrient and sediment loss in this mixed-land use watershed should focus on runoff pathways.  相似文献   

11.
Carbon (C) input from tree prunings and crop residues help to maintain the soil organic C pool in tropical agroforestry systems. This study quantified the C stock of tree roots and C input from tree prunings and crop residues in 19-, 10- and 4-year-old Erythrina poeppigiana and Gliricidia sepium alley cropping systems in Costa Rica. The 19-year-old alley cropping system was studied at two fertilizer levels (tree prunings only [−N], and tree prunings plus chicken manure [+N]), and was compared to a sole crop. The 10- and 4-year-old systems were also studied at two fertilizer levels (tree prunings only [−A], and tree prunings plus Arachis pintoi as a groundcover [+A]), and compared to a sole crop. In the 19-year-old system C input from G. sepium was significantly greater (P < 0.05) compared to E. peoppigiana, but for both tree species there was no significant difference between +N and −N treatments. For the 10- and 4-year-old systems, E. poeppigiana had a significantly higher (P < 0.05) C input from prunings compared to G. sepium, and the presence of A. pintoi increased pruning biomass productivity significantly in these systems. Tree roots of 10- (4527 kg C ha−1) and 4-year-old (3667 kg C ha−1) E. poeppigiana represented 16 and 28% of the total C allocation. Carbon input from maize (Zea mays L.) and bean (Phaseolus vulgaris L.) residues were not significantly different (P < 0.05) between alley crops and sole crops in the 19-year-old system per unit of cropped land. In this system, +N treatments had a significantly greater (P < 0.05) C input from bean residue than in −N treatments, but no such trend was observed for maize residues. Carbon input from maize and bean residues were significantly greater (P < 0.05) in alley crops than the sole crops, but not significantly different (P < 0.05) between +A and −A treatments in the younger system. The greatest input of organic material occurred in the 19-year-old alley crop followed by the 10- and 4-year-old alley crops. This additional input of organic material in alley crops, mostly derived from tree prunings, will help to maintain or increase the level of the soil organic carbon pool.  相似文献   

12.
The seasonal pattern of extractable soil P and soil solution P was determined for topsoil samples taken from a Cirsio-Molinietum fen-meadow community, and also for an adjacent agriculturally improved pasture in Devon, UK. Phosphorus concentration was investigated using three methods during 1993; Olsen's reagent (sodium bicarbonate) for soil P, centrifuging and polymeric suction cups for soil solution P. Solutions were extracted at two-weekly intervals during the spring and at monthly intervals during the summer. Phosphorus removed from both sites by centrifuging was in the range 5–30 μg dm−3 soil, in comparison with 1–6 mg kg−1 for Olsen P. Olsen P on the Cirsio-Molinietum was significantly lower than on the improved pasture in mid-March and mid-June. The concentration of P in soil solution removed by suction cups was below the level of detection (<2 μg dm−3) on the Cirsio-Molinietum. Suction cup P on the improved pasture peaked in April and May at 16–19 μg dm−3 soil. Herbage yield and P concentration were measured throughout the growing season. Above-ground standing crop was greater on the Cirsio-Molinietum than the improved pasture at the beginning of the grazing season, because of the large litter component on the former. Total P content of this material was only 1.81 kg P ha−1 on the Cirsio-Molinietum, in comparison with 5.58 kg P ha−1 on the improved pasture. Phosphorus concentration of plant material obtained by repeated defoliation was approximately 1.0 mg P g−1 DM on the Cirsio-Molinietum, whereas a clear seasonal trend, peaking at 3.5 mg P g−1 DM, was observed on the improved pasture. Phosphorus concentration of litter, grass and sedge from ungrazed plots on the Cirsio-Molinietum indicated distinct seasonal variations for the grass, with no seasonal pattern for the sedge component.  相似文献   

13.
Past research on nitrogen (N) inputs, losses and surpluses focused on separate components of grassland management, i.e., grazed or cut swards and the impact of fertiliser or slurry applications. In practice, however, grassland is both grazed and cut for conservation, and N fertiliser is supplied from both organic and inorganic sources. A whole systems approach was used to evaluate the effects of combinations of management strategies designed to reduce N losses on N budgets, and herbage and animal production in South West England. Three systems with contrasting N inputs were compared: CN, conventional mineral N application and broadcast slurry; TN, tactical mineral N application with slurry injection and the early housing of cattle; GC, a mixed grass/white clover sward with no mineral N addition and slurry injection. Comparisons were made on two contrasting soil types: a freely-draining sandy loam (Gleysol, Site 1), and a poorly drained clay (Luvisol, Site 2). 1 ha farmlets were grazed to a target sward height by beef cattle for a 5-year (Site 1) or a 4-year (Site 2) period. Herbage surplus to grazing requirements was cut for silage. On average, 185 kg N ha−1 was applied annually to treatment TN compared with 280 kg N ha−1 for CN. An additional 76, 102 and 67 kg N ha−1 was applied in slurry to treatments CN, TN and GC, respectively. Substantial reductions in N surpluses were achieved for both treatments TN and GC compared with treatment CN (N surpluses ha−1: 254, 168 and 119 kg at Site 1, and 247 kg, 190 and 73 kg at Site 2, for CN, TN and GC, respectively). The highest N input for treatment CN was associated with the greatest animal and herbage production. More land was required for grazing on treatment GC and less herbage was cut for silage so that self-sufficiency was not attained for winter fodder on this treatment. The early removal of cattle on treatment TN did not result in a significant increase in the amount of herbage cut for silage. It was concluded that the combinations of mitigation options used were successful in reducing N surpluses compared with the conventional N management system, but animal and herbage production was reduced.  相似文献   

14.
Legume–cereal rotation may reduce the fertilizer requirement of the cereal crop and we hypothesize that the benefit depends on the maturity class of the soybean. Field trials were therefore conducted in 1995 in four Guinea savanna sites to monitor the effect of soybean (Glycine max (L.) Merrill) cultivation on the N balance of the soil. In trial 1, an early (TGx1485-1D) and a late (TGx1670-1F) soybean were grown to maturity along with a maize (Zea mays L.) reference plot. In trial 2, six varieties of soybean (early: TGx1485-1D, TGx1805-2E and TGx1681-3F; medium: TGx1809-12E and TGx923-2E; late: TGx1670-1F) were grown to maturity along with a reference maize plot. The total nitrogen (N) content, aboveground N2 fixed, and N remaining in the stover were higher in the medium and the late varieties than in early varieties. Also, the early varieties had higher nitrogen harvest indices (81–84%) than medium and late varieties (74–79%). From the N balance calculation, it was found that medium and late maturing soybean resulted in an addition of 4.2 kg N ha−1 to the soil, whereas the early maturing varieties resulted in depletion of the soil N reserve by 5.6 kg N ha−1 (P<0.05). On average, among the medium and late varieties, late maturing TGx923-2E resulted in an addition of 9.5 kg N ha−1 to the soil. When the stover was not returned to the field, early soybean resulted in more negative N balance than the medium and late soybean (P<0.05). Therefore, planting an early variety of soybean for one season resulted in net depletion of soil N, even when the soybean residues were returned to the soil and N2 fixed in the roots and N in the fallen leaf litter were included in the N balance calculations. Contrary to this, planting medium and late soybean for one season resulted in an addition of N to the soil. Therefore, medium and late soybean should be used as a preceding crop in legume–cereal rotation, if possible, to minimize or avoid depletion of soil N by early varieties of soybean.  相似文献   

15.
Elevated atmospheric NH3 levels near intensive livestock operations can add significant N to local agroecosystems. In this study, the potential atmospheric NH3 sorbed by soil and water was assessed over a 2-year period starting October 2000 in an intensive livestock production area in southern Alberta, Canada. Fifty-two uneven grid sampling sites were selected in the 53,905 ha study area. The sorption rate of atmospheric NH3 was estimated weekly by exposing distilled water and air-dried soil samples to the atmosphere at the sampling sites. The increases in NH4–N content in the samples after 1-week exposure was regarded as an index of the atmospheric NH3 sorbed for that week. The NH3 sorption rates were highly variable across the 52 sites, with water ranging from 4 to 125 kg ha−1 year−1 with a mean of 22 kg N ha−1 year−1 and soil from 5 to 84 kg N ha−1 year−1 with a mean of 20 kg N ha−1 year−1. Considerable variation in NH3–N sorption across the study area reflects the effects of size, direction (upwind or downwind) and proximity of nearby livestock operations or other NH3 sources and operators’ activities around the sampling sites. The NH3 sorption rate at each site also varied considerably in response to weather conditions. The high rate of NH3 input poses a direct risk of surface water eutrophication in intensive livestock operation areas. If fertilizer recommendations are not reduced to account for NH3 sorption by soil, excess N may also contribute to eutrophication through runoff and leaching.  相似文献   

16.
A large proportion of total P in the soils of the area is unavailable to plants and consequently P is the second most limiting nutrient. The labile and moderately labile phosphorus fractions and adsorption characteristics of surface and subsurface horizons of eleven soil profiles in the derived savanna (DS) and the northern Guinea savanna (NGS) of West Africa were assessed. The labile P fractions are the resin and HCO3-extractable inorganic (Pi) and organic (Po) P. The moderately labile fractions are the NaOH-extractable portion of soil P in the Hedley sequential procedure. In the DS soils, the resin P, considered the most readily available fraction, varied from 1 to 14 mg kg−1, HCO3-Pi ranged from 3.3 to 11, and HCO3-PO was between 4 and 12 mg kg−1 in the surface horizon. In the NGS, the topsoil contained 1.5–3 mg kg−1 of resin P, 5–8 mg kg−1 of HCO3-Pi, and 7.5–9.7 mg kg−1 of HCO3-Po. Sodium hydroxide-Po was the largest of the fractions in all the soils studied. It ranged from 23 to 55 mg kg−1 in the topsoil. In general, the labile P levels were higher in soils of the DS than of the NGS and were related to the oxalate-extractable Fe (Feox), and Al (Alox) as well as to soil texture. The subsoil of Kasuwan Magani (profile KS 9–21 cm) required 153 mg P kg−1 to maintain 0.2 mg P l−1 in solution (standard P requirement), and Danayamaka (profile DD 7–32 cm) required 145 mg P kg−1. These could translate to 214 and 200 kg P ha−1 if a plow layer of 10 cm is assumed. Because these are within the plow layer, more P fertilizer would be needed for crop production than in the other soils. The standard P requirement and the adsorption maxima were related to Feox and Alox, dithionite-Fe (Fed), and texture. The increase in labile P content with decreasing Feox and Alox could imply that management practices capable of reducing the activities of Fe and Al in solution might improve P availability.  相似文献   

17.
The paper describes a model designed for analysing interrelated nitrogen (N) fluxes in farming systems. It combines the partial N balance, farm gate balance, barn balance and soil surface balance, in order to analyse all relevant N fluxes between the subsystems soil–plant–animal–environment and to reflect conclusive and consistent management systems. Such a system approach allows identifying the causes of varying N surplus and N utilisation.The REPRO model has been applied in the experimental farm Scheyern in southern Germany, which had been subdivided into an organic (org) and a conventional (con) farming system in 1992. Detailed series of long-term measuring data are available for the experimental farm, which have been used for evaluating the software for its efficiency and applicability under very different management, yet nearly equal site conditions.The organic farm is multi-structured with a legume-based crop rotation (N2 fixation: 83 kg ha−1 yr−1). The livestock density is 1.4 LSU ha−1. The farm is oriented on closed mass cycles.The conventional farm is a simple-structured cash crop system based on mineral N (N input 145 kg ha−1 yr−1). Averaging the years 1999–2002, the organic crop rotation reached, with regard to the harvested products, about 81% (6.9 Mg ha−1 yr−1) of the DM yield and about 93% (140 kg ha−1 yr−1) of the N removal of the conventional rotation. Related to the cropped area, the N surplus calculated for the organic rotation was 38 kg ha−1 yr−1 versus 44 kg ha−1 yr−1 for the conventional rotation. The N utilisation reached 0.77 (org) and 0.79 (con), respectively. The different structure of the farms favoured an enhancement of the soil organic nitrogen stock (35 kg ha−1 yr−1) in the organic crop rotation and caused a decline in the conventional system (−24 kg ha−1 yr−1). Taking account of these changes, which were substantiated by measurements, N surplus in the organic rotation decreased to 3 kg ha−1 yr−1, while it increased to 68 kg ha−1 yr−1 in the conventional system. The adjusted N utilisation value amounted to 0.98 (org) and 0.69 (con), respectively.  相似文献   

18.
The harvest of crops such as sugar beet (Beta vulgaris L.), potato (Solanum tuberosum L.), leek (Allium porrum L.) and carrot (Daucus carota L.) causes soil loss from arable land because soil adhering to the crop and soil clods that failed to be separated by the harvesting machine, are exported from the field together with these harvested crops. These soil losses can be of the same order of magnitude as soil losses caused by water erosion processes, but are often neglected in soil erosion research. In this article we developed a methodology to investigate the spatial and long-term (1846–2004) variability of soil loss due to crop harvesting (SLCH) in Belgium and the spatial distribution of the importance of SLCH relative to soil losses caused by water erosion processes in Flanders. The study is based on long-term time series of soil tare data of crop processing factories and area and crop yield statistics. Until the middle of the 20th century, potato and roots and tubers grown as second crop, had the largest share in the SLCH-crop growing area in Belgium. Sugar beet gained importance from the end of the 19th century onwards and has now, of all SLCH crops, the largest growing area. We could estimate that, partly due to increasing crop yields and the mechanisation of the harvesting process, SLCH per hectare of cropland increased from 0.4 Mg ha−1 year−1 in 1846 to 2.4 Mg ha−1 year−1 in the 1970s and early 1980s. Since then mean annual soil losses decreased again to 1.8 Mg ha−1 year−1 in 2004. It was assessed that total yearly SLCH in Belgium rose from more than 575,000 Mg in the middle of the 19th century to more than 1.7 × 106 Mg in the 1970s and early 1980s, while current SLCH values are 1.4 × 106 Mg. We estimated that since 1846, more than 163 × 106 Mg soil was exported from cropland in Belgium through this erosion process, which corresponds to 109 hm3 or an average soil profile truncation of 1.15 cm. Average sediment export from cropland in Flanders was 3.7 Mg ha−1 year−1 in 2002, of which 46% was due to SLCH and 54% was due to water erosion processes. The relative importance of SLCH varied, depending on the agricultural region, between 38% and 94%.  相似文献   

19.
Composting has emerged as a valuable route for the disposal of urban waste, with the prospect of applying composts on arable fields as organic amendments. Proper management of urban waste composts (UWC) requires a capacity to predict their impacts on carbon and nitrogen dynamics in the field, an issue in which simulation models are expected to play a prominent role.Here, we used a deterministic soil-crop model to simulate C–N dynamics in an arable field amended with three types of UWC (green waste and sludge, biodegradable waste, and solid waste), and a reference amendment (farmyard manure). The model is a version of CERES in which the soil C–N module was substituted with the NCSOIL model, whose microbiological parameters were determined from either laboratory incubation data or biochemical fractionation in a previous paper. CERES was tested against data from a field trial set up in 1998 in the Paris area, and managed as a maize (Zea mays L.)–wheat (Triticum aestivum L.) rotation. Comparison of observed and simulated data over the first 4 years of the field trial showed that CERES predicted the soil moisture and inorganic N dynamics reasonably well, as well as the variations in soil organic C. In particular, the parameterization of UWC organic matter from biochemical fractions achieved a similar fit as the parameterization based on incubation data. Wheat yields were also correctly predicted, but a systematic under-estimation of maize yields pointed at an under-estimation of spring and summer mineralization of N by CERES.Simulated N fluxes showed that the organic amendments induced an additional leaching ranging from 1 to 8 kg N ha−1 yr−1, which can be related to the initial mineral N content of the amendments. After 4 years, the composts had mineralized 3–8% of their initial organic N content, depending on their stability. Composts with slower N release had higher N availability for the crops. CERES could thus be used to aid in selecting the timing of compost application, in relation to its stability, based on both environmental and agronomical criteria.  相似文献   

20.
On Mediterranean calcareous soils, high fire frequency induces soil impoverishment and the development of stable Quercus coccifera garrigues. Organic amendment could increase soil fertility levels, and could alter the vegetation dynamics and the established dominance relationships. In this study, the plant cover evolution is monitored in an amended burnt shrub during two years. Three treatments are studied: control (D0), 50 t ha−1 (D50) and 100 t ha−1 (D100) of fresh co-composted sewage sludge and greenwastes.First, the spreading process leads to the squashing of the vegetation, whose intensity reaches a threshold on D100 and limits the woody species’ recovery after amendment. Consequently, the dominant herb Brachypodium retusum is favoured. On D50, woody species are favoured compared to herbs, probably due to the space colonization strategy of Q. coccifera after squashing. Thus, compost at both rates favours the two dominant resprouter species until they have colonized all the free space created by squashing.Secondly, compost has some fertilizing effects on Rosmarinus officinalis and Ulex parviflorus, that improves their cover on D50. However, compost also increases U. parviflorus’ sensitivity to drought.At the end of the experiment, a third compost effect appears, as seeder cover becomes greater than D0 on D50. After amendment, compost covers rocky stones, which creates a new territory where species with superficial rooting can establish (mulch effect).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号