首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
Katano S  Matsuo Y  Hanaoka K 《Chemosphere》2003,53(3):245-251
We investigated the water-soluble arsenic compounds present in the soft tissues of both the pearl-free and the pearl-containing pearl oysters. After dividing the soft tissue into five parts, i.e., adductor muscle, foot, mantle, viscera and gill, each part was analyzed by high-performance liquid chromatography-inductively coupled plasma mass spectrometry for the arsenic compounds accumulated in it. Arsenic concentration of each tissue part ranged from 22.1 to 45.7 microg g(-1) of dry tissue in the pearl-free pearl oyster and from 27.4 to 50.4 microg g(-1) of dry tissue in the pearl-containing pearl oyster. On the grounds of the present evidence the major water-soluble arsenic compound accumulated in each part was identified as arsenobetaine without exception in both types of pearl oysters (94.3-99.7% in the pearl-free pearl oyster and 87.2-99.7% in the pearl-containing pearl oyster). Trace or small amounts of arsenic compounds including tetramethylarsonium ion and arsenocholine were also detected in some parts. The levels of these minor arsenicals were a little higher in pearl-free pearl oyster than in the pearl-containing pearl oyster. This study confirms the hygienic safety of the soft tissues of both the pearl-free and the pearl-containing pearl oysters, as food.  相似文献   

2.
Chiu ST  Lam FS  Tze WL  Chau CW  Ye DY 《Chemosphere》2000,41(1-2):101-108
In 1997, concentrations of cadmium (Cd), chromium (Cr), copper (Cu), lead (Pb) and nickel (Ni) were analysed in green-lipped mussels (Perna viridis) from three mariculture zones located in the north-east (Kat O), south (Lo Tik Wan) and to the west (Ma Wan) of Hong Kong. Spatial differences in the concentration of metals were found, chromium and copper were higher at Ma Wan and Lo Tik Wan compared to Kat O in the north-east. In contrast, the highest levels of lead (mean = 4.37 microg/g dry wt) were recorded at Kat O. There were no differences in the level of nickel between the study sites. A comparison of the metal concentrations in mussels with the results of a previous study seven years before, in 1990, showed a twofold increase in the mean levels of cadmium for all three sites. However, levels of the other metals in 1997 were lower by 12-32% for chromium, 32-39% for copper and 24-25% for nickel. The greatest reductions were recorded for lead: Kat O (39%), Ma Wan (51%) and Lo Tik Wan (75%). This may be related to the introduction of lead-free petrol in 1991. Despite the apparent reduction in some heavy metal bioaccumulation between 1990 and 1997, from a public health risk perspective, the data suggest a continued need for monitoring of heavy metals in mussels from mariculture zones.  相似文献   

3.
This study presents the distribution of Cu, Zn, Pb, Cd, Hg and As in various marine organisms collected along the western coast of Taiwan from 1991 to 1998, and also evaluates the time variation of Cu in oysters before (1980-85) and after (1986-98) the "green oyster" incident. The results show that relatively high geometric mean (GM) concentrations of Cu, Zn, Pb, Cd, As and Hg were generally found in Crassostrea gigas (Cu=229 microg/g, Zn=783 microg/g), Gomphina aeguialtera (Pb=30.3 microg/g), Tegillarca granosa (Cd=2.85 microg/g), Thais clavigera (As=96.9 microg/g) and Parapenaeopsis cornuta (Hg=1.35 microg/g), respectively. Especially, maximum Cu and Zn concentrations (GM=229 and 783 microg/g, respectively) in oysters (C. gigas) from different culture areas were much higher than those of the other organisms by about 1.13-458 and 2.40-63.7 times, respectively. Similarly, rock-shells (Thais clavigera) had a high capacity for accumulating Cu (GM=202 microg/g) and Zn (GM=326 microg/g) under the same physico-chemical conditions. The highest GM Cu and Zn concentrations of 1108 (range from 113 to 2806) and 1567 (range from 303 to 3593) microg/g were obtained in oysters from the Hsiangshan coastal area, one of the most important oyster culture areas in Taiwan. However, the highest GM Cd and As concentrations of 6.82 and 19.3 microg/g were found in oysters from the Machu Islands. Mean Cu concentrations in the oysters from the Erhjin Chi estuary declined from 2194+/-212 microg/g in 1986-90 to 545 microg/g (GM) in 1991-96. In the Hsiganshan area, GM Cu concentrations of 909 microg/g (1991-96) and 1351 microg/g (1997-98) in oysters were significantly higher than those of 201 microg/g (1980-85) and 682 microg/g (1986-90). The gradually increasing levels of Cu and Zn in the oysters from the Hsiangshan area have been observed year by year.  相似文献   

4.
The Marennes-Oléron Bay, hosting the largest oyster production in France, is influenced by the historic polymetallic pollution of the Gironde Estuary. Despite management efforts and decreasing emissions in the Gironde watershed, cadmium levels in oysters from the bay are close to the consumption limit (5 μg g−1 dw, EC). From mid April to mid July 2009, we investigated the role of tidal resuspension and regional hydrodynamics on Cd speciation (seawater, SPM, phytoplankton, sediment, microphytobenthos) and bioaccumulation in 18 month-old oysters (gills, digestive glands, rests of tissues) reared under natural conditions (i) at ∼60 cm above the sediment and (ii) on the sediment surface. Dissolved and particulate Cd concentrations in surface and bottom waters were similar and constant over tidal cycle suggesting the absence of Cd release during sediment resuspension. Temporal dissolved and particulate Cd concentrations were closely related to Gironde Estuary water discharges, showing increasing concentrations during flood situations and decreasing concentrations afterwards. Cd depletion in the water column was associated with increasing Cd in the [20-100 μm] plankton fraction, suggesting Cd bioaccumulation. After 3 months, enrichment factors of Cd in tissues of oysters exposed in the water column and directly on the sediment were respectively 3.0 and 2.2 in gills, 4.7 and 3.2 in digestive glands and 4.9 and 3.4 in remaining tissues. Increasing Cd bioaccumulation in gills, digestive glands and remaining tissues can be related to elevated dissolved Cd in the bay, suggesting gill contamination via the direct pathway and subsequent internal redistribution of Cd to other organs and tissues. Elevated Cd contents in oysters reared on tables could be attributed to different trophic Cd transfer (phytoplankton versus microphytobenthos) or to different oyster metabolisms between the rearing conditions as suggested by metallothionein concentrations.  相似文献   

5.
Pollutant concentrations detected in oysters from 12 different culture areas of Taiwan (especially for the Hsiangshan area and the Machu Islands) from 1991-98 were evaluated to investigate potential carcinogenic (inorganic As and organochlorine pesticides) and non-carcinogenic (Cu, Zn, Cd and inorganic As) risk to the public from ingestion of the oysters. The highest geometric mean (GM) Cu and Zn concentrations of 1108 (range 113-2806) and 1567 (range 303-3593) microg/g dry weight were obtained in oysters from the Hsiangshan coastal area. The maximum GM Cd and As concentrations of 6.82 and 19.3 microg/g dry weight were found in oysters from the Machu Islands area. The p,p'-DDE values range from not detectable in Penghu Islands' oysters to 164 ng/g dry weight in Machu Islands' oysters. The highest tDDT (sum of p,p'-DDE, p,p'-DDD and p,p'-DDT) concentrations of 337 and 340 ng/g dry weight were found in oysters from Kimmen and Machu Islands, respectively. A calculated target hazard quotient (THQ; daily intake/reference dose) of 11.4 (based on 139 g oysters/day) for Cu caused by consuming oysters from the Hsiangshan area is higher than that from other areas (range 0.124-5.95). The highest average Cu intake from Hsiangshan's oysters for individuals is 11.4 times (i.e. THQ=11.4) more than that of reference dose (40 microg/kg/day). However, the maximum THQ values for Cd and As caused by consuming oysters collected from the Machu Islands were 5.57 and 2.63 for Cd and As, respectively. Generally, the results of THQ showed that if only the maximally exposed individuals were considered, the value of 65.4% for oyster was higher than 1.0 in comparison with reference dose. All cancer risk estimates for inorganic As from consuming oysters were higher than 10(-6) (range from 128x10(-6) to 509x10(-6) for maximally exposed individuals and range from 17.1x10(-6) to 68.0x10(-6) for typically exposed individuals, respectively); that is the risk of the lower end of the range of acceptable risk. The highest risk estimate for inorganic As was 509x10(-6) for consumption of oysters by Machu Islands' residents. The lifetime cancer risks of 19.0x10(-6) for tDDT by consuming oysters from the Machu Islands was higher than those from the Penghu Islands (0.37x10(-6)). Therefore, the sum of lifetime cancer risks for tDDT and inorganic As had the highest risks (total risk=528x10(-6)) of consuming oysters from the Machu Islands. Furthermore, a 10(-6) upper limit on lifetime risk as the health protection standard would require maximum oyster consumption rates of approximately 0.26 g/day.  相似文献   

6.
The power relationships of short-term net uptake and of in-situ body burden with body weight were examined. The accumulation of soft tissue zinc in the American oyster (Crassostrea virginica) was related to time integration of uptake. Short term uptake of (65)Zn was measured in the laboratory. It was (i) a function of the (dry soft-tissue) weight of the oyster, (ii) inversely related to the salinity of the ambient water, and (iii) increased linearly with ambient concentrations. When in-situ soft-tissue zinc body burdens of oysters from the James River and the Rappahannock River were fit to power functions of body weights (y = aWb), the values of b for all sites were larger by 1 than the powers for (65)Zn uptake when b was adjusted for the oyster-bed salinities. The soft-tissue zinc concentration (y/W) of an oyster increased continuously, but the rate of the increase was reduced as the oyster grows larger. Both short-term uptake and in-situ body burden varied with salinity. The soft-tissue zinc concentrations of hooked mussels (Ischadium recurvum) from the Rappahannock River oyster beds, contrary to the oysters, appeared to be in equilibrium with ambient concentrations.  相似文献   

7.
Pollution by toxic metals including cadmium (Cd) and hypoxia are important stressors in estuaries and coastal waters which may interactively affect sessile benthic organisms, such as oysters. We studied metabolic responses to prolonged hypoxic acclimation (2 weeks at 5% O2) in control and Cd-exposed (30 d at 50 μg L−1 Cd) oysters Crassostrea virginica, and analyzed the effects of these stressors on abundance of Vibrio spp. in oysters. Hypoxia-acclimated oysters retained normal standard metabolic rates (SMR) at 5% O2, in contrast to a decline of SMR observed during acute hypoxia. However, oysters spent more time actively ventilating in hypoxia than normoxia resulting in enhanced Cd uptake and 2.7-fold higher tissue Cd burdens in hypoxia. Cd exposure led to a significant decrease in tissue glycogen stores, increase in free glucose levels and elevated activity of glycolytic enzymes (hexokinase and aldolase) indicating a greater dependence on carbohydrate catabolism. A compensatory increase in activities of two key mitochondrial enzymes (citrate synthase and cytochrome c oxidase) was found during prolonged hypoxia in control oysters but suppressed in Cd-exposed ones. Cd exposure also resulted in a significant increase in abundance of Vibrio parahaemolyticus and Vibrio vulnificus levels during normoxia and hypoxia, respectively. Overall, Cd- and hypoxia-induced changes in metabolic profile, Cd accumulation and bacterial flora of oysters indicate that these stressors can synergistically impact energy homeostasis, performance and survival of oysters in polluted estuaries and have significant consequences for transfer of Cd and bacterial pathogens to the higher levels of the food chain.  相似文献   

8.
Green oysters caused by copper pollution on the Taiwan coast   总被引:1,自引:0,他引:1  
The first case of green oysters (Crassostrea gigas) broke out along the Charting mariculture area of south-western Taiwan in January 1986. The green color was found to be due to high copper content in the oyster tissue. Since then, a long-term survey around this area shows that total dissolved copper ranges from 4.99 to 23.6 microg/liter and particulate copper ranges from 1.09 to 5.51 microg/liter in sea-water. The green oysters collected from the Erhjin Chi estuary on 26 January, 1989 gave the highest copper content, 4401+/-79 ppm dry wt. Other green oyster cases were occasionally observed in the Hsiangsan and Anpin mariculture areas. Meanwhile, an experiment of copper accumulation in oysters was conducted at three stations (south-western Taiwan) for up to 90 days. Multiple regression analysis indicates that the food pathway may predominate in copper accumulation by green oysters. This bioaccumulation experiment shows that the total uptake of copper per oyster is an exponential function of exposure time for the first 2 weeks with an accumulation rate of 214 ppm Cu/day and then levels off. The average values of concentration factors for oysters (about 5 x 10(5)) were very close to steady-state values under the natural conditions at each station.  相似文献   

9.
Mussels (Mytilus galloprovincialis), clams (Venerupis decussatus) and oysters (Crassostrea gigas) were sampled seasonally during 2004-2005, from different coastal environments of Morocco in order to measure their accumulated heavy metal concentrations. The concentrations of Hg and Pb were determined by AFS and ICP-MS methods, respectively, whilst the remaining metals (Cd, Cr, Cu, Mn, Zn and Ni) were quantified by AAS. The soft tissue concentrations of the mussels were on average 7.2 mg kg(-1) (Cd), 9.6 mg kg(-1) (Pb), 0.6 mg kg(-1) (Hg), 26.8 mg kg(-1) (Cu), 8.8 mg kg(-1) (Cr), 292 mg kg(-1) (Zn), 20.8 mg kg(-1) (Mn) and 32.8 mg kg(-1) (Ni). The highest tissue heavy metal concentrations were recorded in the south from the industrial area of Jorf Lasfar. The relationships between metal concentration and season in each species showed very similar annual profiles with a peak observed around spring-summer. Statistical analysis indicated that different species showed different bioaccumulation of metals depending on study site and season.  相似文献   

10.
The first objective of this study was to determine the bioaccumulation kinetics of pyrene in the soft tissues of Crassostrea gigas (mantle, muscle, gills, digestive gland, and the remaining soft tissues). As bivalves can biotransform hydrocarbons in more polar compounds (metabolites) that are more easily excreted, the second objective was to investigate the oyster capacity to metabolize pyrene into its metabolite, the 1-hydroxypyrene. To these ends, oysters were exposed 24 h to waterborne 14C-pyrene then placed in depuration conditions for 15 d. Oysters efficiently bioaccumulated pyrene in their soft tissues and equilibrium was reached within the exposure time. The metabolite1-hydroxypyrene was also detected in oyster tissues but represented only 4-14% of the parent pyrene. At the end of the exposure period, the gills and the mantle showed the highest pyrene proportion of total soft tissue content, i.e. 47% and 26%, respectively. After 15 d of depuration, the mantle contained 32% and 30% of the remaining pyrene and 1-hydroxypyrene, respectively. As C. gigas did not display a high capacity for metabolizing pyrene, it can be considered as a good bioindicator species to survey and monitor pyrene contamination in the coastal marine environment.  相似文献   

11.
Sediment quality guidelines (SQGs) assess the ability of bottom sediment to sustain healthy infauna and water quality guidelines (WQGs) provide protection for a designated percentage of aquatic species. Filter-feeding marine species, e.g. oysters and mussels, acquire food from particles in the water column and protection of these animals is not provided by SQGs or WQGs. The current work investigated the relationship between metal (Cu, Zn) concentrations in total and fine-fraction (<62.5 μm) surficial sediment digested in a range of acids and chelating agents and oyster tissue metal concentrations. A strong correlation between oyster tissue Cu and Zn concentrations and fine-fraction surficial sediment digested in 1 M HCl provided a sedimentary guideline which predicted tissue metal concentrations in oysters and established a level (<45 μg g−1 and <1000 μg g−1, respectively) for protecting oysters from exceeding human consumption levels (70 μg g−1 and 1000 μg g−1, respectively).  相似文献   

12.
This study examined brown cells of oysters, Crassostrea virginica, as potential indicators of pollution related stress. Regardless of collection station brown cells increased in connective tissue when it was inflamed. Significantly (alpha < 0.05) fewer brown cells were observed in connective tissue of oysters from the clean versus the contaminated station; no significant differences in size were apparent in brown cells or vesicles between the two stations. Brown cell vesicles in connective tissue of oysters from the clean station were a translucent light-brown color with inclusions in the larger vesicles, whereas in oysters from the contaminated station they were blackish-brown with 2-3 inclusions in all vesicles regardless of size. Auricles in oysters at the clean station had significantly (alpha < 0.05) more brown cells which were larger and contained more vesicles than those at the contaminated station. Significant differences did not occur among protein concentration, lysozyme, glutathione reductase and acid phosphatase activities in brown cells between clean and contaminated stations, however, significant differences occurred among protein concentration, lysozyme, glutathione reductase and acid phosphatase between brown cell fractions separated on a Percoll density gradient. These studies indicate that vesicles of oyster brown cells are lysosomes and these cells possess the requisites for detoxification and have the potential for use as a biomarker of exposure to contaminants and stress.  相似文献   

13.
Green-lipped mussels, Perna viridis, were collected from Kat O, Yim Tin Tsai, Ma Liu Shui and Tap Mun around Tolo Harbour and six local markets in Hong Kong (Aberdeen, Shau Kei Wan, Kowloon City, Mongkok, Yuen Long) and Shenzhen (Dongmun) between July 1994 and February 1995 and analysed for cadmium (Cd), chromium (Cr), copper (Cu), nickel (Ni), lead (Pb) and zinc (Zn). The metal concentrations of mussels collected from the study sites were Cd (0.45-1.44 microg/g), Cr (0.82-4.89 microg/g), Cu (6.02-23.99 microg/g), Ni (3.25-6.87 microg/g), Pb (2.02-4.36 microg/g) and Zn (90-135 microg/g), while those from the markets were Cd (0.27-1.44 microg/g), Cr (1.09-3.30 microg/g), Cu (9.05-17.8 microg/g), Ni (2.44-5.25 microg/g), Pb (1.17-5 microg/g) and Zn (51-103 microg/g). The metal concentrations were below the maximum permissible levels set by the Hong Kong Government. In addition, seasonal variation of metal accumulation in mussels was investigated in Yim Tin Tsai and Ma Liu Shui and a reduction in the total heavy metal concentrations during winter was noted. The non-carcinogenic hazard index of mussels collected from Tolo Harbour and from Hong Kong markets was between 0.46 and 1.36 compared with those from Shenzhen markets (0.85-1.46), which indicated a low but possible risk in consuming the mussels.  相似文献   

14.
Cheng CY  Liu LL  Ding WH 《Chemosphere》2006,65(11):2152-2159
The occurrence and distribution of alkylphenols (APs, i.e., 4-tert-octylphenol (4-t-OP) and 4-nonlyphenol isomers (4-NP)) in oysters (Crassostrea gigas), snails (Thais clavigera), coastal water and coastal sediments of the western coast of southern Taiwan are investigated. Alkylphenols were present in all matrices of interest: in water, ranging from 61 to 370 ng/l, in sediments, ranging from 27 to 190 ng/g, and in biota samples (i.e., oyster and snail), ranging from 20 to 5190 ng/g. Statistical analysis indicated that the probability distribution of most determined concentrations in oyster and snail samples was log-normal distribution. The bioaccumulation of APs resulted in a seasonal variation with respect to their compositions and concentrations in oyster and snail samples. For oysters, concentrations of APs in winter exceeded those in summer. In contrast, those in snails in summer exceeded those in winter. Estimated biomagnification factors of APs from snails to oysters ranged from 1.4 to 4.3 in summer, and 0.5 to 0.8 in winter on the dry weight basis. The results suggested that seasonally mediated physiological changes, such as dilution caused by growth, biotransformation and metabolism, may affect the bioaccumulation of APs in according to season and organism.  相似文献   

15.
The Gironde fluvial estuarine system is impacted by historic metal pollution (e.g. Cd, Zn, Hg) and oysters (Crassostrea gigas) from the estuary mouth have shown extremely high Cd concentrations for decades. Based on recent work (Chiffoleau et al., 2005) revealing anomalously high Ag concentrations (up to 65 mg kg−1; dry weight) in Gironde oysters, we compared long-term (∼1955-2001) records of Ag and Cd concentrations in reservoir sediment with the respective concentrations in oysters collected between 1979 and 2010 to identify the origin and historical trend of the recently discovered Ag anomaly. Sediment cores from two reservoirs upstream and downstream from the main metal pollution source provided information on (i) geochemical background (upstream; Ag: ∼0.3 mg kg−1; Cd: ∼0.8 mg kg−1) and (ii) historical trends in Ag and Cd pollution. The results showed parallel concentration-depth profiles of Ag and Cd supporting a common source and transport. Decreasing concentrations since 1986 (Cd: from 300 to 11 mg kg−1; Ag: from 6.7 to 0.43 mg kg−1) reflected the termination of Zn ore treatment in the Decazeville basin followed by remediation actions. Accordingly, Cd concentrations in oysters decreased after 1988 (from 109 to 26 mg kg−1, dry weight (dw)), while Ag bioaccumulation increased from 38 up to 116 mg kg−1, dw after 1993. Based on the Cd/Ag ratio (Cd/Ag ∼ 2) in oysters sampled before the termination of zinc ore treatment (1981-1985) and assuming that nearly all Cd in oysters originated from the metal point source, we estimated the respective contribution of Ag from this source to Ag concentrations in oysters. The evolution over the past 30 years clearly suggested that the recent, unexplained Ag concentrations in oysters are due to increasing contributions (>70% after 1999) by other sources, such as photography, electronics and emerging Ag applications/materials.  相似文献   

16.
The potential sources of relatively great concentrations of arsenic (As) in oysters from the Southeastern United States coast was examined in a study conducted from August 1998 through October 1999. A transplant experiment was conducted to determine whether genetic or environmental differences accounted for the observed difference between Southeastern oysters, and oysters elsewhere on the east coast. Oysters originating in South Carolina (a region where As in oysters is usually greater) and Maryland (a region where arsenic is oysters is less) were reciprocally transplanted to determine whether site of growth or site of origin would determine the accumulation of As. To examine the potential role of various potential sources of As exposure on the concentrations of As in oysters, samples of native oysters, water, pore water and suspended particles were collected and analyzed for As monthly, while the sediments were examined four times during the year. Concentrations of As in transplanted oysters matched the concentrations of As in oysters native to the area in which they were grown, rather than that of oysters from their site of origin. Oysters from South Carolina had average concentrations of As approximately 3.2 times that of oysters from Maryland. This enrichment was similar to enrichments of water (3.4 times), sediment (2.5 times), suspended particles (1.7 times), and pore water (3.1 times) from South Carolina compared to Maryland. This supports the hypothesis that the cause of the apparent As enrichments in the Southeastern oysters is environmental, but leaves the question of the primary source for arsenic incorporation by oysters open.  相似文献   

17.
This investigation was undertaken to understand the temporal trend, the spatial distribution and the residue level of dichloro-diphenyl-trichloroethanes (DDTs) and hexachlorobenzenes(HCHs) in bivalves from the coast of the South China in recent years. Jinjiang oysters (Crassostrea rivularis) were sampled from 15 bays along the coast of Guangdong province, China between 2003 and 2007. Gas chromatography with electron capture detector was used to quantify the contents of HCH isomers (α-, β-, γ-, δ-HCH), DDT isomers (p,p′-, o,p′-DDT), p,p′-DDD and p,p′-DDE in the oyster tissues. The results demonstrate that annual level of DDTs in the tissue increase throughout the study, particularly between 2004 and 2006. The DDTs content in the tissue varied significantly among sampling regions and some sampling sites (p < 0.05). On the other hand, the HCHs content was significantly lower than DDTs content in the tissue (p < 0.01), and remain constant among sampling years, sampling regions and sampling sites (p > 0.10). Predominance of isomer form of DDTs and higher ratio of γ-HCH/HCHs at some sites indicated that recent input of DDT and lindane in the coastal waters of Guangdong, which might be caused by dicofol spraying in crop planting and lacquer painting on fisher boat. In the soft tissues of the oysters, the highest content of HCHs was 1.21 ng/g (wet weight), and DDTs levels ranged from 0.11 ng/g to 76.3 ng/g (wet weight), far below the Maximum Residual Limits in China and many developed nations.  相似文献   

18.
Concentrations of Hg, Pb, Cd, and Cr in 240 shellfish including oyster, short-necked clam, razor clam, and mud clam collected from six administrative regions in Xiamen of China were measured. The daily intakes of heavy metals through the consumption of shellfish were estimated based on both of the metal concentrations in shellfish and the consuming amounts of shellfish. In addition, the target hazard quotients (THQ) were used to evaluate the potential risk of heavy metals in shellfish on human body. Results showed that the concentrations of heavy metals in shellfish ranged at the following sequence: Cr > Cd > Pb > Hg. The concentrations of Hg and Pb in most samples were below the limits (0.3 mg?kg?1 for Hg and 0.5 mg?kg?1 for Pb) of national standard (GB 18406.4-2001) set in China. About 57 % of samples were found to contain more than 0.1 mg?kg?1 of Cd, in which the highest level was found in oyster from Xiangan with a value of 1.21 mg?kg?1. The average concentrations of Cd in oyster and mud clam samples were 0.338 and 0.369 mg?kg?1, respectively, which were significantly higher (p?<?0.05) than those in the samples of short-necked clam and razor clam. The highest concentration of Cr was found to present in short-necked clam from Jimei with a value of 10.4 mg?kg?1, but a mean value of 1.95 mg?kg?1 in all the shellfish was observed, and no significant difference was found among the different sampling regions. The calculated daily intakes of Hg, Pb, Cd, and Cr through consuming the shellfish were 0.005, 0.122, 0.137, and 1.20 μg?kg?1 day?1, respectively, which accounted for 2.19, 3.42, 13.7, and 40.1 % of the corresponding tolerable limits suggested by the Joint FAO/WHO Expert Committee on Food Additives. The THQ values of the four metals were far below 1 for most samples, except for those of Cd and Cr in the four shellfish species with the mean values of 0.132 and 0.385, respectively. The highest THQ values of Cd were observed in the species of oyster (0.719) and mud clam (0.568). But the high THQ values of Cr observed in all the four species were derived from the applied reference dose (RfD) data of Cr(VI) due to the unavailable RfD value of total Cr. The results indicate that the intakes of heavy metals by consuming shellfish collected from Xiamen of China do not present an appreciable hazard risk on human health, but attention should be paid to consuming those with relatively high THQ values, such as oyster, mud clam, and short-necked clam.  相似文献   

19.
Most of the oyster mariculture beds in Taiwan are in areas located along the west of the island. One of these areas is the Charting coast, where green oysters were found in 1986. During this incident, which became internationally notorious, mass mortality occurred in the Charting oyster beds. After this discovery, measures were taken by the authorities to counter pollution which lead to the problem. The effectiveness of these pollution control actions was evaluated in this study. Two water column indicators, particulate and sediment, and oysters were sampled and analyzed for metals (Cu, Zn, Pb, Ni) in Charting and its neighboring areas, Kuen-Shen Lake and Shin-Da Harbor, and the control area/station, Dah-Pen Wan. The current study shows that copper and zinc concentrations in both oysters and particulates significantly decreased in the Charting area, compared with concentrations found during the period of the green oyster incident. Six years after the incident, the copper concentration in oysters had fallen from a high of 4400 μg/g dry weight to an average of 300±69 μg/g dry weight, figures similar to the copper concentration in 1982. The pollution control actions taken after the incident are believed to be the cause of this recovery of the coastal environment. Nevertheless, Charting still produced oysters with the highest copper and zinc concentrations among the areas investigated. Further measures currently being taken by the government, including removing the sediment of some portions of Erhjin Chi, should be able to bring the oyster copper concentrations down to the levels similar to those observed in the neighboring area, (average concentration below 200 μg/g dry weight or all time maximum concentration below 500 μg/g dry weight).  相似文献   

20.
Cultured oysters from Hiroshima Bay were analysed to determine the content of nine trace elements, cadmium (Cd), lead (Pb), chromium (Cr), arsenic (As), manganese (Mn), nickel (Ni), copper (Cu), zinc (Zn), and iron (Fe) and compared with oysters treated for 48 h in both artificial sea water and a solution of 0.5% ethylenediaminetetraacetic acid (EDTA) in artificial sea water. It was found that the values of As and Fe in both groups of treated oysters were significantly lower than in the untreated oysters and that the Pb and Mn levels tended to be lower. It was also found that oysters treated in 0.5% EDTA solution in artificial sea water had lower levels of Cd and Cu than the oysters treated only in artificial sea water.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号