首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Ostrea edulis larvae from an adult stock maintained in a raft in the Ría of Arousa (Galicia, Spain), were cultured in 1988 under four different food regimes:Pavlova lutheri, Isochrysis galbana, Phaeodactylum tricornutum andSkeletonema costatum. Growth, mortality, percentage of eyed larvae in each tank, as well as the biochemical composition of larvae at different stages of development were also studied. Protein and carbohydrate levels increase during larval development. Total lipids also increase from liberation to Day 8, and increase slightly or decrease from Day 8 to the beginning of metamorphosis. Since lipids are the main energy reserve in larvae, it is very plausible that they are being consumed during development, especially when metamorphosis begins. Data on growth, survival and biochemical composition of these larvae, which spawned 4 d after transfer of parental stock to the conditioning circuit, are compared with unpublished data on larvae from a laboratory conditioned broodstock.  相似文献   

2.
This study demonstrates that the timing of larval starvation did not only determine the larval quality (shell length, lipid content, and RNA:DNA ratio) and the juvenile performance (growth and filtration rates), but also determine how the latent effects of larval starvation were mediated in Crepidula onyx. The juveniles developed from larvae that had experienced starvation in the first two days of larval life had reduced growth and lower filtration rates than those developed from larvae that had not been starved. Lower filtration rates explained the observed latent effects of early larval starvation on reduced juvenile growth. Starvation late in larval life caused a reduction in shell length, lipid content, and RNA:DNA ratio of larvae at metamorphosis; juveniles developed from these larvae performed poorly in terms of growth in shell length and total organic carbon content because of “depletion of energy reserves” at metamorphosis. Results of this study indicate that even exposure to the same kind of larval stress (starvation) for the same period of time (2 days) can cause different juvenile responses through different mechanisms if larvae are exposed to the stress at different stages of the larval life.  相似文献   

3.
H. Zenitani 《Marine Biology》1999,134(4):645-652
The size-specific nutritional conditions of larval sardines, Sardinops melanostictus, from the main Kuroshio Current and its offshore waters off eastern Japan were assessed by lipid analysis. A rapid lipid analysis technique (diagnostic kits for human serum lipids) was used to measure the different lipid components of individual sardine larvae as indicators of their nutritional condition. Size-specific growth trajectories of individual larvae were estimated by the biological intercept method, and the recent daily growth rate of standard length (SL) was calculated from the 3 d outer increment width on the otolith. Relationships between the amount of larval phospholipid (PL; tissue weight indicator) and SL, and the recent daily growth rate of larva (Gr) and SL, could be expressed by the equations PL = 0.459 SL 1.77 and Gr = 0.0809 SL − 0.341, respectively. There was no notable difference in these values between the two survey areas. The relationship between the amount of triglyceride (TG) and SL could be expressed allometrically (TG = 0.013 SL 2.63). The relationship between the index of starvation tolerance (TG/PL) and SL could be expressed by the allometric equation TG/PL = 0.0288 SL 0.865, suggesting that larger sardine have a higher starvation tolerance than smaller sardine. The TG of the 8 to 9 mm SL size-class larvae in the offshore area was higher than in the main Kuroshio Current. To test whether the TG for each larval sardine in the 8 to 9 mm SL size-class could be correlated with variables (temperature, chlorophyll a and distribution density of the sardine larvae) measured at the sampling stations, correlation analyses were performed. A highly significant negative correlation between TG and distribution density of the sardine larvae was found. A density-dependence effect seemed to influence the fluctuation of the larval storage energy component for short-term needs. Received: 12 March 1998 / Accepted: 26 March 1999  相似文献   

4.
Food availability is highly variable in the ocean. Many species of marine invertebrates have a larval form that depends upon exogenous nutrients for growth, yet there are few biochemical and physiological indices for determining changes in the nutritional status of larvae. In this study, the effects of food availability on biochemical compositions and metabolic processes of larvae of the sea urchin, Strongylocentrotus purpuratus, were determined. Larvae were cultured under different food concentrations (fed-to-excess and unfed) and a suite of biological processes assayed, ranging from measurements at the level of the whole organism to that of specific molecules. These data were normalized to DNA content (an index of cell number) to allow comparisons of physiological rates in larvae of different sizes. Changes in the following were measured during larval growth: free amino acid pool, protein, lipid classes (cholesterol, free fatty acids, hydrocarbons, phospholipids, triacylglycerol), enzyme activities (Na+, K+-ATPase and citrate synthase), and respiration rates. In growing larvae, the two key components that showed differential cell-specific content relative to unfed larvae were glycine in the free amino acid pool and phospholipids. Additionally, several lipid classes were detectable only in fed larvae (cholesterols, free fatty acids, and hydrocarbons). While triacylglycerols were present in eggs and utilized during pre-feeding development, they were not re-accumulated at detectable levels in feeding larvae. Respiration rates, protein content, and enzyme activities were all similar on a cell-specific basis, showing that these variables did not provide useful indices of differences in physiological state between fed and unfed larvae. In contrast, measurements of the cell-specific content of glycine and certain lipid classes did provide useful indices of physiological state of larvae. Application of these indices could potentially allow for determinations of nutritional state of larvae in the ocean.  相似文献   

5.
K. Anger 《Marine Biology》1988,99(2):255-260
Larvae of the spider crab Inachus dorsettensis were reared in the laboratory at constant 12 °C. Development lasted 8 to 10 d in the Zoea I, 10 to 12 d in the Zoea II and 14 to 20 d in the megalopa stage. During this time, larval growth was measured in samples taken every 2 to 4 d as dry wt (W), carbon (C), nitrogen (N), and hydrogen (H); energy content (E) was calculated from C. Biomass and energy (per individual) increased in each larval stage as a parabola-shaped function of age, which could be fitted by a power equation. C, H, and E show a higher percentage gain (relative to the initial values at hatching) than W or N, suggesting that proportionally more lipid than protein is accumulated during larval development. There are cyclical changes in the relative (per unit of W) biomass and energy figures, corresponding to the larval moult cycles: immediately after each ecdysis all these values decrease, presumably due to rapid uptake of water and minerals, then they increase again due to tissue growth and remain high until the next moulting occurs. Cyclical changes in the C/N ratio suggest that proportionally more lipid than protein is accumulated during the initial (postmoult) phase of the moult cycle, followed by a period of balanced or protein-dominated gain during the intermoult and premoult phases. These patterns of growth and elemental composition observed during the complete larval development and in single moult cycles of I. dorsettensis are compared with those described in the literature for other decapod species. This comparison suggests a high degree of similarity in biochemical composition and growth characteristics of larval decapod crustaceans.  相似文献   

6.
Aquaculture studies have revealed that polyunsaturated fatty acids are critical for maintaining substantial growth, survival and reproductive rates, and high food conversion efficiencies for a wide variety of marine and freshwater organisms. The aim of this study was to investigate the gross biochemical and fatty acid composition of both neutral and polar lipid compartments of the razor clam Solen marginatus throughout embryonic and larval development. High levels of stored reserves in S. marginatus eggs allow a short larval development, lasting only 8 days. The energy required for embryogenesis was obtained from stored proteins. During larval development from D-shaped veliger until settlement, protein, lipid, and carbohydrate reserves were indistinctly stored for metamorphosis. Although total lipids increased, fatty acids in both neutral and polar lipids decreased during embryonic development. The depots allow a short larval development in which settlement is reached with lower amounts of stored neutral and polar lipids than the contents found in the oocytes. Non-methylene-interrupted dienoic fatty acid levels were similar to those of some polyunsaturated fatty acids, with increasing percentages at the onset of metamorphosis. This study indicates that S. marginatus exhibits a different pattern in the use of gross biochemical and fatty acid reserves during larval development compared to other razor clam and bivalve species, mainly due to the large size of its eggs and the short larval development stage reported in this species.  相似文献   

7.
Growth trajectories of individual larvae of Japanese sardine, Sardinops melanostictus, caught in the coastal waters off western Japan were back-calculated from the first feeding stage up to date of capture (approximate size of 20 to 35 mm total length; TL) based on individually determined allometric relationships between otolith daily ring radii and fish total lengths. The larvae in January-, February-, and March-hatched cohorts in the coastal waters grew faster and more uniformly than those in the oceanic waters offshore of the Kuroshio current. Growth trajectories of the three hatch-month cohorts were similar and could be expressed by the Gompertz model. The inflection points of the growth curves were reached at 9 to 11 d after hatching, when larvae were 10.8 to 11.8 mm TL. Maximum growth rates at these points were 0.80 to 0.85 mm d−1. Growth rates gradually declined after the inflection points, and larval TLs converged into the infinite length of 29 to 32 mm, the sizes at which metamorphosis from larvae to juveniles is initiated. This asymptotic growth pattern in the larval stage resulted in the narrow ranges in TLs in spite of the wide range of ages of the larvae caught by boat seiners in the coastal waters. Slow growth and therefore long duration of the metamorphosing stage could be influential in determining the cumulative total mortality in the early life stages of the Japanese sardine. Received: 14 July 1996 / Accepted: 20 August 1996  相似文献   

8.
Cell cycle analysis of muscle cell division rates offers a new and efficient technique to analyze growth of larval fish. Using this approach, growth of larval walleye pollock was estimated by determining cell proliferation rates, reasoning that growth during early life stages is probably attributed to increases in cell number rather than to increases in cell size. Characteristic patterns of brain and muscle cell division rates were produced in larval walleye pollock by manipulating their diet in the laboratory. The fraction of dividing muscle cells and, to a lesser extent, the fraction of dividing brain cells were direct indicators of fast and slow growth. A model was produced to estimate average growth rate from the fraction of dividing muscle cells. We developed a simple method for preparing and storing the muscle tissue that ensures nucleic acid stability for subsequent analyses and permits sampling in the field. We envision that the cell cycle methodology will have on-site applications, presenting an opportunity to attain real-time estimates of larval fish growth at sea. Determining the proportion of first-feeding larvae with a high fraction of dividing muscle cells may yield a means for predicting the proportion of fast-growing fish, i.e., the potential survivors.  相似文献   

9.
The biochemical composition of the adult body tissue is similar in Littorina littorea, L. littoralis, L. saxatilis and L. neritoides. In the newly crawling metamorphosed young of L. littoralis and L. saxatilis, the biochemical composition is similar to that of the mature adults. The newly released planktonic veliger larvae of L. littorea and L. neritoides, which represent and earlier stage of development than the newly crawling young, have a neutral lipid level (mean, 16.5% of ash-free dry flesh weight) approximately three times the level (5.4%) in the newly crawling young of L. littoralis and L. saxatilis. Otherwise the biochemical composition of free-swimming larvae is similar to that of newly crawling young and adults. Neutral lipid is apparently utilised by L. littoralis and L. saxatilis larvae during larval development and metamorphosis. It is suggested that neutral lipid is the major energy reserve of Littorina veliger larvae whereas in the adults, as exemplified by L. littorea, both lipid and carbohydrate are important as energy reserves.  相似文献   

10.
J. Harms 《Marine Biology》1990,104(2):183-190
Liocarcinus holsatus (Fabricius) larvae, of females originating from the Elbe Estuary, FRG, were reared in the laboratory at constant 15°C in May 1988. For each larval stage, developmental time was measured by individual cultures (Zoea I: 6.7±0.7d; Zoea II: 5.0±0.6d; Zoea III: 4.8±0.7 d; Zoea IV: 5.3±0.6d; Zoea V: 6.1±1.1d; Megalopa: 10.45±0.7d). During the entire period of development, dry weight (W), carbon (C), nitrogen (N), and hydrogen (H) were measured daily (Zoea I to V) or every second day (Megalopa). The energy content (E) was estimated from C. Biomass and energy (per individual) increased in each larval stage as a parabolic function of age and is described by power functions. C, H, and E exhibit a higher percentage gain (relative to initial values at the time of hatching) than W and N. It is suggested that proportionally more lipid than protein is accumulated during larval development. Cyclical changes in the relative biomass (% W) correspond to the larval moult cycle, indicating a rapid uptake of water and minerals immediately after hatching and a later increase in tissue growth. Changes in the C:N ratio suggest that during the first period more lipid than protein is accumulated. These patterns of growth and elemental composition are compared with literature data and a high degree of similarity in the growth characteristics of decapod larvae is seen. In addition W, C, N, and H values as well as E were measured for the exuviae of Zoea I to V and Megalopa. The percentage loss of growth rate by exuviae for each larval instar were higher in W (12 to 16%) and C (8 to 12%), and varied between 5 and 10% for N, H, and E.  相似文献   

11.
Plaice (Pleuronectes platessa L.) were sampled during periods of growth and starvation, from the end of the yolk-sac stage through metamorphosis, for changes in water, triglyceride, carbohydrate, total nitrogen, total carbon, and ash. The percentage of water in larvae decreased continuously during development. During post-hatching growth (up to late Stage 2) nitrogen and carbohydrate were laid down faster than triglyceride. The pattern changed during later larval development. The early deposition of protein in preference to neutral fat suggests that conversion of food during growth, without simultaneously laying down fatty energy stores, may be advantageous to pelagic marine fish larvae. During starvation the percentage of water in plaice larvae increased. Triglyceride, carbohydrate, nitrogen and carbon (as a percentage of the dry body weight) decreased during starvation, but ash increased sharply. The continuous use of nitrogen during starvation may be a catabolic adaptation to the marine environment.  相似文献   

12.
The biochemical composition of juvenile blue crabs, Callinectes sapidus, exposed to sublethal concentrations of the water-soluble fraction of South Louisiana crude oil (0 to 2 504 ppb) for 21 d were examined. Although growth took place in all crabs, tissue content varied inversely with exposure concentration while percentage tissue water varied directly with exposure concentration. Total protein, lipid and RNA content of crabs exposed to crude oil were significantly less than that of control crabs by Day 21. DNA content was not significantly different from that of control crabs, suggesting that the difference in tissue content was due to differences in cell volume and not cell number. There were no consistent differences in the concentration of the major biochemical components, indicating that the relative contribution of each of the components remained stable during the period of sublethal stress. Ratios of RNA:DNA and protein:DNA decreased in exposed crabs and were positively correlated with scope for growth and observed growth. The ratios may be useful as indirect indicators of physiological condition. Analysis of lipid classes indicated that structural lipids in stressed crabs were less affected than were lipids used for energy storage. The changes in biochemical composition suggest that the pattern of energy utilization was altered in crabs exposed to crude oil. Growth in size without comparable growth in tissue resulted in decreased tissue content. Available energy was used for growth, with little being stored in lipid reserves.  相似文献   

13.
Changes in the lipid class and fatty acid composition of developing eggs and unfed larvae of cod (Gadus morhua L.) were studied with the objective of determining probable requirements of cod larvae for dietary lipid. The eggs were collected on 24 March 1985 from holding tanks containing cod which had been caught off the northwest coast of Scotland. Phosphatidylcholine (PC) was the only lipid class to decline in absolute terms during embryogenesis. Catabolism of neutral lipid was initiated during the first week after hatching, and the rate of neutral lipid utilisation increased after the larvae had completely absorbed their yolk sacs. The quantity of triacylglycerol (TAG) remained constant during embryogenesis, but the percentage of 22:6(n-3) int TAG increased substantially during this period. It was calculated that ca. 33% of the 22:6(m-3) released during the process of PC catabolism was incorporated into TAG and sterol ester. The results suggest that PC, replete in appropriate essential fatty acids, should represent a major proportion of the lipid in artificial diets for fish and crustacean larvae.  相似文献   

14.
The development of the escape response of walleye pollock (Theragra chalcogramma) larvae from attacks by macrozooplanktonic and small-fish predators was quantified in laboratory experiments. Behavior was recorded using video cameras with silhouette illumination from infrared-emitting diodes and by visual observation. Laboratory-reared larvae of 1, 3, 8, 10, 12, 18, 22, 27, 42 days post-hatching, ranging in size from 4 mm to 10 mm total length, were used in the experiments. Even the youngest larvae were observed to exhibit a fast startle response. The percentage of successful larval escapes from the different predators increased as the larvae developed. Euphausiids (Thysanoessa raschii) and amphipods (Calliopiella pratti) often touched larvae but the larvae were usually able to escape and no successful captures of larvae over 22 days old were observed. Although successful escape from initial attacks by three-spine sticklebacks (Gasterosteus aculeatus) increased ontogenetically, sticklebacks were able to consume most larvae, even of the oldest age group, by repeated attacks. Day-old larvae had the lowest percent of escapes after encounters with jellyfish (Sarsia sp.), but the percentage of escapes increased dramatically for 3-day-old larvae. Escape speeds after an attack also increased with age, and tended to be higher after stickleback attacks and lower after jellyfish attacks. This study revealed that the escape response of larval pollock to attack by predators improves rapidly with development during the early larval stage.  相似文献   

15.
The lipid/fatty acid composition of marine fish eggs and larvae is linked with buoyancy regulation, but our understanding of such processes is largely restricted to species with pelagic eggs. In this study, we examined developmental changes in the lipid/fatty acids of eggs and embryos of Pacific cod (Gadus macrocephalus), a species that spawns demersal eggs along coastal shelf edges, but as larvae must make a rapid transition to the upper reaches of the water column. Adult Pacific cod were collected in the Gulf of Alaska during the spawning season and eggs of two females were artificially fertilized with sperm from three males for each female. The eggs were subsequently reared in the laboratory to determine (1) how lipids/fatty acids were catabolized during egg and larval development, and (2) whether lipid/fatty acid catabolism had measurable effects on egg/embryo density. Eggs incubated at 4°C began hatching after 3-weeks and continued to hatch over a 10-day period, during which there was a distinct shift in lipid classes (phospholipids (PL), triacyglycerols (TAG), and sterols (ST)) and essential fatty acids (EFAs: 22:6n-3 (DHA), 20:5n-3 (EPA), and 20:4n-6 (AA)). In the egg stage, total lipid content steadily decreased during the first 60% of development, but just prior to hatch we observed an unexpected 2–3-fold lipid increase (~6–9 μg individual−1) and a significant drop in egg density. The increase in lipids was largely driven by PL, with evidence of long-chained fatty acid synthesis. Late-hatching larvae had progressively decreasing lipid and fatty acid reserves, suggesting a shift from lipogenesis to lipid catabolism with continued larval development. Egg density measures suggest that lipid/fatty acid composition is linked to buoyancy regulation as larvae shift from a demersal to a pelagic existence following hatch. The biochemical pathway by which Pacific cod are apparently able to synthesize EFAs is unknown, therefore representing a remarkable finding meriting further investigation.  相似文献   

16.
Atlantic blue marlin (Makaira nigricans) and sailfish (Istiophorus platypterus) larvae were collected from 10 monthly cruises (June–October 2003 and 2004) across the Straits of Florida to test (1) whether growth differed between the more productive western region near the Florida shelf, and the less productive eastern region toward the Bahamas, and (2) whether growth was related to prey consumption. Examination of larval sagittal otoliths revealed that instantaneous growth and daily growth during the first 2–3 weeks of life did not vary significantly between the two regions for either species. However, recent growth during the last two full days prior to collection was greater in the west for blue marlin larvae. Recent growth of blue marlin larvae <9 mm SL (primarily zooplanktivorous) was significantly related to prey composition (faster growth when higher proportions of Farranula copepods were consumed). Western larvae grew faster and had higher proportions of Farranula in their guts. Trends for sailfish larvae were not significant. In both species, comparison of early growth between <9 and ≥9 mm SL size groups indicated that growth trajectories diverged around 5–8 mm SL, the time when billfish larvae become capable of piscivory. Significantly faster growth of larger (older) larvae suggests that mortality was selective for fast growers and that the transition to piscivory may be a critical point in the early life of billfish.  相似文献   

17.
The pelagic yellowtail kingfish Seriola lalandi has become a target species for aquaculture in Asia and Australasia. Australasian production is reliant on larviculture from eggs of captive brood stock; however, knowledge regarding the nutritional requirements of larvae of this species is still scarce, particularly in relation to lipids. As a first step in establishing these requirements, eggs and larvae from captive S. lalandi brood stock were examined for differences in total protein, total lipid and lipid classes between individual spawning events, over the spawning season, and during larval development from fertilisation to 15 days post hatch. Results indicate that total protein egg−1 varied significantly between individual spawning events within a season, but neither total lipid nor total protein egg−1 varied significantly across the spawning season. Brood stock egg lipids were made up of approximately 60% phospholipid, 25% wax and/or sterol esters (WE), 15% triacylglycerol (TAG), and small amounts of sterols and free fatty acids. During the early larval period, both WE and TAG were utilised concurrently for energy. The larvae experienced very high mortality around 5–7 days post hatch, which coincided with very low levels of all neutral lipid classes. Although many other factors may also influence larval mortality, these results indicate that lipid provisioning may be an important factor in larval survival during the critical period around first-feeding in this species. Examination of ratios of TAG:ST, often used as a condition index in fish larvae, suggested that some of the larvae were suffering from starvation. However, as egg-derived WE appears to provide a significant source of energy during the early larval period in S. lalandi, it is suggested that WE should be included in any index of larval nutritional state.  相似文献   

18.
Pleuragramma antarcticum is a key component of the neritic assemblages in the Antarctic coastal waters. Larvae of this species were sampled from 2008 to 2011 in the Dumont d’Urville Sea (East Antarctica). The lipid class composition [triacylglycerols (TAG), cholesterol (Chol) and polar lipids (PL)] of larvae was measured to assess the larval condition. The total amount of lipids was linearly related to the quantity of structural polar lipids, suggesting that growth is favored over lipid storage. The TAG:Chol ratio showed interannual variability in the condition of fish larvae, probably related to prey availability. Nevertheless, the essential fatty acids composition of polar lipids illustrates that larvae with low levels of TAG:Chol could be either growing or under starvation. Only the combination of a low TAG:Chol ratio and low polar lipids content, which can also be mobilized during starvation periods, allowed identification of larvae in poor condition. This lipid condition index should be of great assistance to evaluate the probability of survival of P. antarcticum larvae in long-term monitoring. It has widespread applicability and should also be useful in the diagnosis of nutritional condition in other species.  相似文献   

19.
Little is known about the changes in composition of brain lipids and fatty acids at different stages of development in fish. Wild Atlantic herring (Clupea harengus L.) were collected from Loch Linnhe and the Firth of Clyde, Scotland, from August 1990 to March 1991. Lipid class and fatty acid compositions of brain lipids were studied at four different stages of development: larvae at the end of the yolk sac stage, two juvenile stages and sexually mature adults. The total lipid content in brains increased during development, and larval brains contained higher proportions of neutral lipids and lower proportions of polar lipids than the brains of juvenile or adult herring. Increased proportions of polar lipids in juvenile and adult herring brains were mainly due to increased percentages of phosphatidylcholine (PC), phosphatidylethanolamine (PE), cerebrosides and sulphatides. The increase in the proportions of the glycolipid classes suggested increasing levels of myelination with development. In total lipids, saturated fatty acids generally decreased and monounsaturated fatty acids and dimethyl acetals (derived from PE-plasmalogen) increased from larvae to adults. However, the proportions of polyunsaturated fatty acids in individual phosphoglycerides were generally highest in juvenile stages, due mainly to increased 22:6n-3, and were lowest in adult fish. Relatively high percentages of 24:1 isomers were found in all the phosphoglycerides, but primarily PC, and these increased during development from larvae to adult. Fatty acids were distributed between individual phosphoglycerides with a characteristic pattern that did not change with development, although the relative amounts of individual fatty acids were altered. The variations and roles of the different lipid components of herring brain are discussed with respect to lipid compositions and functions in brains of other fishes and vertebrates.  相似文献   

20.
We assessed the ontogenetic changes in protein content and free amino acids (FAA) in eggs and early larvae of Engraulis ringens (anchoveta) off central Chile on different dates during the spawning season. On all sampling dates, a reduction in embryonic yolk-sac volume, proteins and FAA concentrations occurred during development. Protein electrophoresis (SDS–PAGE) of eggs and larvae showed at least 22 protein bands: 11 were consumed early and not detected after hatching. The proportion of essential FAA (EFAA) was higher than the proportion of non-essential FAA (NEFAA) in early eggs and in 7 day-old larvae (82.5-73% EFAA respectively). During egg development, the FAA pool was dominated by leucine, alanine and lysine, three amino acids contributing 35–44% of the total FAA in eggs. During larval development, histidine was the most abundant FAA. In July, total FAA constituted 13–18% of the egg dry weight. A similar proportion (45–51%) occurred in July between protein plus FAA and total lipids. The differences in egg size during the spawning season along with variability in batch composition suggests that the female spawning condition is a major factor determining egg quality and early offspring success.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号