首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper presents an assessment of air quality of the city Eskişehir, located 230 km southwest to the capital of Turkey. Only five of the major air pollutants, most studied worldwide and available for the region, were considered for the assessment. Available sulphur dioxide (SO2), particulate matter (PM), nitrogen dioxide (NO2), ozone (O3), and non-methane volatile organic carbons (NMVOCs) data from local emission inventory studies provided relative source contributions of the selected pollutants to the region.The contributions of these typical pollution parameters, selected for characterizing such an urban atmosphere, were compared with the data established for other cities in the nation and world countries. Additionally, regional ambient SO2 and PM concentrations, determined by semi-automatic monitoring at two sites, were gathered from the National Ambient Air Monitoring Network (NAAMN). Regional data for ambient NO2 (as a precursor of ozone as VOCs) and ozone concentrations, through the application of the passive sampling method, were provided by the still ongoing local air quality monitoring studies conducted at six different sites, as representatives of either the traffic-dense-, or coal/natural gas burning residential-, or industrial/rural-localities of the city. Passively sampled ozone data at a single rural site were also verified with the data from a continuous automatic ozone monitoring system located at that site. Effects of variations in seasonal-activities, newly established railway system, and switching to natural gas usage on the temporal changes of air quality were all considered for the assessment. Based on the comparisons with the national [AQCR (Air Quality Control Regulation). Ministry of Environment (MOE), Ankara. Official Newspaper 19269; 1986.] and a number of international [WHO (World Health Organization). Guidelines for Air Quality. Geneva; 2000. Downloaded in January 2006, website: http://www.who.int/peh/; EU (European Union). Council Directive 1999/30/EC relating to limit values for sulfur dioxide, nitrogen dioxide and lead in ambient air. Of J Eur Communities L 163: 14–30; 29.6.1999; EU (European Union). Council Directive 2002/3/EC relating to ozone in ambient air. Of J Eur Communities. L 67: 14–30; 9.3.2002.; USEPA (U.S. Environmental Protection Agency). National Ambient Air Quality Standards (NAAQS). Downloaded in January 2006, website: http://www.epa.gov/ttn/naaqs/] ambient air standards, among all the pollutants studied, only the annual average SO2 concentration was found to exceed one specific limit value (EU limit for protection of the ecosystem). A part of the data (VOC/NOx ratio), for determining the effects of photochemical interactions, indicated that VOC-limited regime was prevailing throughout the city.  相似文献   

2.
Human exposure to ambient ozone (O3) has been linked to a variety of adverse health effects. The ozone level at a location is contributed by local production, regional transport, and background ozone. This study combines detailed emission inventory, air quality modeling, and census data to investigate the source–receptor relationships between nitrogen oxides (NOx) emissions and population exposure to ambient O3 in 48 states over the continental United States. By removing NOx emissions from each state one at a time, we calculate the change in O3 exposures by examining the difference between the base and the sensitivity simulations. Based on the 49 simulations, we construct state-level and census region-level source–receptor matrices describing the relationships among these states/regions. We find that, for 43 receptor states, cumulative NOx emissions from upwind states contribute more to O3 exposures than the state's own emissions. In-state emissions are responsible for less than 15% of O3 exposures in 90% of U.S. states. A state's NOx emissions can influence 2 to 40 downwind states by at least a 0.1 ppbv change in population-averaged O3 exposure. The results suggest that the U.S. generally needs a regional strategy to effectively reduce O3 exposures. But the current regional emission control program in the U.S. is a cap-and-trade program that assumes the marginal damage of every ton of NOx is equal. In this study, the average O3 exposures caused by one ton of NOx emissions ranges from ? 2.0 to 2.3 ppm-people-hours depending on the state. The actual damage caused by one ton of NOx emissions varies considerably over space.  相似文献   

3.
Assessment of ambient air quality in Eskişehir, Turkey   总被引:1,自引:0,他引:1  
This paper presents an assessment of air quality of the city Eski?ehir, located 230 km southwest to the capital of Turkey. Only five of the major air pollutants, most studied worldwide and available for the region, were considered for the assessment. Available sulphur dioxide (SO(2)), particulate matter (PM), nitrogen dioxide (NO(2)), ozone (O(3)), and non-methane volatile organic carbons (NMVOCs) data from local emission inventory studies provided relative source contributions of the selected pollutants to the region. The contributions of these typical pollution parameters, selected for characterizing such an urban atmosphere, were compared with the data established for other cities in the nation and world countries. Additionally, regional ambient SO(2) and PM concentrations, determined by semi-automatic monitoring at two sites, were gathered from the National Ambient Air Monitoring Network (NAAMN). Regional data for ambient NO(2) (as a precursor of ozone as VOCs) and ozone concentrations, through the application of the passive sampling method, were provided by the still ongoing local air quality monitoring studies conducted at six different sites, as representatives of either the traffic-dense-, or coal/natural gas burning residential-, or industrial/rural-localities of the city. Passively sampled ozone data at a single rural site were also verified with the data from a continuous automatic ozone monitoring system located at that site. Effects of variations in seasonal-activities, newly established railway system, and switching to natural gas usage on the temporal changes of air quality were all considered for the assessment. Based on the comparisons with the national [AQCR (Air Quality Control Regulation). Ministry of Environment (MOE), Ankara. Official Newspaper 19269; 1986.] and a number of international [WHO (World Health Organization). Guidelines for Air Quality. Geneva; 2000. Downloaded in January 2006, website: http://www.who.int/peh/; EU (European Union). Council Directive 1999/30/EC relating to limit values for sulfur dioxide, nitrogen dioxide and lead in ambient air. Of J Eur Communities L 163: 14-30; 29.6.1999; EU (European Union). Council Directive 2002/3/EC relating to ozone in ambient air. Of J Eur Communities. L 67: 14-30; 9.3.2002.; USEPA (U.S. Environmental Protection Agency). National Ambient Air Quality Standards (NAAQS). Downloaded in January 2006, website: http://www.epa.gov/ttn/naaqs/] ambient air standards, among all the pollutants studied, only the annual average SO(2) concentration was found to exceed one specific limit value (EU limit for protection of the ecosystem). A part of the data (VOC/NO(x) ratio), for determining the effects of photochemical interactions, indicated that VOC-limited regime was prevailing throughout the city.  相似文献   

4.
Two studies evaluating the levels and sources of nitrogen dioxide in approximately 90 employee homes in the Richmond area with continuous sampling during the weeks of August 5, 1980, and February 9, 1981, were performed using samplers in the living room, bedroom, kitchen, and outdoors. Additional data were collected concerning appliance usage, heating/cooling plant, ventilation and cigarette smoking. Results were analyzed using BMDP routines. The largest contributor to NO2 concentration was found to be gas-fired kitchen appliances. The mean kitchen level for homes with gas appliances during the winter study was 188 μg/m3. Excluding participants with gas kitchens, incremental influence due to cigarette smoking was detected. The 7-day, 3-room average level of NO2 in the homes of nonsmokers and smokers without gas-fired appliances was 12 and 15 μg/m3, respectively, in the summer. The corresponding winter values were 19 and 22 μg/m3. Furthermore, the individual levels of NO2 in the homes of smokers were generally below both the adjacent outdoor level and the National Ambient Air Quality Standard limit for annual exposure.  相似文献   

5.
The results of the ozone models of EMEP and Harwell are combined with the C-R (concentration- response) functions and economic valuation recommended by the ExternE Project of the European Commission. The paper is exploratory, to assemble the available information, establish likely priority impact categories, and make recommendations for future research. Impacts on health and agriculture are evaluated. Based on the EMEP results, aggregate regional (Europe-wide) estimates of ozone damage, allocated per ton of precursor emission, are derived. Calculations on the global scale, using results from the Harwell Global Ozone Model (and the same valuation per nL/L O3) indicate that damages outside Europe are likely to also be significant although somewhat smaller. For the EMEP Model, the numbers per ton of precursor emission are approximately the same for NOx and for VOC. For NOx, a value around $1875 (uncertainty range 375 to 10 000) per Mg NO2 equi was found; for VOC, approximately $1100 per MgVOC was found. There is much uncertainty, especially in the C-R functions, and current assessments of ozone damages are, at best, order of magnitude estimates. Even though the overlap between local, regional, and global models is not clear, the results suggest that ozone damage is dominated by regional impacts.  相似文献   

6.
This paper presents an innovative, quantitative assessment of pollution avoidance attributable to environmental regulation enforced through integrated licensing, using Ireland's pharmaceutical-manufacturing sector as a case study. Emissions data reported by pharmaceutical installations were aggregated into a pollution trend using an Environmental Emissions Index (EEI) based on Lifecycle Assessment methodologies. Complete sectoral emissions data from 2001 to 2007 were extrapolated back to 1995, based on available data. Production volume data were used to derive a sectoral production index, and determine ‘no-improvement’ emission trends, whilst questionnaire responses from 20 industry representatives were used to quantify the contribution of integrated licensing to emission avoidance relative to these trends. Between 2001 and 2007, there was a 40% absolute reduction in direct pollution from 27 core installations, and 45% pollution avoidance relative to hypothetical ‘no-improvement’ pollution. It was estimated that environmental regulation avoided 20% of ‘no-improvement’ pollution, in addition to 25% avoidance under business-as-usual. For specific emissions, avoidance ranged from 14% and 30 kt a− 1 for CO2 to 88% and 598 t a− 1 for SOx. Between 1995 and 2007, there was a 59% absolute reduction in direct pollution, and 76% pollution avoidance. Pollution avoidance was dominated by reductions in emissions of VOCs, SOx and NOx to air, and emissions of heavy metals to water. Pollution avoidance of 35% was attributed to integrated licensing, ranging from between 8% and 2.9 t a− 1 for phosphorus emissions to water to 49% and 3143 t a− 1 for SOx emissions to air. Environmental regulation enforced through integrated licensing has been the major driver of substantial pollution avoidance achieved by Ireland's pharmaceutical sector — through emission limit values associated with Best Available Techniques, emissions monitoring and reporting requirements, and performance targets specified in environmental management plans. This compliant sector offers a positive, but not necessarily typical, case study of IPPC effectiveness.  相似文献   

7.
BackgroundClimate change may affect mortality associated with air pollutants, especially for fine particulate matter (PM2.5) and ozone (O3). Projection studies of such kind involve complicated modelling approaches with uncertainties.ObjectivesWe conducted a systematic review of researches and methods for projecting future PM2.5-/O3-related mortality to identify the uncertainties and optimal approaches for handling uncertainty.MethodsA literature search was conducted in October 2013, using the electronic databases: PubMed, Scopus, ScienceDirect, ProQuest, and Web of Science. The search was limited to peer-reviewed journal articles published in English from January 1980 to September 2013.DiscussionFifteen studies fulfilled the inclusion criteria. Most studies reported that an increase of climate change-induced PM2.5 and O3 may result in an increase in mortality. However, little research has been conducted in developing countries with high emissions and dense populations. Additionally, health effects induced by PM2.5 may dominate compared to those caused by O3, but projection studies of PM2.5-related mortality are fewer than those of O3-related mortality.There is a considerable variation in approaches of scenario-based projection researches, which makes it difficult to compare results. Multiple scenarios, models and downscaling methods have been used to reduce uncertainties. However, few studies have discussed what the main source of uncertainties is and which uncertainty could be most effectively reduced.ConclusionsProjecting air pollution-related mortality requires a systematic consideration of assumptions and uncertainties, which will significantly aid policymakers in efforts to manage potential impacts of PM2.5 and O3 on mortality in the context of climate change.  相似文献   

8.
BackgroundThe concentrations of ozone (O3) in China are increasing, especially in East China, but its future trends and potential health impacts remain to be explored.ObjectivesThe objective was to assess future trends in O3 concentrations and related premature death in East China between 2005 and 2030.MethodsFirst, a global chemical transport model (MIROC-ESM-CHEM) and regional chemical transport modelling system (including the Weather Research and Forecasting model and the Community Multiscale Air Quality model) were combined to estimate daily O3 concentrations in 2005 and 2030 in East China under the “current legislation” (CLE) and “maximum technically feasible reduction” (MFR) scenarios which were applied globally. O3 concentrations were then linked with population projections, mortality projections, and O3-mortality associations to estimate changes in O3-related mortality in East China.ResultsThe annual mean O3 concentration was projected to increase in East China between 2005 and 2030 under the CLE scenario, while decrease under the MFR scenario. Under the CLE scenario, O3-attributable health burden could increase by at least 40,000 premature deaths in East China, without considering the population growth. Under the MFR scenario, the health burden could decrease by up to 260,000 premature deaths as a result of the reduction in O3 concentration with a static population. However, when the population growth was considered, O3-attributable health burden could increase by up to 46,000 premature deaths in East China under the MFR scenario.ConclusionsThe results suggest that the health burden attributable to O3 may increase in East China in 2030.  相似文献   

9.
An investigation of ambient air quality was undertaken at three communities within the Athabasca Oil Sands Region (AOSR) of Alberta, Canada (Fort McKay, Fort McMurray, and Fort Chipewyan). Daily and seasonal patterns and 15-year trends were investigated for several criteria air pollutants over the period of 1998 to 2012. A parametric trend detection method using percentiles from frequency distributions of 1 h concentrations for a pollutant during each year was used. Variables representing 50th, 65th, 80th, 90th, 95th and 98th percentile concentrations each year were identified from frequency distributions and used for trend analysis. Small increasing concentration trends were observed for nitrogen dioxide (< 1 ppb/year) at Fort McKay and Fort McMurray over the period consistent with increasing emissions of oxides of nitrogen (ca. 1000 tons/year) from industrial developments. Emissions from all oil sands facilities appear to be contributing to the trend at Fort McKay, whereas both emissions from within the community (vehicles and commercial) and oil sands facility emissions appear to be contributing to the trend at Fort McMurray. Sulfur dioxide (SO2) emissions from industrial developments in the AOSR were unchanged during the period (101,000 ± 7000 tons/year; mean ± standard deviation) and no meaningful trends were judged to be occurring at all community stations. No meaningful trends occurred for ozone and fine particulate matter (PM2.5) at all community stations and carbon monoxide at one station in Fort McMurray. Air quality in Fort Chipewyan was much better and quite separate in terms of absence of factors influencing criteria air pollutant concentrations at the other community stations.  相似文献   

10.
The purpose of this study is to evaluate the effect of reductions of reactive organic gases (ROG) and NOx emissions on short-term O3 and NO2 concentrations and annual average NO2 concentrations in the California South Coast Air Basin. Short-term air quality predictions were obtained by applying the Systems Applications Airshed Model to summer O3 and autumn NO2 episodes. Effects of emission controls on annual NO2 concentrations were estimated using CDM and a new parcel tracking model NOXTRAK. Results for the summer O3 episode indicate that ROG emission reduction in an effective means for reducing peak O3 concentrations. NOx emission reduction imposed in addition to ROG emission reductions are counterproductive in reducing peak O3 concentrations. The modeling results also suggest that attainment of the 1-h federal O3 standard requires ROG emission reductions on the order of 80% from 1987 levels. Results for the autumn NO2 episode indicate that NOx emission reductions approximating those recommended in a proposed Air Quality Management Plan (about 22%) will result in only small (about 5%) reductions in the peak NO2 concentrations. ROG emission reduction may be more effective than NOx emission reduction in reducing the peak NO2 concentration. For the episode studied, a reduction of 36% in ROG emissions is estimated to result in a reduction in peak NO2 concentrations commensurate with that required to attain the 1-h state NO2 standard. Model calculations also indicate that the federal NO2 standard may not be meet by 1987 at one or two stations, but may blosely approached.  相似文献   

11.
A complete assessment of the health effects of diesel emissions must take into account the possible chemical transformations (and associated biological impacts) of particulate organic matter (POM) due to reactions with the many gaseous copollutants which have now been unambiguously demonstrated to be present in atmospheres burdened by photochemical air pollution. These copollutants include the “trace” species, nitric (HNO3) and nitrous (HONO) acids, the nitrate radical (NO3), formaldehyde (H2CO) and formic acid (HCOOH), as well as the criteria pollutants, ozone (O3) and nitrogen dioxide (NO2). Techniques for establishing the atmospheric concentrations of the trace pollutants (and their spatial and temporal variations) are briefly described, and we present results of investigations into the reactions of polycyclic aromatic hydrocarbons (PAH) coated on filters and exposed to ambient concentrations of O3 and NO2. Environmental health implications of these results are discussed and include the potential for sampling “artifacts” and their possible effects on the correlation (or lack thereof) between ambient PAH levels and urban lung cancer rates, as well as the problems associated with understanding the appropriate POM “dose” to be employed in animal testing and assessments of impacts on human health.  相似文献   

12.
The study was conducted to assess the potential of Norwegian agricultural ecosystems to sequester carbon (C) based on the data from some long-term agronomic and land use experiments. The total emission of CO2 in Norway in 1998 was 41.4 million metric ton (MMT), of which agriculture contributed only 0.157 MMT, or <0.4% of the total emissions. With regards to methane (CH4) and nitrous oxide (N2O) gases, however, agricultural activities contributed 32.5% and 51.3% of their respective emissions in Norway. The soil organic carbon (SOC) losses associated with accelerated soil erosion in Norway are estimated at 0.475 MMTC yr–1. Land use changes and soil/crop management practices with potential for SOC sequestration include conservation tillage methods, judicious use of fertilizers and manures, use of crop residues, diverse crop rotations, and erosion control measures. The potential for SOC sequestration is 0.146 MMTC yr–1 for adopting conservation tillage, 0.011–0.035 MMTC yr–1 for crop residue management, 0.026 MMTC yr–1 for judicious use of mineral fertilizer, 0.016–0.135 MMTC yr–1 for manure application, and 0.036 MMTC yr–1 for adopting crop rotations. The overall potential of these practices for SOC sequestration ranges from 0.591 to 1.022 MMTC yr–1 with an average value of 0.806 MMTC yr–1. Of the total potential, 59% is due to adoption of erosion control measures, 5.8% to restoration of peat lands, 21% to conversion to conservation tillage and residue management, and 14% to adoption of improved cropping systems. Enhancing SOC sequestration and improving soil quality, through adoption of judicious land use and improved system of soil and crop management, are prudent strategies for sustainable management of soil, water and environment resources.Readers should send their comments on this paper to: bhaskarn ath@aol.com within 3 months of publication of this issue.  相似文献   

13.
This paper describes a series of tests carried out with a comprehensive transportation, land use and air quality simulation system, which has been designed for planning application at the metropolitan or regional scale, within the framework of the U.S. Government's Clean Air legislation. The urban location portion of the system was developed at the University of Pennsylvania under the direction of S. H. Putman. The air quality sections incorporate models formulated in earlier studies. The system was tested with data from the San Francisco Bay area, for the period 1975–1980. The test policies included changes in regional transportation costs and population totals; local interventions in the transportation network; and controls on pollutant emissions from mobile and stationary sources. To assess net impacts, the outcomes predicted for each policy were compared with the outcomes predicted in a “benchmark”, or base run of the system. The tests showed that the system is sensitive to a broad range of air quality policies, and that it is capable of predicting important air quality consequences of transportation and land use policies. Some further development will be needed before the system can be used in practical planning situations, but there is little doubt as to the soundness of its central theoretical constructs and logical structure.  相似文献   

14.
Two U.S. long-term air quality indices, the National Air Quality Index, NAQI, and the Extreme Value Index, EVI, are calculated for 27 cities in Canada, for the period 1973 to 1976. The results indicate that air quality varies considerably in space and time and that no clear trends can be discerned. Total suspended particulate matter, ozone, and sulphur dioxide are the air pollutants most commonly found to exceed the air quality standards in the residential, commercial, and industrial areas of the 27 cities studied.  相似文献   

15.
Exposure to surface ozone (O3), which is influenced by emissions of precursor chemical species, meteorology and population distribution, is associated with excess mortality and respiratory morbidity. In this study, the EMEP-WRF atmospheric chemistry transport model was used to simulate surface O3 concentrations at 5 km horizontal resolution over the British Isles for a baseline year of 2003, for three anthropogenic emissions scenarios for 2030, and for a + 5 °C increase in air temperature on the 2003 baseline. Deaths brought forward and hospitalisation burdens for 12 UK regions were calculated from population-weighted daily maximum 8-hour O3. The magnitude of changes in annual mean surface O3 over the UK for + 5 °C temperature (+ 1.0 to + 1.5 ppbv, depending on region) was comparable to those due to inter-annual meteorological variability (− 1.5 to + 1.5 ppbv) but considerably less than changes due to precursor emissions changes by 2030 (− 3.0 to + 3.5 ppbv, depending on scenario and region). Including population changes in 2030, both the ‘current legislation’ and ‘maximum feasible reduction’ scenarios yield greater O3-attributable health burdens than the ‘high’ emission scenario: + 28%, + 22%, and + 16%, respectively, above 2003 baseline deaths brought forward (11,500) and respiratory hospital admissions (30,700), using O3 exposure over the full year and no threshold for health effects. The health burdens are greatest under the ‘current legislation’ scenario because O3 concentrations increase as a result of both increases in background O3 concentration and decreases in UK NOx emissions. For the + 5 °C scenario, and no threshold (and not including population increases), total UK health burden increases by 500 premature deaths (4%) relative to the 2003 baseline. If a 35 ppbv threshold for O3 effects is assumed, health burdens are more sensitive to the current legislation and + 5 °C scenarios, although total health burdens are roughly an order of magnitude lower. In all scenarios, the assumption of a threshold increases the proportion of health burden in the south and east of the UK compared with the no threshold assumption. The study highlights that the total, and geographically-apportioned, O3-attributable health burdens in the UK are highly sensitive to the future trends of hemispheric, regional and local emissions of O3 precursors, and to the assumption of a threshold for O3 effect.  相似文献   

16.
A 566 m3/m (20,000 acfm) permanent installation demonstration system, consisting of the Air Pollution Systems' High Intensity Ionizer and a variable throat venturi scrubber (called the Scrub-E) has been installed on a magnesium recovery furnace. The furnace produces submicron fume particles of MgO, MgCl2, and ZrCl4. The system is designed to demonstrate the effectiveness of the High Intensity Ionizer versus high venturi pressure drop on the furnace emissions. The High Intensity Ionizer array operates stably at field strengths of 10–15 kV/cm and at velocities in excess of 18 m/sec (60 fps) while maintaining high charging efficiencies. The report covers the system design, technology, applications, and project developments. An Environmental Protection Agency proposed charged droplet Scrub-E is also discussed covering the design, technology, and proposed demonstration program.  相似文献   

17.
The effect of ozone in a chemical sludge disintegration process was evaluated. Sludge solution chemical oxygen demand (COD), total suspended solids (TSS) and settling were investigated in single and sequential processes. A significant influence of ozone dose on sludge disintegration was observed: ozone was utilised to degrade the soluble organic matter and to destroy cell surfaces and release the cell liquids. For a single ozonation step, we found an optimum ozone dose in the range of 0.008–0.013 g O3/g TSS to give the best COD and TSS removal efficiency. Disintegrated sludge was treated in a sequential process consisting of consecutive ozonation and bio-aeration (i.e. O3 + biological treatment). The tendency was dependent on accumulated ozone, treatment time and operational conditions. An accumulated ozone dose of 0.055 g O3/g TSS in two separate ozonation processes followed by biological treatments led to COD and TSS removal efficiency of 53 and 46.6%, respectively. The removal efficiency was improved by increasing aerobic treatment time and/or by mixing ozonated sludge with non-ozonated sludge. The settling ability of sludge was found to be fast at very low specific ozone doses. An observed tendency was the effect of ozone on cell disintegration and protein liberation. The use of sequential processes improved the settling tendency of sludge.  相似文献   

18.
Environmental exposure to volatile organic compounds (VOCs) in ambient air is one of a number of concerns that the First Nation Community of Fort McKay, Alberta has related to development of Canada's oil sands. An in-depth investigation of trends in ambient air VOC levels in Fort McKay was undertaken to better understand the role and possible significance of emissions from Alberta's oil sands development. A non-parametric trend detection method was used to investigate trends in emissions and ambient VOC concentrations over a 12-year (2001  2012) period. Relationships between ambient VOC concentrations and production indicators of oil sands operations around Fort McKay were also examined. A weak upward trend (significant at 90% confidence level) was found for ambient concentrations of total VOCs based on sixteen detected species with an annual increase of 0.64 μg/m3 (7.2%) per year (7.7 μg/m3 increase per decade). Indicators of production (i.e., annual bitumen production and mined oil sands quantities) were correlated with ambient total VOC concentrations. Only one of 29 VOC species evaluated (1-butene) showed a statistically significant upward trend (p = 0.05). Observed geometric (arithmetic) mean and maximum ambient concentrations of selected VOCs of public health concern for most recent three years of the study period (2010  2012) were below chronic and acute health risk screening criteria of the U.S. Agency for Toxic Substances and Disease Registry and U.S. Environmental Protection Agency. Thirty-two VOCs are recommended for tracking in future air quality investigations in the community to better understand whether changes are occurring over time in relation to oil sands development activities and to inform policy makers about whether or not these changes warrant additional attention.  相似文献   

19.
Concentrations of airborne radon ranging from 0.05 to 135 pCi/L were found in houses in Maine. Tracketch cups were placed in five positions for 100 houses to determine integrated average radon concentrations over the period October 1980–May 1981. To investigate the association between elevated radon concentrations in well water and the indoor airborne radon concentrations, the radon in the water supplies of these houses was measured by liquid scintillation. Monitors of airborne radon, recording in intervals of 10 min for periods of 5–7 days, were used for dynamic studies in 18 houses, determining the component of airborne radon associated with major water uses, such as showers, laundry, and dishwashing, which liberate radon in bursts. House residents kept logs noting the time of major water uses. For some of the houses, ventilation rates ranging from 0.3 to 2 air changes per hour were determined by analysis of the dynamic data. The component of airborne radon associated with water sources was found to vary inversely with ventilation rate and directly with waterborne radon concentration, with 0.8 ± 0.2 pCi Rn/L air per nCi Rn/L water at a ventilation rate of 1.0 air change per hour. The data are pertinent to a study which has revealed significant correlations between county averages, from the National Cancer Institute, or age-adjusted cancer mortality rates in Maine and average values of radon concentrations in water for the counties.  相似文献   

20.
This study evaluates and compares the trends in CO2 emissions for the manufacturing industries of three countries: two developed countries (Germany and Sweden) that have applied several measures to promote a shift towards a low-carbon economy and one developing country (Colombia) that has shown substantial improvements in the reduction of CO2 emissions. This analysis is conducted using panel data cointegration techniques to infer causality between CO2 emissions, production factors and energy sources. The results indicate a trend of producing more output with less pollution. The trends for these countries’ CO2 emissions depend on investment levels, energy sources and economic factors. Furthermore, the trends in CO2 emissions indicate that there are emission level differences between the two developed countries and the developing country. Moreover, the study confirms that it is possible to achieve economic growth and sustainable development while reducing greenhouse gas emissions, as Germany and Sweden demonstrate. In the case of Colombia, it is important to encourage a reduction in CO2 emissions through policies that combine technical and economic instruments and incentivise the application of new technologies that promote clean and environmentally friendly processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号