首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Abstract

The U.S. Environmental Protection Agency (EPA) published the Regional Haze Rule (RHR) in 1999.1 The RHR default goal is to reduce haze linearly to natural background in 2064 from the baseline period of 2000–2004. The EPA default method2,3 for estimating natural and baseline visibility uses the Interagency Monitoring of Protected Visual Environments (IMPROVE) formula. The IMPROVE formula predicts the light extinction coefficient from aerosol chemical concentrations measured by the IMPROVE network. The IMPROVE light scattering coefficient formula using data from 1994–2002 underestimated the measured light scattering coefficient by 700 Mm?1, on average, on days with precipitation. Also, precipitation occurred as often on the clearest as haziest days. This led to estimating the light extinction coefficient of precipitation, averaged over all days, as the light scattering coefficient on days with precipitation (700 Mm?1) multiplied by the percent of precipitation days in a year. This estimate added to the IMPROVE formula light extinction estimate gives a real world estimate of visibility for the 20% clearest, 20% haziest, and all days. For example, in 1993, the EPAs Report to Congress projected visibility in Class I areas would improve by 3 deciviews by 2010 across the haziest portions of the eastern United States because of the 1990 Clean Air Act Amendments. Omitted was the light extinction coefficient of precipitation. Adding in the estimated light extinction coefficient of precipitation, the estimated visibility improvement declines to <1 deci-view.  相似文献   

2.
The U.S. Environmental Protection Agency (EPA) published the Regional Haze Rule (RHR) in 1999. The RHR default goal is to reduce haze linearly from the baseline period of 2000 through 2004 to natural background in 2064. EPA-recommended method for estimating baseline and natural haze uses the Interagency Monitoring of Protected Visual Environments (IMPROVE) light extinction formula. The IMPROVE formula predicts light extinction from measured aerosol chemical concentrations and estimates of the relative humidity multiplier. On average, the IMPROVE formula overpredicts 6156 nephelometer days (24-hr average measured particle light scattering, bsp) of data by 25%. A new IMPROVED method that reconstructs light extinction using a concentration power law model overpredicts these nephelometer days of data by just 2%. Ignoring the 20% lowest light scattering days, this new IMPROVED formula has a 3% underprediction bias over the 4925 highest nephelometer days with light scattering > or =8 inverse megameters. For comparison, the IMPROVE formula has a 12% overprediction bias for the same days. The IMPROVE formula overprediction averages 77%, 27%, 17%, 9%, and -5% broken down by quintile from lowest to highest nephelometer measured light scattering days. The new IMPROVED formula average overprediction is 21%, -5%, -5%, -2%, and 0%. So, agreement between measured and predicted light scattering improves by modifying the current IMPROVE light extinction formula.  相似文献   

3.
For many national parks and wilderness areas with special air quality protections (Class I areas) in the western United States (U.S.), wildfire smoke and dust events can have a large impact on visibility. The U.S. Environmental Protection Agency’s (EPA) 1999 Regional Haze Rule used the 20% haziest days to track visibility changes over time even if they are dominated by smoke or dust. Visibility on the 20% haziest days has remained constant or degraded over the last 16 yr at some Class I areas despite widespread emission reductions from anthropogenic sources. To better track visibility changes specifically associated with anthropogenic pollution sources rather than natural sources, the EPA has revised the Regional Haze Rule to track visibility on the 20% most anthropogenically impaired (hereafter, most impaired) days rather than the haziest days. To support the implementation of this revised requirement, the EPA has proposed (but not finalized) a recommended metric for characterizing the anthropogenic and natural portions of the daily extinction budget at each site. This metric selects the 20% most impaired days based on these portions using a “delta deciview” approach to quantify the deciview scale impact of anthropogenic light extinction. Using this metric, sulfate and nitrate make up the majority of the anthropogenic extinction in 2015 on these days, with natural extinction largely made up of organic carbon mass in the eastern U.S. and a combination of organic carbon mass, dust components, and sea salt in the western U.S. For sites in the western U.S., the seasonality of days selected as the 20% most impaired is different than the seasonality of the 20% haziest days, with many more winter and spring days selected. Applying this new metric to the 2000–2015 period across sites representing Class I areas results in substantial changes in the calculated visibility trend for the northern Rockies and southwest U.S., but little change for the eastern U.S.

Implications: Changing the approach for tracking visibility in the Regional Haze Rule allows the EPA, states, and the public to track visibility on days when reductions in anthropogenic emissions have the greatest potential to improve the view. The calculations involved with the recommended metric can be incorporated into the routine IMPROVE (Interagency Monitoring of Protected Visual Environments) data processing, enabling rapid analysis of current and future visibility trends. Natural visibility conditions are important in the calculations for the recommended metric, necessitating the need for additional analysis and potential refinement of their values.  相似文献   


4.
The goal of the Regional Haze Rule (RHR) is to return visibility in class I areas (CIAs) to natural levels, excluding weather-related events, by 2064. Whereas visibility, the seeing of scenic vistas, is a near instantaneous and sight-path-dependent phenomenon, reasonable progress toward the RHR goal is assessed by tracking the incremental changes in 5-yr average visibility. Visibility is assessed using a haze metric estimated from 24-hr average aerosol measurements that are made at one location representative of the CIA. It is assumed that, over the 5-yr average, the aerosol loadings and relative humidity along all of the site paths are the same and can be estimated from the 24-hr measurements. It is further assumed that any time a site path may be obscured by weather (e.g., clouds and precipitation), there are other site paths within the CIA that are not. Therefore, when calculating the haze metric, sampling days are not filtered for weather conditions. This assumption was tested by examining precipitation data from multiple monitors for four CIAs. It is shown that, in general, precipitation did not concurrently occur at all monitors for a CIA, and precipitation typically occurred 3-8 hr or less in a day. In a recent paper in this journal, Ryan asserts that the haze metric should include contributions from precipitation and conducted a quantitative assessment incorrectly based on the assumption that the Optec NGN-2 nephelometer measurements include the effects of precipitation. However, these instruments are programmed to shut down during rain events, and any data logged are in error. He further assumes that precipitation occurs as often on the haziest days as the clearest days and that precipitation light scattering (bprecip) is independent of geographic location and applied an average bprecip derived for Great Smoky Mountains to diverse locations including the Grand Canyon. Both of these assumptions are shown to be in error.  相似文献   

5.
Abstract

The goal of the Regional Haze Rule (RHR) is to return visibility in class I areas (CIAs) to natural levels, excluding weather-related events, by 2064. Whereas visibility, the seeing of scenic vistas, is a near instantaneous and sight-path-dependent phenomenon, reasonable progress toward the RHR goal is assessed by tracking the incremental changes in 5-yr average visibility. Visibility is assessed using a haze metric estimated from 24-hr average aerosol measurements that are made at one location representative of the CIA. It is assumed that, over the 5-yr average, the aerosol loadings and relative humidity along all of the site paths are the same and can be estimated from the 24-hr measurements. It is further assumed that any time a site path may be obscured by weather (e.g., clouds and precipitation), there are other site paths within the CIA that are not. Therefore, when calculating the haze metric, sampling days are not filtered for weather conditions. This assumption was tested by examining precipitation data from multiple monitors for four CIAs. It is shown that, in general, precipitation did not concurrently occur at all monitors for a CIA, and precipitation typically occurred 3-8 hr or less in a day. In a recent paper in this journal, Ryan asserts that the haze metric should include contributions from precipitation and conducted a quantitative assessment incorrectly based on the assumption that the Optec NGN-2 nephelometer measurements include the effects of precipitation. However, these instruments are programmed to shut down during rain events, and any data logged are in error. He further assumes that precipitation occurs as often on the haziest days as the clearest days and that precipitation light scattering (bprecip) is independent of geographic location and applied an average bprecip derived for Great Smoky Mountains to diverse locations including the Grand Canyon. Both of these assumptions are shown to be in error.  相似文献   

6.
Trends in fine particulate matter <2.5 microm in diameter (PM2.5) and visibility in the Southeastern United States were evaluated for sites in the Interagency Monitoring of Protected Visual Environments, Speciated Trends Network, and Southeastern Aerosol Research and Characterization Study networks. These analyses are part of the technical assessment by Visibility Improvement-State and Tribal Association of the Southeast (VISTAS), the regional planning organization for the southeastern states, in support of State Implementation Plans for the regional haze rule. At all of the VISTAS IMPROVE sites, ammonium sulfate and organic carbon (OC) are the largest and second largest contributors, respectively, to light extinction on both the 20% haziest and 20% clearest days. Ammonium nitrate, elemental carbon (EC), soils, and coarse particles make comparatively small contributions to PM2.5 mass and light extinction on most days at the Class I areas. At Southern Appalachian sites, the 20% haziest days occur primarily in the late spring to fall, whereas at coastal sites, the 20% haziest days can occur through out the year. Levels of ammonium sulfate in Class I areas are similar to those in nearby urban areas and are generally higher at the interior sites than the coastal sites. Concentrations of OC, ammonium nitrate, and, sometimes, EC, tend to be higher in the urban areas than in nearby Class I areas, although differences in measurement methods complicate comparisons between networks. Results support regional controls of sulfur dioxide for both regional haze and PM2.5 implementation and suggest that controls of local sources of OC, EC, or nitrogen oxides might also be considered for urban areas that are not attaining the annual National Ambient Air Quality Standard for PM2.5.  相似文献   

7.
Compliance under the Regional Haze Rule of 1999 is based on Interagency Monitoring of Protected Visual Environments (IMPROVE) protocols for reconstructing aerosol mass and light extinction from aerosol chemical concentrations measured in the IMPROVE network. The accuracy, consistency, and potential biases in these formulations were examined using IMPROVE aerosol chemistry and light extinction data from 1988-1999. Underestimation of particulate matter with an aerodynamic diameter < 2.5 microm (PM2.5) by the IMPROVE mass reconstruction formula by 12%, on average, appears to be related to the exclusion of sodium, chlorine, and other elements and to artifacts associated with the measurement of organic carbon, but not to absorption of water by sulfates and nitrates on IMPROVE Teflon filters during weighing. Light scattering measured by transmissometry is not consistent with nephelometer scattering or single-scatter albedos expected for remote locations. Light scattering was systematically overestimated by 34%, on average, with the IMPROVE particle scattering (Bsp) reconstruction formula. The use of climatologically based hygroscopic growth factors f(RH) suggested for compliance with the Haze Rule contributes significantly to this overestimation and increases the amount of light extinction attributable to sulfates for IMPROVE samples between 1993 and 1999 by 5 percentage points.  相似文献   

8.
The Interagency Monitoring of Protected Visual Environments (IMPROVE) particle monitoring network consists of approximately 160 sites at which fine particulate matter (PM2.5) mass and major species concentrations and course particulate matter (PM10) mass concentrations are determined by analysis of 24-hr duration sampling conducted on a 1-day-in-3 schedule A simple algorithm to estimate light extinction from the measured species concentrations was incorporated in the 1999 Regional Haze Rule as the basis for the haze metric used to track haze trends. A revised algorithm was developed that is more consistent with the recent atmospheric aerosol literature and reduces bias for high and low light extinction extremes. The revised algorithm differs from the original algorithm in having a term for estimating sea salt light scattering from Cl(-) ion data, using 1.8 instead of 1.4 for the mean ratio of organic mass to measured organic carbon, using site-specific Rayleigh scattering based on site elevation and mean temperature, employing a split component extinction efficiency associated with large and small size mode sulfate, nitrate and organic mass species, and adding a term for nitrogen dioxide (NO2) absorption for sites with NO2 concentration information. Light scattering estimates using the original and the revised algorithms are compared with nephelometer measurements at 21 IMPROVE monitoring sites. The revised algorithm reduces the underprediction of high haze periods and the overprediction of low haze periods compared with the performance of the original algorithm. This is most apparent at the hazier monitoring sites in the eastern United States. For each site, the PM10 composition for days selected as the best 20% and the worst 20% haze condition days are nearly identical regardless of whether the basis of selection was light scattering from the original or revised algorithms, or from nephelometer-measured light scattering.  相似文献   

9.
The [revised] IMPROVE Equation for estimating light extinction from aerosol chemical composition was evaluated considering new measurements at U.S. national parks. Compared with light scattering (Bsp) measured at seven IMPROVE sites with nephelometer data from 2003–2012, the [revised] IMPROVE Equation over- and underestimated Bsp in the lower and upper quintiles, respectively, of measured Bsp. Underestimation of the worst visibility cases (upper quintile) was reduced by assuming an organic mass (OM)/organic carbon (OC) ratio of 2.1 and hygroscopic growth of OM, based on results from previous field studies. This assumption, however, tended to overestimate low Bsp even more. Assuming that sulfate was present as ammonium bisulfate rather than as ammonium sulfate uniformly reduced estimated Bsp. The split-mode model of concentration- and size-dependent dry mass scattering efficiencies in the [revised] IMPROVE Equation does not eliminate systematic biases in estimated Bsp. While the new measurements of OM/OC and OM hygroscopicity should be incorporated into future iterations of the IMPROVE Equation, the problem is not well constrained due to a lack of routine measurements of sulfate neutralization and the water-soluble fraction of OM in the IMPROVE network.

Implications: Studies in U.S. national parks showed that aerosol organics contain more mass and absorb more water as a function of relative humidity than is currently assumed by the IMPROVE Equation for calculating chemical light extinction. Consideration of these results could significantly shift the apportionment of light extinction to water-soluble organic aerosols and therefore better inform pollution control strategies under the U.S. Environmental Protection Agency Regional Haze Rule.  相似文献   


10.
The U.S. Environmental Protection Agency (EPA) has proposed a new secondary standard based on visibility in urban areas. The proposed standard will be based on light extinction, calculated from 24-hr averaged measurements. It would be desirable to base the standard on a shorter averaging time to better represent human perception of visibility. This could be accomplished by either an estimation of extinction from semicontinuous particulate matter (PM) data or direct measurement of scattering and absorption. To this end we have compared 1-hr measurements of fine plus coarse particulate scattering using a nephelometer, along with an estimate of absorption from aethalometer measurements. The study took place in Lindon, UT, during February and March 2012. The nephelometer measurements were corrected for coarse particle scattering and compared to the Filter Dynamic Measurement System (FDMS) tapered element oscillating microbalance monitor (TEOM) PM2.5 measurements. The two measurements agreed with a mass scattering coefficient of 3.3 ± 0.3 m2/g at relative humidity below 80%. However, at higher humidity, the nephelometer gave higher scattering results due to water absorbed by ammonium nitrate and ammonium sulfate in the particles. This particle-associated water is not measured by the FDMS TEOM. The FDMS TEOM data could be corrected for this difference using appropriate IMPROVE protocols if the particle composition is known. However, a better approach may be to use a particle measurement system that allows for semicontinuous measurements but also measures particle bound water. Data are presented from a 2003 study in Rubidoux, CA, showing how this could be accomplished using a Grimm model 1100 aerosol spectrometer or comparable instrument.

Implications: Visibility is currently based on 24-hr averaged PM mass and composition. A metric that captures diurnal changes would better represent human perception. Furthermore, if the PM measurement included aerosol bound water, this would negate the need to know particulate composition and relative humidity (RH), which is currently used to estimate visibility. Methods are outlined that could accomplish both of these objectives based on use of a PM monitor that includes aerosol-bound water. It is recommended that these techniques, coupled with appropriate measurements of light scattering and absorption by aerosols, be evaluated for potential use in the visibility based secondary standard.  相似文献   

11.
The Handix Scientific open-path cavity ringdown spectrometer (OPCRDS) was deployed during summer 2016 in Great Smoky Mountains National Park (GRSM). Extinction coefficients from the relatively new OPCRDS and from a more well-established extinction instrument agreed to within 7%. Aerosol hygroscopic growth (f(RH)) was calculated from the ratio of ambient extinction measured by the OPCRDS to dry extinction measured by a closed-path extinction monitor (Aerodyne’s cavity-attenuated phase shift particulate matter extinction monitor [CAPS PMex]). Derived hygroscopicity (relative humidity [RH] < 95%) from this campaign agreed with data from 1995 at the same site and time of year, which is noteworthy given the decreasing trend for organics and sulfate in the eastern United States. However, maximum f(RH) values in 1995 were less than half as large as those recorded in 2016—possibly due to nephelometer truncation losses in 1995. Two hygroscopicity parameterizations were investigated using high-time-resolution OPCRDS+CAPS PMex data, and the κext model was more accurate than the gamma model. Data from the two ambient optical instruments, the OPCRDS and the open-path nephelometer, generally agreed; however, significant discrepancies between ambient scattering and extinction were observed, apparently driven by a combination of hygroscopic growth effects, which tend to increase nephelometer truncation losses and decrease sensitivity to the wavelength difference between the two instruments as a function of particle size. There was not a statistically significant difference in the mean reconstructed extinction values obtained from the original and the revised IMPROVE (Interagency Monitoring of Protected Visual Environments) equations. On average, IMPROVE reconstructed extinction was ~25% lower than extinction measured by the OPCRDS, which suggests that the IMPROVE equations and 24-hr aerosol data are moderately successful in estimating current haze levels at GRSM. However, this conclusion is limited by the coarse temporal resolution and the low dynamic range of the IMPROVE reconstructed extinction.

Implications: Although light extinction, which is directly related to visibility, is not directly measured in U.S. National Parks, existing IMPROVE protocols can be used to accurately infer visibility for average humidity conditions, but during the large fraction of the year when humidity is above or below average, accuracy is reduced substantially. Furthermore, nephelometers, which are used to assess the accuracy of IMPROVE visibility estimates, may themselves be biased low when humidity is very high. Despite reductions in organic and sulfate particles since the 1990s, hygroscopicity, particles’ affinity for water, appears unchanged, although this conclusion is weakened by the previously mentioned nephelometer limitations.  相似文献   


12.
Regional haze regulations require progress toward reducing atmospheric haze as measured by particle scattering coefficient of visible light. From a practical perspective, this raises the following question: Given a decrease in extinction, what is the probability that people will notice an improvement in visibility? This paper proposes a quantitative definition of the probability of a perceptible increase in visibility given a decrease in light extinction and a general method to estimate this probability from perception measurements made in the field under realistic conditions. Using data from a recent study of visibility perception by 8 observers, it is estimated that a 2-4 deciview change gives a 67% maximum probability of detecting the improvement. Stated another way, the odds of seeing a difference are at most 2:1 for a change of 2-4 deciviews. A 90% probability requires a change of at least 3.5-7.0 deciviews. The limitations and possible bias in the results of this study are discussed. These results may have a major effect on the cost-benefit analysis of regulatory actions to improve visibility.  相似文献   

13.
The 2017 revisions to the Regional Haze Rule clarify that visibility progress at Class I national parks and wilderness areas should be tracked on days with the highest anthropogenic contributions to haze (impairment). We compare the natural and anthropogenic contributions to haze in the western United States in 2011 estimated using the Environmental Protection Agency (EPA) recommended method and using model projections from the Comprehensive Air Quality Model with Extensions (CAMx) and the Particulate Source Apportionment Tool (PSAT). We do so because these two methods will be used by states to demonstrate visibility progress by 2028. If the two methods assume different natural and anthropogenic contributions, the projected benefits of reducing U.S. anthropogenic emissions will differ. The EPA method assumes that episodic elevated carbonaceous aerosols greater than an annual 95th percentile threshold are natural events. For western U.S. IMPROVE monitoring sites reviewed in this paper, CAMx-PSAT confirms these episodes are impacted by carbon from wildfire or prescribed fire events. The EPA method assumes that most of the ammonium sulfate is anthropogenic in origin. At most western sites CAMx-PSAT apportions more of the ammonium sulfate on the most impaired days to global boundary conditions and anthropogenic Canadian, Mexican, and offshore shipping emissions than to U.S. anthropogenic sources. For ammonium nitrate and coarse mass, CAMx-PSAT apportions greater contributions to U.S. anthropogenic sources than the EPA method assigns to total anthropogenic contributions. We conclude that for western IMPROVE sites, the EPA method is effective in selecting days that are likely to be impacted by anthropogenic emissions and that CAMx-PSAT is an effective approach to estimate U.S. source contributions. Improved inventories, particularly international and natural emissions, and further evaluation of global and regional model performance and PSAT attribution methods are recommended to increase confidence in modeled source characterization.

Implications: The western states intend to use the CAMx model to project visibility progress by 2028. Modeled visibility response to changes in U.S. anthropogenic emissions may be less than estimated using the EPA assumptions based on total U.S. and international anthropogenic contributions to visibility impairment. Additional model improvements are needed to better account for contributions to haze from natural and international emissions in current and future modeling years. These improvements will allow more direct comparison of model and EPA estimates of natural and anthropogenic contributions to haze and future visibility progress.  相似文献   


14.
The Interagency Monitoring of Protected Visual Environments (IMPROVE) protocols for reconstructing the ambient light extinction coefficient (bext) from measured aerosol species are the basis for evaluating compliance under the Regional Haze Rule. Aerosol mass composition and optical properties have been measured as part of the IMPROVE program since 1988, providing a long-term data set of aerosol properties at 38 sites around the US. This data set is used to evaluate assumptions made in calculating reconstructed mass and bext by applying statistical analysis techniques. In particular, the molecular weight to carbon weight ratio used to compute particulate organic matter is investigated. An annual average value of 1.7±0.2 for the IMPROVE sites, compared to the value of 1.4 currently assumed in the IMPROVE algorithm, is derived. Regression analysis also indicates that fine soil mass concentrations are underestimated by roughly 20% on average. Finally, aerosol mass scattering and extinction efficiencies assumed in the IMPROVE reconstructed bext protocol are examined. Fine mode (Dp<2.5 μm) mass scattering efficiencies have a functional dependence on mass concentrations at many sites, and use of a mass-concentration-dependent adjustment factor to refine the assumed efficiencies provides for closer agreement between measured and reconstructed bext.  相似文献   

15.
Abstract

A method is described to estimate light scattering (Bsp) by sea-salt aerosols at coastal locations in the Interagency Monitoring of Protected Visual Environments (IMPROVE) network. Dry mass scattering efficiencies for fine and coarse sea-salt particles were based on previously measured dry sea-salt size distributions. Enhancement of sea-salt particle scattering by hygroscopic growth was based on NaCl water activity data. Sea-salt aerosol mass at the IMPROVE site in the Virgin Islands (VIIS) was estimated from strontium (Sr) concentrations in IMPROVE aerosol samples. Estimated Bsp, including contributions from sea-salt mass based on Sr, agreed well with measured Bsp at the VIIS IMPROVE site. On average, sea salt accounted for 52% of estimated Bsp at this site. Sea-salt aerosol mass cannot be reliably estimated from Sr unless its crustal enrichment factor exceeds 10. Sodium (Na) concentrations are not accurately determined by X-ray fluorescence analysis in IMPROVE samples. It is recommended that Na be measured in the fine and coarse modes by a more appropriate method, such as atomic absorption spectroscopy or ion chromatography, to account for scattering by sea-salt particles at IMPROVE sites where such contributions may be significant.  相似文献   

16.
A method is described to estimate light scattering (Bsp) by sea-salt aerosols at coastal locations in the Interagency Monitoring of Protected Visual Environments (IMPROVE) network. Dry mass scattering efficiencies for fine and coarse sea-salt particles were based on previously measured dry sea-salt size distributions. Enhancement of sea-salt particle scattering by hygroscopic growth was based on NaCl water activity data. Sea-salt aerosol mass at the IMPROVE site in the Virgin Islands (VIIS) was estimated from strontium (Sr) concentrations in IMPROVE aerosol samples. Estimated Bsp, including contributions from sea-salt mass based on Sr, agreed well with measured Bsp at the VIIS IMPROVE site. On average, sea salt accounted for 52% of estimated Bsp at this site. Sea-salt aerosol mass cannot be reliably estimated from Sr unless its crustal enrichment factor exceeds 10. Sodium (Na) concentrations are not accurately determined by X-ray fluorescence analysis in IMPROVE samples. It is recommended that Na be measured in the fine and coarse modes by a more appropriate method, such as atomic absorption spectroscopy or ion chromatography, to account for scattering by sea-salt particles at IMPROVE sites where such contributions may be significant.  相似文献   

17.
Under the IMPROVE visibility monitoring network, federal land managers have monitored visibility and fine particle concentrations at 29 Class I area sites (mostly national parks and wilderness areas) and Washington, DC since 1988. This paper evaluates trends in reconstructed visibility and fine particles for the 10th (best visibility days), 50th (average visibility days), and 90th (worst visibility days) percentiles over the nine-year period from 1988-96. Data from these sites provides an indication of regional trends in air quality and visibility resulting from implementation of various emission reduction strategies.  相似文献   

18.
Canada has recently established standards for the management of particulate matter (PM) air quality. National networks currently measure PM mass concentrations and chemical speciation. Methods used in the U.S. IMPROVE network are applied to the 1994--2000 Canadian fine PM data to obtain a regional reconstruction of the visibility based on particle composition. Nationally, the greatest light extinction occurs in the Windsor-Quebec City corridor. Variations in the dominant chemical species responsible for the reduction in visibility are presented for regions across the country. In most regions, sulfate and nitrate contribute most greatly to reduced visibility. The visibility implications of achieving the Canada-Wide Standard (CWS) across the country are evaluated, with the greatest improvement in visibility associated with achieving the CWS in southern Ontario. Elsewhere in the country, achieving the CWS will actually result in deteriorating air quality. Improving current estimates of visibility requires higher spatially and temporally resolved measurements of organic and elemental carbon fractions and particulate nitrate.  相似文献   

19.
ABSTRACT

Under the IMPROVE visibility monitoring network, federal land managers have monitored visibility and fine particle concentrations at 29 Class I area sites (mostly national parks and wilderness areas) and Washington, DC since 1988. This paper evaluates trends in reconstructed visibility and fine particles for the 10th (best visibility days), 50th (average visibility days), and 90th (worst visibility days) percentiles over the nine-year period from 1988-96. Data from these sites provides an indication of regional trends in air quality and visibility resulting from implementation of various emission reduction strategies.  相似文献   

20.
The Interagency Monitoring of Protected Visual Environments (IMPROVE) equation used to assess compliance under the U.S. Environmental Protection Agency (EPA) Haze Rule assumes that dry mass scattering efficiencies for aerosol chemical components are constant. However, examination of aerosol size distributions and chemical composition during the Big Bend Regional Aerosol and Visibility Observational Study and the Southeastern Aerosol and Visibility Study suggests that volume and mass scattering efficiencies vary directly with increasing particle light scattering and aerosol mass concentration. This is consistent with the observation that particle distributions were shifted to larger sizes under more polluted conditions and appears to be related to aging of the aerosol during transport to remote locations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号