首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 125 毫秒
1.
鞠洪海 《环境工程》2020,38(9):113-118
利用序批式(sequencing batch reactor,SBR)生物反应器,采用厌氧-好氧运行方式,以乙酸钠为碳源,在控制进水P/COD<2/100条件下,成功实现了聚糖菌(glycogen accumulating organisms,GAOs)富集。缺氧初始阶段ρ(NOx--N)为30.0 mg/L,经厌氧-缺氧驯化后,反硝化聚糖菌(denitrifuing GAOs,DGAOs)可利用聚-β-羟基脂肪酸酯(poly-β-hydroxyalkanoate,PHA)为内碳源进行反硝化,且分解利用的PHA中80%以上为聚-β-羟基丁酸酯(poly-β-hydroxybutyrate,PHB)。高浓度NO2-抑制DGAOs活性,厌氧PHA合成降低,且缺氧段PHA分解产生的能量较多地用于储存糖原(glycogen,Gly)。NO3-和NO2-还原过程中,PHA降解速率分别为19.28,10.02 mg/(g·h),内源反硝化速率分别为3.32,2.29 mg/(g·h),TN去除率达95%以上。随NO2-/NOx-增加,N2O平均产率由29.1%增至59.0%。高浓度NO2-对氧化亚氮还原酶(Nos)活性抑制作用以及Nos和亚硝态氮还原酶(Nir)之间的电子竞争过程,是导致NO2-内源反硝化过程中N2O大量释放的主要原因。  相似文献   

2.
SBR工艺污水生物脱氮过程中N2O的释放特征   总被引:2,自引:2,他引:0       下载免费PDF全文
N2O是一种可以导致严重全球变暖的主要温室气体,污水的生物除氮处理过程被认为是N2O释放的重要来源。探究了缺氧-好氧(A/O)模式下SBR系统中N2O的释放特征和主要来源。结果表明:N2O的释放主要发生在SBR系统的好氧阶段,其最大释放速率达到2.02 μg/(min·g),累积释放量为8.2 mg,好氧运行120 min时,测得NO2--N的累积浓度达到了最高值7.5 mg/L,NO2--N的积累和N2O的释放呈正相关性。细菌群落分析发现,A/O-SBR系统好氧阶段的一些优势菌被鉴定为黄杆菌(Flavobacteria),它们中的部分种群具有好氧反硝化的作用,然而NO2--N累积会抑制该类细菌的亚硝酸还原酶(Nos)活性,进而使N2O进一步还原为N2的途径受阻而释放N2O。因此,在污水生物处理过程中,应减少或避免NO2--N的积累。  相似文献   

3.
为了探究游离亚硝酸(FNA)旁侧处理絮体污泥来恢复城市污水短程硝化/厌氧氨氧化一体化(PN/A)工艺的可行性,考察了不同浓度FNA对氨氧化菌(AOB)和亚硝酸盐氧化菌(NOB)活性的影响,探究了SBR反应器两次采用FNA处理絮体污泥的运行效果.结果表明:采用0.45mgHNO2-N/L的FNA处理能够抑制NOB活性,亚硝积累率(NAR)达88.8%,但投加后第8d开始NOB活性逐渐恢复.采用1.35mgHNO2-N/L的FNA处理能够显著抑制NOB活性,NAR达89.1%,与此同时AOB活性也受到抑制,氨氮转化率降低为6.8%.采用增大好/缺氧时间比即t/t(由0.4~2.7)以及提高DO(由0.3~1.5mg/L)的方法能够恢复AOB活性,氨氮转化率达77.8%,在150d内NOB活性未恢复,NAR达98.1%.随着短程硝化的稳定实现,系统脱氮性能逐渐恢复,平均出水总无机氮(TIN)为8.2mg/L,平均TIN去除率为84.1%.因此,通过先用较高FNA处理絮体污泥同时抑制AOB与NOB,再采用增大t/t并提高DO来恢复AOB活性的策略,能够实现PN/A工艺短程硝化的恢复.  相似文献   

4.
为探究游离亚硝酸(FNA)侧流处理絮体污泥抑制亚硝酸盐氧化菌(NOB)活性启动全程自养脱氮(CANON)工艺的可行性,考察了FNA处理对氨氧化菌(AOB)和NOB活性的影响,探究在颗粒-絮体污泥SBR反应器中水力筛分的絮状污泥经侧流FNA处理的运行效果. 结果表明:0.6mg/L FNA处理后的R1经过30d运行,NH4+-N去除率恢复到处理前的水平,并且短程硝化稳定,系统平均出水总氮为13.84mg/L,且△NO3--N/△NH4+-N比值接近CANON反应方程式理论比值0.11,成功启动CANON工艺. 而0mg/L FNA处理的R2由于NOB大量增殖导致启动失败. 批次试验结果证实,经过0.6mg/L FNA处理后,6h内NOB活性仅为对照组(FNA=0mg/L)的16.39%,并且在随后的运行中并未发现NOB活性的恢复,NOB得到了有效的抑制. 但与此同时,AOB的活性也受到了影响,反应器中NH4+-N去除率仅为处理前的69.69%,AOB活性6h仅恢复68.06%.  相似文献   

5.
有效抑制或淘洗亚硝酸盐氧化菌(NOB)是短程硝化-厌氧氨氧化(PN/A)工艺应用于城市污水处理的关键.以因NOB大量增长受到破坏的城市污水PN/A系统为对象(硝酸盐(NO3--N)生成比例为0.90),考察了羟胺(NH2OH)投加浓度和投加方式对其恢复的效果.结果显示,当序批式反应器中初始NH2OH投加浓度为10mg/L时,每天投加1次,连续投加20d后,NO3--N生成量占NH4+-N消耗量的比例由0.90逐步降低至0.11.表明NH2OH(10mg/L)可原位恢复PN/A工艺.NH2OH停止投加59d后,出水NO3--N生成比例再次小幅度上升至0.15,此时继续投加5d NH2OH(10mg/L),PN/A工艺运行良好,因此间歇投加NH2OH可以维持PN/A工艺稳定运行.实时定量PCR结果表明,在投加NH2OH(10mg/L)后,NOB的丰度不断下降,从(4.52±0.44)×1010copies/g VSS(第6d)下降到(2.30±0.80)×109copies/g VSS(第157d),说明NH2OH的投加有利于抑制和淘洗NOB.  相似文献   

6.
为实现常温下高氨氮废水中氮的高效去除,选取8:1、12:1和15:1等3个气水比(GWR)条件,考察常温下曝气生物滤池(BAF)短程硝化-厌氧氨氧化(ANAMMOX)一体化自养脱氮工艺稳定运行的性能.研究结果表明:进水氨氮(NH4+-N)浓度为400mg/L、回流比为1:1的条件下,GWR为15:1脱氮效果最好,氨氮去除率(ARE)达90%以上,总氮(TN)去除负荷为1.1kgN/(m3·d),去除率达83%.GWR为15:1时,溶解氧(DO)为2.41~4.22mg/L,进水NH4+-N转化为亚硝(NO2--N)量增加,ANAMMOX活性增强.对生物膜进行功能菌种实时荧光定量PCR(qPCR)分析得出,GWR为15:1时,ANAMMOX和氨氧化菌(AOB)两者丰度均最高,高达1012 copies/g dry sludge以上,一体化脱氮效果最好.同时,研究表明提高GWR后ANAMMOX反应增强,而过程中无N2O生成,GWR为15:1时,N2O总释放量最小,释放因子为0.0012.  相似文献   

7.
为探明在土壤环境有利于氨氧化作用发生的条件下,稻壳生物炭对酸性农田土壤N2O排放的影响,将生物炭分别按质量比0%(对照)、2%、5%和10%与土壤充分混匀,开展为期17d的室内静态土壤培养实验,研究土壤N2O排放速率的日变化以及整个培养期间的N2O累积排放量.同时,测定了培养终态土壤样品的pH值、NH4+-N、NO3--N、NO2--N和溶解性有机碳(DOC)含量,分析稻壳生物炭对土壤N2O排放影响的机理.结果表明,不同稻壳生物炭添加量均显著抑制了酸性农田土壤的N2O排放(P<0.001),且以5%和10%处理的抑制作用最明显;与对照处理相比,2%、5%和10%处理的N2O累积排放量分别减少了87.68%、94.59%和96.90%.培养前后土壤pH值、NH4+-N和NO3--N含量的变化表明,稻壳生物炭显著促进了土壤的硝化作用,尤其是5%和10%处理.线性回归分析表明,土壤N2O排放速率与NO2--N含量显著正相关(P<0.01),且NO2--N含量对N2O排放速率的解释程度为45%.由于稻壳生物炭促进了土壤的硝化作用,使NO2-更易转化为NO3-,减少了NO2-积累,进而减少了通过硝化菌反硝化作用途径产生的N2O.培养结束时,5%和10%处理的DOC含量显著高于对照处理,但培养过程中,稻壳生物炭并未显著促进土壤有机碳矿化.  相似文献   

8.
采用连续流分段进水短程反硝化-厌氧氨氧化(partial denitrification-anaerobic ammonium oxidation,PD-Anammox)耦合反硝化工艺处理低C/N生活污水,研究了污染物去除、典型周期COD及氮素沿程变化特征、短程反硝化-厌氧氨氧化和反硝化对TN去除贡献。结果表明:在平均进水ρ(COD)、ρ(NH4+-N)、ρ(TN)为193.1,58.6,60.3 mg/L的条件下,系统出水平均ρ(COD)、ρ(NH4+-N)、ρ(TN)分别为46.3,1.5,13.4 mg/L,低于GB 18918—2002《城镇污水处理厂污染物排放标准》一级A标准。采用NO3--N预缺氧和进水点后置,可实现缺氧区NO3--N→NO2--N转化,同时完成厌氧氨氧化过程;缺氧区设置厌氧氨氧化悬浮填料,可提高系统TN去除率。通过缺氧区物料衡算,缺氧1区厌氧氨氧化对TN去除贡献率(ΔPD-Anammox/ΔTN)均值为54.37%,缺氧2区的ΔPD-Anammox/ΔTN均值为64.17%。  相似文献   

9.
为了探究在再生水回补城市河流的条件下河流N2O的微生物产生过程及其空间变化特征,以深圳市西乡河为研究对象,分析了河水中c(溶解性N2O)、c(NH4+-N)、c(NO3--N)、δ15Nbulk-N2O、δ18O-N2O、同位素异位体位嗜值(site preference,SP)及其他环境因子,并基于端元混合模型和同位素分馏模型定量计算硝化和反硝化作用对河水中N2O贡献百分比.结果表明:①随着流速降低,西乡河河水从上游的好氧环境逐渐发育成中下游的厌氧环境.②再生水进入西乡河后河水c(溶解性N2O)从1.36 μmol/L沿程降至0.19 μmol/L;相关性分析表明,影响c(溶解性N2O)的主要因素为ρ(DO)(R2=0.800,P < 0.01)和c(CH4)(R2=-0.736,P < 0.01).③硝化和反硝化作用对河水中N2O贡献率分别为14.36%~80.53%和19.47%~85.64%;N2O的来源在好氧河段中以硝化作用为主,在厌氧河段则以反硝化作用为主;N2O还原成N2的比例与ρ(DO)具有显著负相关关系(R2=-0.782,P < 0.01).研究显示,再生水回补城市河流引入了较高质量浓度的N2O和NO3--N,而河道的厌氧环境促进河水中N2O还原成N2,下游河流成为N2O的汇.   相似文献   

10.
为探究锌(Zn)污染对农田土壤氧化亚氮(N2O)排放的影响,分别以猪粪和尿素为肥源进行室内培养实验,对比分析不同含量Zn (0、50、500、1500和5000mg/kg)对N2O排放的影响及其机制,并在培养第52d向所有处理再次添加尿素以探究其长期效应,共培养80d.结果表明:第1次添加肥料阶段,在尿素为肥源处理中不同含量Zn均表现为显著抑制作用(P<0.05),而猪粪为肥源处理中除50mg/kg无显著影响外(P>0.05),其它含量处理均显著促进N2O排放(P<0.05).第2次添加肥料阶段,不同肥源条件下Zn的作用规律一致,即50mg/kg无显著影响(P>0.05),500和1500mg/kg显著提高N2O排放而5000mg/kg处理与之相反(P<0.05).此阶段500、1500和5000mg/kg处理以猪粪和尿素为肥源时其N2O累积排放量与同肥源对照的比值分别为3.49、3.13、0.01和2.53、2.74、0.04,可见同等含量Zn在猪粪为肥源条件下作用更强,500和1500mg/kg Zn的促进机制为Zn提高了土壤中NH4+-N、NO3--N含量以及控制反硝化过程N2O产生和还原功能基因相对丰度的比值(nirS/nosZ),而5000mg/kg Zn抑制了土壤中NH4+-N进一步转化为NO3--N,从而降低了N2O排放.  相似文献   

11.
游离氨和游离亚硝酸对亚硝态氮氧化菌活性的影响   总被引:7,自引:0,他引:7       下载免费PDF全文
高浓度游离氨(FA)或游离亚硝酸(FNA)条件下硝化过程常出现亚硝态氮积累,FA、FNA对亚硝态氮氧化菌(NOB)的影响并不清楚.首先用高浓度亚硝态氮污水富集培养NOB,对富含NOB的污泥进行荧光原位杂交技术(FISH)分析表明,Nitrobacter占细菌总数比例为(71±5)%.用此污泥考察不同FA、FNA浓度对NOB活性的影响.结果表明,NOB的活性随着FA浓度的增大逐渐减小,当FA浓度在10mgNH3-N/L左右时,NOB的活性仅为FA为0时的50%.低浓度的FNA(FNA < 0.03mg HNO2-N/L)对NOB活性具有促进作用;当FNA3 0.2mg/L时,NOB的活性被完全抑制.采用Aiba模型计算得到FNA对NOB的抑制常数KI,FNA,NOB为0.0968mg/L. FNA在0.0968mg/L左右时NOB活性仅为FNA为0.003mg/L时的50%.  相似文献   

12.
以处理实际低C/N生活污水的前置A2NSBR系统为研究对象,考察系统内生物膜的硝化特性和活性污泥的反硝化除磷特性.试验研究了有机物和NO2--N浓度对生物膜硝化性能的影响,以及不同电子受体浓度对反硝化吸磷速率的影响.结果测得硝化速率为11.3mgNH4+-N/(L·h),在填充率40%的条件下容积负荷为0.27kgNH4+-N/(m3·d),有机物的存在会对硝化有抑制,但是系统表现出了良好的抗有机负荷冲击能力,硝化速率为9.72mg NH4+-N/(L·h).NO2--N处理对AOB活性几乎无影响,对NOB活性抑制作用明显,当NO2--N浓度为400mg/L时,NOB活性仅为1.63%,几乎接近完全被抑制.根据本次不同电子受体条件下除磷批次试验的结果,好氧吸磷速率为17.62mg P/(g VSS·h),以NO3--N为电子受体的缺氧吸磷速率是12.94mg P/(g VSS·h),从而可知缺氧聚磷菌占总聚磷菌的比例大约是73.4%,其中在NO2--N浓度为30mg/L出现吸磷抑制,当NO2--N和NO3--N共存时,NO2--N在初始浓度为15mg/L便出现吸磷抑制.  相似文献   

13.
试验使用SBR反应器,采用乙酸钠、乙醇、葡萄糖和蔗糖4种常用的外加有机碳源,对反硝化反应中N2O释放过程进行研究。结果表明:4种碳源条件下,N2O积累量均呈先升高后降低最后保持稳定的趋势。N2O最大积累量分别为1.59,1.25,5.43,0.66 mg/L,最大转化率分别为1.61%、1.36%、5.44%和0.67%;最终积累量分别为1.02,0.67,3.12,0.49 mg/L,最终转化率分别为1.04%、0.73%、3.13%和0.50%。N2O释放量及转化率顺序均为葡萄糖>乙酸钠>乙醇>蔗糖。游离亚硝酸抑制、不同反硝化酶的电子竞争和微生物群落结构差异均是影响N2O释放的因素。  相似文献   

14.
模拟缺氧/好氧(A/O)模式运行的序批式活性污泥法(SBR)处理系统,探究利用羟胺实现城市污水短程硝化的投加点优化.批次实验发现,溶解氧存在会降低羟胺对亚硝酸盐氧化菌(NOB)抑制效果的(20±0.5)%.此外,相较于未经缺氧处理和延长缺氧时间(>15min)处理,缺氧时间为1~5min可提高NOB活性抑制率13%~25%.长期试验表明,在缺氧段末投加羟胺的短程硝化系统维持NO2--N积累率92%以上,而在好氧阶段投加羟胺的系统NO2--N积累率逐渐降低.qPCR分析证明,羟胺投加点为缺氧段末可在充分抑制NOB基础上,降低对氨氧化菌(AOB)的抑制作用,从而有利于AOB成为优势菌群结构.本研究为优化羟胺投加点和稳定维持短程硝化提供理论基础.  相似文献   

15.
实验采用生物膜-活性污泥复合工艺(IFAS),探究了不同进水NH4+-N负荷以及游离氨(FA)浓度下的好氧氨氧化细菌(AOB)和亚硝酸盐氧化细菌(NOB)的动力学特性,考察了不同微生物聚集体(悬浮污泥和载体生物膜)对于NH4+-N去除的贡献,同时对其中的生物吸附和生物降解进行定量分析.利用荧光原位杂交(FISH)技术观察了总菌、AOB和NOB的数量以及空间结构的变化.结果表明,随着进水NH4+-N浓度逐渐升高,出水NO3--N浓度逐渐下降,NO2--N得到大量积累,当进水NH4+-N浓度为480mg/L时,NH4+-N去除率和亚硝酸盐氮积累率(NAR)分别稳定在95%和80%以上,而FA由(2.77±0.07)mg/L增加至(16.35±0.3)mg/L时,NAR由9.42%增加至83.31%,实现了对NOB的抑制.在NH4+-N的去除过程中生物吸附和微生物降解分别占NH4+-N去除量的3.4%和88.1%,悬浮污泥和生物膜中AOB占比分别由27.4%和10.3%增加至41.3%和18.1%,表明悬浮污泥比生物膜更有利实现对于AOB的富集.  相似文献   

16.
在SBR反应器增加游离亚硝酸(FNA)预处理单元,投加浓度为1.2mgHNO2-N/L的FNA进行缺氧搅拌4.5h,连续处理3d,考察短程硝化污泥中FNA对氨氧化菌(AOB),丝状菌和微生物菌群结构的影响.研究表明,FNA对AOB有短时抑制作用,并能够抑制优势丝状菌Candidatus_Microthrix(微丝菌属)和Cytophagaceae(噬纤维菌)的增殖,分别由5.1%和1.1%下降到0.78%和几乎不可见.SVI从281mL/g降低到100mL/g左右.NAR能够维持在90%左右,短程硝化不受到破坏.高通量结果显示,FNA处理后微生物菌群结构多样性与丰度出现下降,但Thauera(陶厄氏菌属)和Ottowia出现了增殖,分别增加到5.58%和7.82%,同步硝化反硝化(SND)作用明显,这使得即便只有短程硝化,总氮去除率依然能达到60%以上.  相似文献   

17.
为探究FA(游离氨)与FNA(游离亚硝酸)对短程硝化及微生物群落结构的影响,采用中试MBR(膜生物反应器),以高浓度NH4+-N废水为处理对象,考察MBR对NH4+-N的去除效果,通过计算FA与FNA浓度,分析其对短程硝化的影响,利用16S rRNA基因高通量测序技术分析微生物群落结构并对功能基因进行预测. 结果表明:①通过将NH4+-N容积负荷逐渐从0.11 kg/(m3·d)提升至0.75 kg/(m3·d),MBR在第18天实现了全程硝化向短程硝化的转变. ②MBR稳定运行过程中,FA和FNA浓度分别维持在1.03~3.52和0.033~0.118 mg/L,NAR(亚硝酸盐积累率)为65.70%~80.24%,实现了NO2--N的稳定积累,此时NH4+-N去除率为87.92%~97.18%. ③进水由模拟废水向实际工业废水的转变没有对NAR产生较大影响,表明中试MBR具有较强的适应能力. ④16S rRNA基因高通量测序分析结果表明,维持MBR内FA和FNA浓度能够富集AOB(氨氧化菌)Nitrosomonas(7.99%),抑制NOB(亚硝酸盐氧化菌)活性,进而实现短程硝化;MBR运行第50天时,Amo(氨单加氧酶)功能基因相对丰度为第0天时的371倍,进一步验证了短程硝化过程的实现. 研究显示,FA与FNA对NOB的抑制在维持中试MBR短程硝化中起重要作用,微生物群落结构的变化与MBR内FA和FNA浓度有关.   相似文献   

18.
群体感应信号分子对污水处理过程中微生物行为和功能微生物含量具有重要影响,但目前其对生物脱氮过程中氧化亚氮(N2O)产生的影响尚不明确.为探明群体感应与N2O产生的关联机制,选取两种N-酰化高丝氨酸内酯类化合物(AHLs)信号分子C6-HSL(N-己酰L-高丝氨酸内酯)和C8-HSL(N-辛酰-L-高丝氨酸内酯),在AO工艺中研究其外源性投加对污水处理效果、N2O产生特征及微生物群落结构的影响.结果表明:①信号分子C6-HSL和C8-HSL能够显著提高处理系统的生物脱氮效率,2个反应器的硝化速率显著升高,NH4+-N去除率分别提高了1.7%和2.2%,TN去除率分别提高了7.6%和5.4%,但CODCr去除率没有发生明显变化.②信号分子对N2O产生量影响显著,投加C6-HSL和C8-HSL的反应器N2O产生总量分别增加了39.0%和11.0%,N2O增量的主要产生途径为好氧处理阶段的硝化细菌反硝化反应.③微生物分析结果显示,污泥中的微生物群落结构,以及与生物脱氮相关的功能微生物含量发生显著变化,投加C6-HSL和C8-HSL的反应器氨氧化细菌(AOB)相对丰度由0.3%分别提至0.5%和0.4%,硝化细菌(NOB)相对丰度由0.03%分别增至0.07%和0.08%,反硝化细菌(DNB)的相对丰度由6.3%分别升至8.5%和7.5%.研究显示,AHLs类外源性信号分子能够显著提高污水生物脱氮过程中关键功能微生物AOB、NOB和DNB的相对丰度,进而提升污水处理效果,但同时增加系统N2O释放量.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号