首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Concentrations of 14 rare earth elements (REEs) in six size classes of airborne particulate matter (APM) (<0.43, 0.43-0.65, 0.65-1.1, 1.1-2.1, 2.1-11, and >11 μm) and in two different phases (suspended particulate and dissolved) in rainwater were determined by inductively coupled plasma mass spectrometry (ICP-MS). Positive Eu and Tb anomalies were observed in size-classified APM. These anomalies may be due to large emissions of Eu and Tb to the atmosphere resulting from the recent change in Japan from the use of cathode-ray tubes to plasma displays in television sets (Eu and Tb) and from the widespread use of magneto-optical disks (Tb). The light REEs were enriched in fine APM particles (diameter < 1.1 μm). Because compositions of La/Ce/Sm in fine APM (diameter < 1.1 μm) were similar to those in automobile catalyst, the light REE enrichment was attributed to automobile emissions. In contrast, the REE distribution pattern in the suspended particulate phase in rainwater was similar to that in coarse APM (diameter > 2.1 μm), and a positive Tb anomaly was observed, suggesting that coarse particles easily become trapped in rain droplets. A negative Eu anomaly was observed in the dissolved phase in rainwater, but not in APM or in the suspended particulate phase in rainwater. Unlike other REEs, Eu can exist as both bivalent and trivalent ions in nature, and Eu-selective dissolution from or adsorption onto the trapped particles of Eu might account for the negative anomaly. These results show that atmospheric REE cycling is affected by the physico-chemical properties of APM.  相似文献   

2.
The soils adjacent to an area of historical mining, ore processing and smelting activities reflects the historical background and a mixing of recent contamination sources. The main anthropogenic sources of metals can be connected with historical and recent mine wastes, direct atmospheric deposition from mining and smelting processes and dust particles originating from open tailings ponds. Contaminated agriculture and forest soil samples with mining and smelting related pollutants were collected at different distances from the source of emission in the Pb–Zn–Ag mining area near Olkusz, Upper Silesia to (a) compare the chemical speciation of metals in agriculture and forest soils situated at the same distance from the point source of pollution (paired sampling design), (b) to evaluate the relationship between the distance from the polluter and the retention of the metals in the soil, (c) to describe mineralogy transformation of anthropogenic soil particles in the soils, and (d) to assess the effect of deposited fly ash vs. dumped mining/smelting waste on the mobility and bioavailability of metals in the soil. Forest soils are much more affected with smelting processes than agriculture soils. However, agriculture soils suffer from the downward metal migration more than the forest soils. The maximum concentrations of Pb, Zn, and Cd were detected in a forest soil profile near the smelter and reached about 25 g kg − 1, 20 g kg − 1 and 200 mg kg − 1 for Pb, Zn and Cd, respectively. The metal pollutants from smelting processes are less stable under slightly alkaline soil pH then acidic due to the metal carbonates precipitation. Metal mobility ranges in the studied forest soils are as follows: Pb > Zn ≈ Cd for relatively circum-neutral soil pH (near the smelter), Cd > Zn > Pb for acidic soils (further from the smelter). Under relatively comparable pH conditions, the main soil properties influencing metal migration are total organic carbon and cation exchange capacity. The mobilization of Pb, Zn and Cd in soils depends on the persistence of the metal-containing particles in the atmosphere; the longer the time, the more abundant the stable forms. The dumped mining/smelting waste is less risk of easily mobilizable metal forms, however, downward metal migration especially due to the periodical leaching of the waste was observed.  相似文献   

3.
Metal fractionation provides information on mobility and stability of various metal species which can be used to evaluate the movement of such metals in soils. The effect of wastewater irrigation on the fractions, spatial distribution, and mobility of cadmium (Cd) and zinc (Zn) was investigated in five urban gardens in Kano, Nigeria. Concentration of total Zn in the surface soils (0–20 cm) ranged from 121 to 207 mg kg − 1 while Cd concentration was 0.3–2.0 mg kg − 1. Speciation of both heavy metals into seven operationally defined fractions indicated that the most reactive forms extracted with ammonium nitrate and ammonium acetate, also considered as the bioavailable fractions, accounted for 29–42% of total Cd and 22–54% of total Zn, respectively. The weakly bound fractions of Cd and Zn reached up to 50% of the total Cd and Zn concentrations in the soils. Such high proportions of labile Cd and Zn fractions are indicative of anthropogenic origins, arising from the application of wastewater for irrigation and municipal biosolids for soil fertility improvement. Thus, given the predominance of sandy soil textures, high concentrations of labile Cd and Zn in these garden soils represent a potential hazard for the redistribution and translocation of these metals into the food chain and aquifer.  相似文献   

4.
Kinetic Analysis has been successful for metallic elements in relatively isolated areas. In this study it is applied to a complex organic compound in a geographical area with a large urban component. Ten media compartments are included, with man as the ultimate receptor. Field data were collected for only 6 of the media and were not used in the analysis but were compared to the calculated steady state concentrations. The greatest differences between calculated and observed values were 4.8-fold for soil and 5.4-fold for sediment. The field sampling regime for soils was biased towards areas of industrialization and probably explains the higher observed value. The lower observed value for sediment is likely due to unknown variables necessary for the estimation of the compartment size and/or the associated transfer rate constants. This study indicated that the Kinetic Analysis technique can be applied successfully to the pre-sampling estimation of the distribution of organic pollutants in environmental systems.  相似文献   

5.
Natural emissions of Hg are attracting increased interest both for their environmental implications and for possible applications in the exploration of mineral, petroleum and geothermal fields. However, daily and seasonal fluctuations in concentrations of Hg in the atmosphere, caused by meteorological and environmental variables, has made it very difficult to assess Hg anomalies by conventional analytical procedures. Some species of widespread foliose lichens from an abandoned cinnabar mining and smelting area (Mt. Amiata), geothermal fields (Larderello, Bagnore and Piancastagnaio, Central Italy), and active volcanic areas (Mt. Etna and Vulcano, Southern Italy) seem to be very suitable biomonitors of gaseous Hg; especially as lichen thalli have an Hg content which reflects average values measured in air samples. We discuss the advantages of quantitative biological monitoring by lichens with respect to conventional air sampling in large-scale monitoring.  相似文献   

6.
In order to evaluate the current state of the environmental quality of soils in Beijing, we investigated contents of 14 metals in Beijing urban soils inside the 5th ring road by even grids sampling. Statistic analyses were conducted to identify possible heavy metal pollutants, as well as the effects of land uses on their accumulation. Our results revealed that the urban soils in Beijing were contaminated by Cd, Pb, Cu, and Zn. Land uses and urbanization ages affected the accumulation of the four heavy metals in soils significantly. Soils in industrial areas have the highest average Cu and Zn contents, while Pb contents in park areas and Cd in agricultural areas are the highest. The accumulations of Pb and Zn in urban soils increase significantly with sampling plots approaching the city center. And Pb, Cd, and Zn contents in soils in traffic areas also tend to increase in the city center. However, residential areas have the lowest contents of all the four heavy metals.  相似文献   

7.
The aim of the study was to investigate influence of an industrialized environment on the accumulation of heavy metals in agricultural soils. Seventy soil samples collected from surface layers (0-20 cm) and horizons of five selected pedons in the vicinity area of petrochemical complex in Guangzhou, China were analyzed for Zn, Cu, Pb, Cd, Hg and As concentrations, the horizontal and vertical variation of these metals were studied and geographic information system (GIS)-based mapping techniques were applied to generate spatial distribution maps. The mean concentrations of these heavy metals in the topsoils did not exceed the maximum allowable concentrations in agricultural soil of China with the exception of Hg. Significant differences between land-use types showed that Cu, Pb, Cd, Hg and As concentrations in topsoils were strongly influenced by agricultural practices and soil management. Within a radius of 1,300 m there were no marked decreasing trends for these element concentrations (except for Zn) with the increase of distance from the complex boundary, which reflected little influence of petroleum air emission on soil heavy metal accumulation. Concentrations of Zn, Cu, Pb, Cd, Hg and As in the five pedons, particularly in cultivated vegetable field and orchard, decreased with soil depth, indicating these elements mainly originated from anthropogenic sources. GIS mapping was a useful tool for evaluating spatial variability of heavy metals in the affected soil. The spatial distribution maps allowed the identification of hot-spot areas with high metal concentration. Effective measures should be taken to avoid or minimize heavy metal further contamination of soils and to remediate the contaminated areas in order to prevent pollutants affecting human health through agricultural products.  相似文献   

8.
In this study, the spatial distributions of soil lead (Pb) concentration in three horizontal soils in Guangdong, China, were surveyed and analyzed using geostatistics and geography information systems (GIS). Findings indicated that the Pb geometric mean concentration of 23.3 mg/kg in surface soils was found to be higher than those in global soils, which ranged from 2.3–235 mg/kg. In addition, the Pb geometric mean concentrations from A- to C-horizon were found to be 23.3, 27.2, and 28.6 mg/kg, respectively. The classification of a soil Pb environmental risk in an area was likewise presented based on the different levels of environmental quality of Pb and was done by GIS technology. Accordingly, there is a higher local concentration of Pb in the surrounding areas of Guangzhou where there is higher population density and in the north of Guangdong, which is a historic mining area. The results obtained by the environmental risk assessment reveal that about 46% of total surveyed area was above the background value, that is, 2.7% of the total area was at risk of pollution.  相似文献   

9.
Mining and smelting are important economic activities. However, mining-related industries are also some of the largest sources of environmental pollution from heavy metals. China is one of the largest producers and consumers of lead and zinc in the world. A large amount of lead, zinc, and related elements, such as cadmium, have been released into the environment due to mineral processing activities and have impacted water resources, soils, vegetables, and crops. In some areas, this pollution is hazardous to human health. This article reviews studies published in the past 10 years (2000–2009), on the environmental and human health consequences of lead/zinc mineral exploitation in China. Polluted areas are concentrated in the following areas: the junction of Yunnan, Guizhou and Sichuan provinces, west-central Hunan province, central Guangxi province, northern Guangdong, northwestern Henan province, the border between Shanxi and Gansu provinces, and the region of Liaoning province near Bohai. Lead (Pb) and cadmium (Cd) are the main pollutants and are associated with human health effects such as high lead blood levels in children, arthralgia, osteomalacia, and excessive cadmium in urine.  相似文献   

10.
An exploratory study of the area surrounding a historical Pb?CZn mining and smelting area in Zawar, India, detected significant contamination of the terrestrial environment by heavy metals. Soils (n?=?87) were analyzed for pH, EC, total organic matter (TOM), Pb, Zn, Mn, and Cd levels. The statistical analysis indicated that the frequency distribution of the analyzed parameters for these soils was not normal. The median concentrations of metals in surface soils were: Pb 420.21 ?? g/g, Zn 870.25 ?? g/g, Mn 696.70 ?? g/g, and Cd 2.09 ?? g/g. Zn concentrations were significantly correlated with Cd (r?=?0.867), indicating that levels of Cd are dependent on Zn. However, pH, electrical conductivity and total organic matter were not correlated significantly with Cd, Pb, Zn, and Mn. To assess the potential mobility of Cd, Pb, and Zn in soils, single (EDTA) as well as sequential extraction scheme (modified BCR) were applied to representative (n?=?23) soil samples. The amount of Cd, Pb, and Zn extracted by EDTA and their total concentrations showed linear positive correlation, which are statistically significant (r values for Cd, Pb, and Zn being 0.901, 0.971, and 0.795, respectively, and P values being <0.001). The correlation coefficients indicate a strong relation between EDTA-extractable metal and total metal. These results appear to justify the use of ??total?? metal contents as a useful preliminary indicator of areas where the risks of metal excess or deficiency are high. The EDTA extractability was maximum for Cd followed by Pb and Zn in soils from all the locations. As indicated by single extraction, the apparent mobility and potential bioavailability of metals in soils followed the order: Cd ?? Pb >?> Zn. Soil samples were sequentially extracted (modified BCR) so that solid pools of Cd, Zn, and Pb could be partitioned into four operationally defined fractions viz. acid-soluble, reducible, oxidizable, and residual. Cadmium was present appreciably (39.41%) in the acid-soluble fraction and zinc was predominantly associated (32.42%) with residual fraction. Pb (66.86%) and Zn (30.44%) were present mainly in the reducible fraction. Assuming that the mobility and bioavailability are related to solubility of geochemical forms of metals and decrease in the order of extraction, the apparent mobility and potential metal bioavailability for these contaminated soil samples is Cd > Zn > Pb.  相似文献   

11.
对2012年郑州市大气中气态和颗粒态多环芳烃(PAHs)的分布特征与来源进行了分析。结果表明,ρ(∑PAHs)(包括气相与颗粒相)为23.27~194.61 ng/m3,气相中∑PAHs高于颗粒相,四环以下的PAHs大都存在于气态中;在夏、春2季,较小分子质量(≤178)的PAHs占比较高,冬季,较大分子质量(≥252)的PAHs占比明显较高;各功能区ρ(PAHs)排序为工业区交通密集区医疗、文化、行政混合区。郑州大气和颗粒物中PAHs可能主要来自煤和液体燃料(汽油柴油)的燃烧。  相似文献   

12.
大气中消耗臭氧层物质(ODS)及其替代物监测是科学评估履约成效的重要基础。美国等发达国家针对大气中ODS及其替代物开展了长期的网络化监测,中国相关监测起步相对较晚,基础比较薄弱。该文总结了发达国家大气中ODS及其替代物的监测经验,分析了中国的监测现状及存在的问题,提出了中国大气中ODS及其替代物监测的建议:明确监测目标,推进国家大气中ODS及其替代物监测网络建设;加快相关监测设备研发及方法研究进程,形成规范统一的监测技术体系;定期开展监测数据质量评价,加强综合分析利用。通过采取相应措施,逐步形成中国履行保护臭氧层国际环境公约的监测支撑能力。  相似文献   

13.
Environmental risk refers to the possibility of environmental pollution events caused by natural causes or human activities. Environmental risks are transmitted through environmental media and can have destructive effects on human society and the natural environment. Understanding the current status and characteristics of environmental risks can effectively prevent and control environmental risks, which is essential for establishing the safety of ecological systems. Although many scholars have studied the environmental risk characteristics of different enterprises or regional scales and proposed corresponding control methods. However, the study of environmental risk characteristics in the national scale is still insufficient, which affects the accuracy of large-scale environmental impact assessment (EIA) and is not conducive to the formulation of the large-scale environmental management system. This paper attempts to use spatial statistical methods and geographically weighted regression (GWR) models to study the temporal and spatial evolution trends of environmental events in China and the spatial correlation characteristics of influencing factors and environmental events in different regions. The research results show that the focus of China's environmental risk is continuously shifting. At present, environmental pollution incidents are concentrated in the western region, and their spatial correlation with influencing factors varies from region to region. Spatial statistical analysis can help us understand the spatial characteristics of risk and identify the interrelationships of environmental risks in different areas. Therefore, spatial statistical analysis can provide a scientific basis for macro decision-making of large regional EIA and environmental risk management. In the future, it is recommended that the focus of environmental events in different regions should be different to reduce the risk of environmental events in China.  相似文献   

14.
The Iron Quadrangle (IQ) region, located in the state of Minas Gerais, has been the most important gold producing area in Brazil since the end of seventeenth century. The use of mercury for gold amalgamation in small scale mines has been responsible for large release of Hg to aquatic and terrestrial environments during 300 years of mining. The present work sought to evaluate the fractionation of Hg in stream sediments is the southern region of the IQ by utilizing sequential extraction. Since mobility and availability of Hg are related to its distribution among sediment partitions, fractionation methods provide detailed information on the ecotoxicological impact and risks associated to the presence of Hg in sediments. The total Hg concentration varied from 179.3 to 690.1 microg kg( - 1) and Hg(0) accounted for the majority at all sample sites, ranging from 42% to 56% of the total.  相似文献   

15.
There has been carried out a comparative research, which to allow us to determine the quantities and the depots of accumulation of Pb, Cu, Zn and Cd in the vegetative and reproductive organs of Brassica nigra, as well as to identify the possibilities of growing on soils, contaminated by heavy metals and its use for the purposes of the phytoremeditation. Experiments have been implemented in field and in controlled conditions. B. nigra is tolerant towards the heavy metals and could be successfully grown in regions of low and moderate level of contamination with heavy metals, without lowering of the quantity and quality of the manufactured production. The depots for accumulation, in case it is being grown on contaminated soils without Cu follows the order: roots > fruit's shells > stems > seeds. In the case of its growing on non-contaminated soils the order roots > fruit's shells > seeds > stems preserves for the Pb, while the order for the Cu, Zn, and Cd is: fruit's shells > seeds > stems > roots. A relation is determined between the quantity of the total and the mobile forms of metals on one hand, and their total quantity in the plants in the field, as well as, in the pot experiments, on the other. A drastic exclusion is made by the Pb in the pot experiments, as its basic part is blocked in compounds that are hardly soluble. Its absorption by the plants is almost entirely blocked, which is almost a degree lower than that obtained in the field experiments and is commensurable with the results obtained in non-contaminated soils. Clarification of the reasons causing this effect requires additional examinations and above all, fractionation of the soil and determination of the forms and depots of localization of Pb compounds.  相似文献   

16.
为研究广东省某矿区开展生态修复多年后下游农田土壤的金属污染状况,选取该矿区下游某村周边农田土壤及灌溉水渠作为研究对象,对该区域采集了40个土壤表层样本和8个水体样本,利用Arcgis软件对农田土壤样品中As、Cu、Cd、Pb、Zn、Mn和Fe2O3的质量分数进行克里金空间插值,解析该区域农田土壤金属的空间分布特征;采用综合污染指数法和潜在生态风险指数法对该区域耕作层土壤中As、Cu、Cd、Pb、Zn和Mn进行风险评价。结果表明,40个土壤样品中As、Cd、Cu、Zn和Pb的超标率分别为77.5%、70%、87.5%、27.5%和67.5%,说明调查区域农田土壤污染属于多金属复合污染,且对农作物的生产和安全产生巨大的威胁。部分土壤样品中As、Pb和Cd含量超过了中国农用地土壤污染风险管制值,需采取严格管控措施。通过分析土壤金属的空间分布,发现土壤金属含量超标点位主要位于灌溉口与受污染河流周边,且含量与离灌溉口距离成反比。结合目前灌溉水样中的金属均未超标的情况,得出该区域农田土壤污染是由该矿区生态环境修复前所产生的含金属灌溉水导致土壤中金属的积累...  相似文献   

17.
The article presents a review of environmental degradation and its threats in China. Air pollution, water pollution, deforestation, soil degradation, sand depositing in dams, decaying urban infrastructure, and more and more hazards such as floods, landslides and soil erosion are major consequences of environmental degradation and are making tremendous loss both in life and property. Through investigation, the author found that poor air quality in the large cities; water pollution in the downstream of many rivers; the multiple problems of many mining areas; lack of access to fresh water; decaying sewage systems; and the disastrous impact of these environmental degradations on public health and agricultural products in many provinces is rather serious. Relationship of environmental degradation and natural hazards is close; more attention should be put in environmental degradation that may surpass economy progress if the trend continues. It is therefore imperative that Chinese government undertake a series of prudent actions now that will enable to be in the best possible position when the current environmental crisis ultimately passes.  相似文献   

18.
In Chile, the increasing number of plants for the treatment of wastewater has brought about an increase in the generation of sludge. One way of sludge disposal is its application on land; this, however involves some problems, some of them being heavy metal accumulation and the increase in organic matter and other components from sewage sludge which may change the distribution and mobility of heavy metals. The purpose of the present study was to determine the effect of sewage sludge application on the distribution of Cr, Ni, Cu, Zn and Pb in agricultural soils in Chile. Three different soils, two Mollisols and one Alfisol, were sampled from an agricultural area in Central Chile. The soils were treated with sewage sludge at the rates of 0 and 30 ton ha(-1), and were incubated at 25 degrees C for 45 days. Before and after incubation, the soils were sequentially extracted to obtain labile (exchangeable and sodium acetate-soluble), potentially labile (soluble in moderately reducing conditions, K4P2O7-soluble and soluble in reducing conditions) and inert (soluble in strong acid oxidizing conditions) fractions. A two-level factored design was used to assess the effect of sludge application rate, incubation time and their interaction on the mobility of the elements under study. Among the metals determined in the sludge, zinc has the highest concentration. However, with the exception of Ni, the total content of metals was lower than the recommended limit values in sewage sludge as stated by Chilean regulations. Although 23% of zinc in sludge was in more mobile forms, the residual fraction of all metals was the predominant form in soils and sludge. The content of zinc only was significantly increased in two of the soils by sewage sludge application. On the other hand, with the exception of copper, the metals were redistributed in the first four fractions of amended soils. The effect of sludge application rate, incubation time and their interaction depended on the metal or soil type. In most cases an increase in more mobile forms of metals in soils was observed as the final effect.  相似文献   

19.
Coal mining area is highly subject to lead (Pb) pollution from coal mining activities. Several decades of coal mining and processing practices in dozens of coal mines in the Huainan Coal Mining Area (HCMA) have led to the accumulation of massive amounts of coal gangue, which piled in dumps. In order to investigate the impacts of coal gangue dumps on Pb level in the supergene media of the HCMA, a systematic sampling campaign comprising coal gangue, soil, wheat, and earthworm samples was conducted. The average Pb content in the coal mining area soil is 24 mg/kg, which is slightly higher than the associated coal gangues (23 mg/kg) and markedly higher than reference region soil (12.6 mg/kg). Soil in the HCMA present a slight to moderate Pb contamination, which might be related to the weathering and leaching of coal gangue dumps. Lateral distribution of Pb in HCMA soil differed among individual coal mines. The soil profile distribution of Pb depends on both natural and anthropogenic contributions. Average Pb content is higher in roots than in stems, leaves, and wheat husks, while the Pb level in seeds exceeded the maximum Pb allowance for foods (Maximum Levels of Contaminants in Foods of China, GB 2762–2012). Earthworms in the selected area are significantly enriched in Pb, suggesting higher bio-available Pb level in soil in the HCMA.  相似文献   

20.
Atmospheric acidification in the Asian region is discussed from the perspectives of currently available regional measurements, and the knowledge now available from several decades of acidic deposition research in the northern mid-latitudes. The main conclusions emerge: (1) that there is insufficient information currently available to enable a quantitative assessment of the present state or future potential for atmospheric acidification across the whole region; and (2) that within the limitations imposed by (1) the possibility of future acidification in certain areas cannot be ruled out if economic development and energy use on a per capita basis evolve to the levels of the major industrial countries. These two conclusions point to the need for systematic, multidisciplinary studies covering the whole region. The studies should assess quantitatively the current levels of acidic and alkaline emissions (both natural and anthropogenic) to the atmosphere, identify the relevant chemical transformations and transport/deposition pathways in the regional atmosphere, and assess the susceptibility of regional plants, soils and groundwaters to acidification.Plenary speaker.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号