首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
运用连续式生物吸收处理工艺,以废糖蜜发酵液作为碳源进行了微生物法去除SO2气体的研究,在简单粗放的实验条件下,研究了脱硫脱硫弧菌对较大气量SO2气体的去除效果,并对产物H2S在第二级生物反应器中的去除率进行了测定。实验结果表明,随着进气量由0.18 m3/h增大至5 m3/h,脱硫率会降低,但是随之提高搅拌速度和补料速度后,脱硫率又恢复到较高水平,当搅拌速度为590 r/min时,5 L生物反应液可以处理5 m3/h的SO2气体,1#反应器SO2去除率和2#反应器H2S去除率分别达到92%和98%以上。在气量增至5 m3/h时,1#和2#反应器补料流速分别为175 mL/h和200 mL/h时,没有亚硫酸盐和硫化物的积累,pH值和菌体浓度稳定,系统运行良好。  相似文献   

2.
A survey of monthly average concentrations of sulfur dioxide (SO2) and hydrogen sulfide (H2S) at rural locations in western Canada (provinces of Alberta, British Columbia, and Saskatchewan) was conducted in 2001-2002, as part of an epidemiological study of the effects of oil and gas industry emissions on the health of cattle. Repeated measurements were obtained at some months and locations. We aimed to develop statistical models of the effect of oil and gas infrastructure on air concentrations. The regulatory authorities supplied the information on location of the different oil and gas facilities during the study period and, for Alberta, provided data on H2S content of wells and flaring volumes. Linear mixed effects models were used to relate observed concentrations to proximity and type of oil and gas infrastructure. Low concentrations were recorded; the monthly geometric mean was 0.1-0.2 ppb for H2S, and 0.3-1.3 ppb for SO2. Substantial variability between repeated measurements was observed. The precision of the measurement method was 0.005 ppb for both contaminants. There were seasonal trends in the concentrations, but the spatial variability was greater. This was explained, in part, by proximity to oil/gas/bitumen wells and (for SO2) gas plants. Wells within 2 km of monitoring stations had the greatest impact on measured concentrations. For H2S, 8% of between-location variability was explained by proximity to industrial sources of emissions; for SO2 this proportion was 18%. In Alberta, proximity to sour gas wells and flares was associated with elevated H2S concentrations; however, the estimate of the effect of sour gas wells in the immediate vicinity of monitoring stations was unstable. Our study was unable to control for all possible sources of the contaminants. However, the results suggest that oil and gas extraction activities contribute to air pollution in rural areas of western Canada.  相似文献   

3.
采用菌剂挂膜,活性污泥挂膜和自然挂膜3种不同方式形成生物滴滤塔,考察挂膜方式对生物滴滤塔去除H2s恶臭气体的影响。结果表明,当进气H2S浓度为5mg/m3时,菌剂挂膜、活性污泥挂膜、自然挂膜形成的生物滴滤塔出气H2s浓度分别为15.7~17.4、11.6~14.8和15.0~15.9μg/m3;塔内压降分别为3—4mm水柱、6mm水柱和4—5mm水柱;喷淋后滤出液中硫酸根的浓度分别为14、22和17mg/L,硫的转化率分别为45%、60%和50%。当进气H2S浓度增大至7mg/m3时,3个塔经过7d的调整后,均能达到稳定状态,稳定后3个塔中出气H2s浓度和压降基本没变,喷淋后滤出液中硫酸根浓度依次增大至25、31和30mg/L左右。采用活性污泥挂膜形成的生物滴滤塔处理H2s的能力比菌剂挂膜和自然挂膜的高。  相似文献   

4.
采用菌剂挂膜,活性污泥挂膜和自然挂膜3种不同方式形成生物滴滤塔,考察挂膜方式对生物滴滤塔去除H2S恶臭气体的影响。结果表明,当进气H2S浓度为5 mg/m3时,菌剂挂膜、活性污泥挂膜、自然挂膜形成的生物滴滤塔出气H2S浓度分别为15.7~17.4、11.6~14.8和15.0~15.9 μg/m3;塔内压降分别为3~4 mm水柱、6 mm水柱和4~5 mm水柱;喷淋后滤出液中硫酸根的浓度分别为14、22和17 mg/L,硫的转化率分别为45%、60%和50%。当进气H2S浓度增大至7 mg/m3时,3个塔经过7 d的调整后,均能达到稳定状态,稳定后3个塔中出气H2S浓度和压降基本没变,喷淋后滤出液中硫酸根浓度依次增大至25、31和30 mg/L左右。采用活性污泥挂膜形成的生物滴滤塔处理H2S的能力比菌剂挂膜和自然挂膜的高。  相似文献   

5.
生物脱硫法作为一种高效、高实用性的除硫新技术而受到越来越多的关注。以活性炭纤维为微生物载体,通过活性污泥上清液挂膜驯化,考察硫化氢进气量、喷淋量、pH值和硫酸根离子浓度等条件对脱硫效率的影响。研究结果表明,在室温下,硫化氢负荷为90 g/(m3.h),进气浓度控制在3 g/m3,进气量为60 L/h,喷淋量为250~650 L/(m3.d),pH为2~5的条件下,生物活性炭纤维对硫化氢的去除率可保持在98%以上。  相似文献   

6.
朱彧  吴昊  徐期勇 《环境工程学报》2015,9(6):2947-2954
生活垃圾焚烧飞灰由于含有铅镉等重金属,是一种危险废物,若处理不当,会造成重金属迁移和污染地下水等环境生态问题.近年来,垃圾焚烧飞灰的污染控制及资源化利用得到国内人广泛的关注.以垃圾焚烧飞灰为吸附材料,对比研究了2种不同性质的垃圾焚烧飞灰、热电厂粉煤灰以及砂土在相同条件下对硫化氢(H2S)的吸附性能.结果表明,垃圾焚烧飞灰的H2S吸附能力优于其他吸附材料.通过分析吸附前后垃圾焚烧飞灰的浸出液毒性,发现吸附前Cd、Pb 2种金属离子浓度超标,H2S吸附后的飞灰浸出液中金属离子浓度均有一定程度的降低.  相似文献   

7.
Chen CL  Wang CH  Weng HS 《Chemosphere》2004,56(5):425-431
This work is for the purpose to find a high performance catalyst for the catalytic reduction of SO2 with H2 as a reducing agent. NiO/gamma-Al2O3 catalyst was found to be the most active catalyst among the seven gamma-Al2O3-supported metal-oxide catalysts tested. With NiO as the active species, of the supports tested, gamma-Al2O3 was the most suitable one and the optimal Ni content was 16 wt%. Using this NiO/gamma-Al2O3 catalyst, we found that the optimal feed ratio of H2/SO2 is 2:1 and the catalyst presulfided with H2 + H2S exhibits a higher performance than that pretreated with H2 or He. XRD patterns reveal that the nickel oxide experienced a transformation to Ni3S2 and NiS, and then to NiS2, the most active nickel sulfide, during the reaction process. The reason for the highest catalyst activity of 16 wt% Ni was attributed to the largest amount of NiS2. Water vapor in the feed gas reactant caused inhibition of catalyst activity, whereas H2S promoted the reduction of SO2. These phenomena were rationalized with the aid of Claus reaction.  相似文献   

8.
9.
10.
以市政污泥干化尾气中的主要含硫物质二氧化硫(SO2)为处理对象,从市政污泥中筛选出高效脱硫菌——嗜酸性氧化亚铁硫杆菌(Acidithiobacillus ferrooxidans,A.f),搭建了实验室规模的生物滴滤塔,考察了进气质量浓度、气体停留时间、营养液喷淋密度和营养液中Fe2+浓度对生物滴滤塔脱除SO2的影响....  相似文献   

11.
超重力-磷酸钠法脱除低浓度SO2   总被引:2,自引:0,他引:2  
为开发脱硫率高、成本低、可回收SO2的脱硫技术,以旋转填料床为吸收设备,磷酸钠溶液为吸收剂,系统开展了液气比L/G、转速N、气体中SO2浓度CSO2,in吸收剂磷酸浓度CL和初始pH等工艺参数和溶液再生循环次数对脱硫率叼影响的实验研究。结果表明,叩随L/G、N、CL和初始pH的增加而增大,且它们的值越低时,叩增加越明显;受G和CSO2,in影响较小。在适宜操作条件下,脱硫率达99%以上,出口SO2浓度低于100mg/m^3。磷酸钠溶液可再生循环使用,脱硫率稳定在99%以上。表明超重力-磷酸钠法脱硫技术在小的液气比下即可达到高的脱硫率,吸收剂循环使用,可实现低成本并达标治理SO2废气,且适用范围宽,具有良好的工业应用前景。  相似文献   

12.
为开发脱硫率高、成本低、可回收SO2的脱硫技术,以旋转填料床为吸收设备,磷酸钠溶液为吸收剂,系统开展了液气比L/G、转速N、气体中SO2浓度CSO2,in、吸收剂磷酸浓度CL和初始pH等工艺参数和溶液再生循环次数对脱硫率η影响的实验研究。结果表明,ηL/GNCL和初始pH的增加而增大,且它们的值越低时,η增加越明显;受GCSO2,in影响较小。在适宜操作条件下,脱硫率达99%以上,出口SO2浓度低于100 mg/m3。磷酸钠溶液可再生循环使用,脱硫率稳定在99%以上。表明超重力-磷酸钠法脱硫技术在小的液气比下即可达到高的脱硫率,吸收剂循环使用,可实现低成本并达标治理SO2废气,且适用范围宽,具有良好的工业应用前景。  相似文献   

13.
Based on laboratory studies, recovery efficiencies of sulfur dioxide (SO2) were determined for nylon filters. The nylon filters used in these experiments were found to retain SO2. A relatively uniform amount (1.7%) was recoverable from each nylon filter, independent of relative humidity. An appreciable portion of SO2 was unrecoverable, and this increased from 5 to 16% as the RH increased from 28 to 49%. This unrecoverable SO2 may account for previous reports of a low bias for SO2 determinations employing filter packs using nylon filters. Additional characterization of nylon filters is recommended prior to their future deployment as an integrative sampling medium for ambient air.  相似文献   

14.
Coal bottom ashes produced from three thermal power plants were used in column and batch experiments to investigate the adsorption capacity of the coal ash. Hydrogen sulfide and leachates collected from three sanitary landfill sites were used as adsorbate gas and solutions, respectively. Experimental results showed that coal bottom ash could remove H2S from waste gas or reduce the concentrations of various pollutants in the leachate. Each gram of bottom ash could remove up to 10.5 mg of H2S. In treating the landfill leachate, increasing ash dosage increased the removal efficiency but decreased the adsorption amount per unit mass of ash. For these tested ashes, the removal efficiencies of chemical oxygen demand (COD), NH3-N, total Kjeldhal nitrogen (TKN), P, Fe3+, Mn2+, and Zn2+ were 36.4-50, 24.2-39.4, 27.0-31.1, 82.2-92.9, 93.8-96.5, 93.7-95.4, and 80.5-82.2%, respectively; the highest adsorption capacities for those parameters were 3.5-5.6, 0.22-0.63, 0.36-0.45, 0.027-0.034, 0.050-0.053, 0.029-0.032, and 0.006 mg/g of bottom ash, respectively. The adsorption of pollutants in the leachate conformed to Freundlich's adsorption model.  相似文献   

15.
Activated carbons were produced from waste tires using a chemical activation method. The carbon production process consisted of potassium hydroxide (KOH) impregnation followed by pyrolysis in N2 at 600-900 degrees C for 0-2 hr. The activation method can produce carbons with a surface area (SA) and total pore volume as high as 470 m2/g and 0.57 cm3/g, respectively. The influence of different parameters during chemical activation, such as pyrolysis temperature, holding time, and KOH/tire ratio, on the carbon yield and the surface characteristics was explored, and the optimum preparation conditions were recommended. The pore volume of the resulting carbons generally increases with the extent of carbon gasified by KOH and its derivatives, whereas the SA increases with degree of gasification to reach a maximum value, and then decreases upon further gasification.  相似文献   

16.
采用鼓泡法研究了海水及浓海水对二氧化硫的吸收效果,并考察了吸收液温度、气体流量、盐度及碱度等因素的影响.结果表明,相同条件下,浓海水对二氧化硫的吸收能力较海水明显提高,且温度越高浓海水优势越明显,气体流量为200 mL/min,二氧化硫浓度为3 140 mg/m3,25℃时,浓海水的穿透时间较原海水延长20 min,60℃时则延长30 min.相同碱度条件下,盐度的增加对海水吸收二氧化硫无明显影响;而在相同盐度条件下,碱度的增加可显著提高海水吸收二氧化硫的能力.  相似文献   

17.
Han GB  Park NK  Yoon SH  Lee TJ 《Chemosphere》2008,72(11):1744-1750
SO(2) reduction by CO over SnO(2) catalyst was studied in this work. The parameters were the reaction temperature, space velocity (GHSV) and [CO]/[SO(2)] molar ratio. The optimal temperature, GHSV and [CO]/[SO(2)] molar ratio were 550 degrees C, 8000 h(-1) and 2.0, respectively. Under these conditions, the SO(2) conversion and sulfur selectivity were about 78% and 68%, respectively. The following reaction pathway involving two mechanisms was proposed in SO(2) reduction by CO over SnO(2) catalyst: in the first step involving Redox mechanism, the elemental sulfur was produced by the mobility of the lattice oxygen between SO(2) and SnO(2) surface. In the second step, COS was formed by the side reaction between elemental sulfur and CO or metal sulfide and CO. In the third step involving COS intermediate mechanism, the abundant elemental sulfur was produced by the SO(2) reduction by COS which was produced in the second step and was more effective reducing agent than CO.  相似文献   

18.
采用酸性洗涤塔、生物滤塔和生物曝气池的组合工艺处理NH3、H2S恶臭混合气体,研究表明,该组合工艺对NH3和H2S有很好的去除效果,在进气流量为35 L/min,喷淋量45 L/h时,NH3进气浓度50.15~525.4 mg/m3,H2S进气浓度10.23~110.36 mg/m3时,NH3单一进气去除率稳定在99%以上,H2S单一进气去除率90%以上。混合进气后,NH3去除率几乎为100%,H2S的去除率提高至98%以上。在一定的浓度范围内,NH3和H2S之间的相互作用对两者的去除效果没有明显的影响,而且起到了相互促进降解的作用。同时,进气流量和填料层高度都会影响NH3、H2S的去除率。系统对进气容积负荷变化的缓冲能力强,在偶尔超负荷条件下运行并不能使系统崩溃,并且微生物对高负荷逐渐表现出适应性。大部分溶于水的氨由生物曝气池去除,去除率达到96.9%。  相似文献   

19.
为了探讨碱式硫酸铝对二氧化硫的吸收效果,对所需试剂硫酸铝和碳酸钙的适宜比例(碱度),以及碱式硫酸铝能稳定存在的铝量范围等进行了研究,测定了不同铝量和碱度的碱式硫酸铝对二氧化硫的吸收量以及pH值,并分析每种吸收液的饱和吸收量,最后将其与乙二胺/磷酸溶液的吸收情况进行对比。结果表明,碱度为40%时,铝量要保持在70 g/L以下才能在加热时不产生沉淀,吸收过程pH由4.5左右一直下降到2.0左右保持稳定,饱和吸收时间控制在140~160 min为宜,较为理想的方案是铝量32 g/L,碱度35%。  相似文献   

20.
The characteristics and mechanisms of hydrogen sulfide (H2S) adsorption on a biochar through pyrolysis at various temperatures (100 to 500°C) were investigated. The biochar used in the current study was derived from the camphor tree (Cinnamomum camphora). The samples were ground and sieved to produce particle sizes of 0.4 mm to 1.25 mm, 0.3 mm to 0.4 mm, and <0.3 mm. The H2S breakthrough capacity was measured using a laboratory-designed test. The surface properties of the biochar were characterized using pH and Fourier-transform infrared spectroscopy (FTIR) analysis. The results obtained demonstrate that all camphor-derived biochars were effective in H2S sorption. Certain threshold ranges of the pyrolysis temperature and surface pH were observed, which, when exceeded, have dramatic effects on the H2S adsorption capacity. The sorption capacity ranged from 1.2 mg/g to 121.4 mg/g. The biochar with 0.3 mm to 0.4 mm particle size possesses a maximum sorption capacity at 400°C. The pH and FTIR analysis results showed that carboxylic and hydroxide radical groups were responsible for H2S sorption. These observations will be helpful in designing biochar as engineered sorbents for the removal of H2S.

Implications: This paper studies the potential of biochar derived by camphor to adsorb hydrogen sulfide at environmentally sustainable temperatures. The different sizes of the biochars and the different temperatures of pyrolysis for the camphor particle have a great impact on adsorption of hydrogen sulfide.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号