首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study is to evaluate the future potential impact of climate change on the water quality of Chungju Lake using the Water Quality Analysis Simulation Program (WASP). The lake has a storage capacity of 2.75 Gm3, maximum water surface of 65.7 km2, and forest‐dominant watershed of 6,642 km2. The impact on the lake from the watershed was evaluated by the Soil and Water Assessment Tool (SWAT). The WASP and SWAT were calibrated and validated using the monthly water temperatures from 1998 to 2003, lake water quality data (dissolved oxygen, total nitrogen [T‐N], total phosphorus [T‐P], and chlorophyll‐a [chl‐a]) and daily dam inflow, and monthly stream water quality (sediment, T‐N, and T‐P) data. For the future climate change scenario, the MIROC3.2 HiRes A1B was downscaled for 2020s, 2050s, and 2080s using the Change Factor statistical method. The 2080s temperature and precipitation showed an increase of +4.8°C and +34.4%, respectively, based on a 2000 baseline. For the 2080s watershed T‐N and T‐P loads of up to +87.3 and +19.6%, the 2080s lake T‐N and T‐P concentrations were projected to be 4.00 and 0.030 mg/l from 2.60 and 0.016 mg/l in 2000, respectively. The 2080s chl‐a concentration in the epilimnion and the maximum were 13.97 and 52.45 μg/l compared to 8.64 and 33.48 μg/l in 2000, respectively. The results show that the Chungju Lake will change from its mesotrophic state of 2000 to a eutrophic state by T‐P in the 2020s and by chl‐a in the 2080s. Editor's note: This paper is part of a featured series on Korean Hydrology. The series addresses the need for a new paradigm of river and watershed management for Korea due to climate and land use changes.  相似文献   

2.
The curve number (CN) method is used to calculate runoff in many hydrologic models, including the Soil and Water Assessment Tool (SWAT). The CN method does not account for the spatial distribution of land cover types, an important factor controlling runoff patterns. The objective of this study was to empirically derive CN values that reflect the strategic placement of native prairie vegetation (NPV) within row crop agricultural landscapes. CNs were derived using precipitation and runoff data from a seven‐year period for 14 small watersheds in Iowa. The watersheds were planted with varying amounts of NPV located in different watershed positions. The least squares and asymptotic least squares methods (LSM) were used to derive CNs using an initial abstraction coefficient (λ) of 0.2 and 0.05. The CNs were verified using leave‐one‐out cross‐validation and adjustment for antecedent moisture conditions (AMC) was tested. The asymptotic method produced CN values for watersheds with NPV treatment that were 8.9 and 14.7% lower than watersheds with 100% row crop at λ = 0.2 and λ = 0.05, respectively. The derived CNs produced Nash‐Sutcliffe efficiency values ranging from 0.4 to 0.7 during validation. Our analyses show the CNs verified best for the asymptotic LSM, when using λ of 0.05 and adjusting for AMC. Further, comparison of derived CNs against an area weighted CN indicated that the placement of vegetation does impact the CN value. Editor's note : This paper is part of the featured series on SWAT Applications for Emerging Hydrologic and Water Quality Challenges. See the February 2017 issue for the introduction and background to the series.  相似文献   

3.
This study aimed to evaluate the influence of sub‐daily precipitation time steps on model performance and hydrological components by applying the Green and Ampt infiltration method using the Soil and Water Assessment Tool (SWAT). Precipitation was measured at a resolution of 0.1 mm and aggregated to 5‐, 15‐, 30‐, and 60‐min time steps. Daily discharge data over a 10‐year period were used to calibrate and validate the model. Following a global sensitivity analysis, relevant parameters were optimized through an automatic calibration procedure using SWAT‐CUP for each time step. Daily performance statistics were almost equal among all four time steps (NSE ≈ 0.47). Discharge mainly consisted of groundwater flow (55%) and tile flow (42%), in reasonable proportions for the investigated catchment. In conclusion, model outputs were almost identical, showing simulations responded nearly independently of the chosen precipitation time step. This held true for (1) the selection of sensitive parameters, (2) performance statistics, (3) the shape of the hydrographs, and (4) flow components. However, a scenario analysis revealed that the precipitation time step becomes important when saturated hydraulic conductivities are low and curve numbers are high. The study suggests that there is no need in using precipitation time steps <1 h for lowland catchments dominated by soils with a low surface runoff potential if daily flow values are being considered. Editor's note : This paper is part of the featured series on SWAT Applications for Emerging Hydrologic and Water Quality Challenges. See the February 2017 issue for the introduction and background to the series.  相似文献   

4.
This article presents SWATMOD‐Prep, a graphical user interface that couples a SWAT watershed model with a MODFLOW groundwater flow model. The interface is based on a recently published SWAT‐MODFLOW code that couples the models via mapping schemes. The spatial layout of SWATMOD‐Prep guides the user through the process of importing shape files (sub‐basins, hydrologic response units [HRUs], river network) from an existing SWAT model, creating a grid, performing necessary geo‐processing operations to link the models, writing out SWAT‐MODFLOW files, and running the simulation. The option of creating a new single‐layer MODFLOW model for near‐surface alluvial aquifers is available, with the user prompted to provide groundwater surface elevation (through a digital elevation model), aquifer thickness, and necessary aquifer parameter values. The option of simulating nitrate transport in the aquifer also is available, using the reactive transport model RT3D. The interface is in the public domain. It is programmed in Python, with various software packages used for geo‐processing operations (e.g., selection, intersection of rasters) and inputting/outputting data, and is written for Windows. The use of SWATMOD‐Prep is demonstrated for the Little River Experimental Watershed, Georgia. SWATMOD‐Prep and SWAT‐MODFLOW executables are available with an accompanying user's manual at: http://swat.tamu.edu/software/swat-modflow/ . The user's manual also accompanies this article as Supporting Information.  相似文献   

5.
In some watersheds, streambanks are a source of two major pollutants, phosphorus (P) and sediment. P originating from both uplands and streambanks can be transported and stored indefinitely on floodplains, streambanks, and in closed depressions near the stream. The objectives of this study were to (1) test the modified streambank erosion and instream P routines for the Soil and Water Assessment Tool (SWAT) model in the Barren Fork Creek watershed in northeast Oklahoma, (2) predict P in the watershed with and without streambank‐derived P, and (3) determine the significance of streambank erosion P relative to overland P sources. Measured streambank and channel parameters were incorporated into a flow‐calibrated SWAT model and used to estimate streambank erosion and P for the Barren Fork Creek using modified streambank erosion and instream P routines. The predicted reach‐weighted streambank erosion was 40 kg/m vs. the measured 42 kg/m. Streambank erosion contributed 47% of the total P to the Barren Fork Creek and improved P predictions compared to observed data, especially during the high‐flow events. Of the total P entering the stream system, approximately 65% was removed via the watershed outlet and 35% was stored in the floodplain and stream system. This study successfully applied the SWAT model's modified streambank erosion and instream P routines and demonstrated that streambank‐derived P can improve P modeling at the watershed scale. Editor's note: This paper is part of the featured series on SWAT Applications for Emerging Hydrologic and Water Quality Challenges. See the February 2017 issue for the introduction and background to the series.  相似文献   

6.
The objectives of this study were to (1) evaluate the performance of the Multi‐Radar Multi‐Sensor (MRMS) system in capturing precipitation compared to gauge data, and (2) assess the effects of spatial (1–50 km) and temporal (15–120 min) data aggregation scales on the performance of the MRMS system. Point‐to‐grid comparisons were conducted between 215 rain gauges and the MRMS system. The MRMS system at 1 km spatial and 15 min temporal resolutions captured precipitation reasonably well with average R2, root mean square error (RMSE), and percent bias (PBIAS) values of 0.65, 0.5 mm, and 11.9 mm; whereas Threat Score, probability of detection, and false alarm ratio were 0.57, 0.92, and 0.40, respectively. Decreasing temporal resolution from 15 min to two hours resulted in an increase in R2 and a decrease in RMSE, whereas PBIAS was not affected. Reducing spatial resolution from 1 to 50 km resulted in increases in R2 and PBIAS, whereas RMSE was decreased. Increasing spatial aggregation scale from 1 to 50 km resulted in an R2 increase of only 0.08. Similarly, improvement in R2 was only modest (0.17) compared to an eightfold reduction in temporal resolution (from 15 min to two hours). While aggregating data at coarser temporal resolutions resolved some of the under/overestimation issues of the MRMS system, it was apparent even at coarser spatial and temporal resolutions the MRMS system inherently overestimated smaller precipitation events while underestimated bigger events.  相似文献   

7.
Gridded precipitation datasets are becoming a convenient substitute for gauge measurements in hydrological modeling; however, these data have not been fully evaluated across a range of conditions. We compared four gridded datasets (Daily Surface Weather and Climatological Summaries [DAYMET], North American Land Data Assimilation System [NLDAS], Global Land Data Assimilation System [GLDAS], and Parameter‐elevation Regressions on Independent Slopes Model [PRISM]) as precipitation data sources and evaluated how they affected hydrologic model performance when compared with a gauged dataset, Global Historical Climatology Network‐Daily (GHCN‐D). Analyses were performed for the Delaware Watershed at Perry Lake in eastern Kansas. Precipitation indices for DAYMET and PRISM precipitation closely matched GHCN‐D, whereas NLDAS and GLDAS showed weaker correlations. We also used these precipitation data as input to the Soil and Water Assessment Tool (SWAT) model that confirmed similar trends in streamflow simulation. For stations with complete data, GHCN‐D based SWAT‐simulated streamflow variability better than gridded precipitation data. During low flow periods we found PRISM performed better, whereas both DAYMET and NLDAS performed better in high flow years. Our results demonstrate that combining gridded precipitation sources with gauge‐based measurements can improve hydrologic model performance, especially for extreme events.  相似文献   

8.
The Soil and Water Assessment Tool (SWAT) model (Arnold et al., 1998) is a popular watershed management tool. Currently, the SWAT model, actively supported by the U.S. Department of Agriculture and Texas A&M, operates only on Microsoft® Windows, which hinders modelers that use other operating systems (OS). This technical note introduces the Comprehensive R Archive Network (CRAN) distributed “SWATmodel” package which allows SWAT 2005 and 2012 to be widely distributed and run as a linear model‐like function on multiple OS and processor platforms. This allows researchers anywhere in the world using virtually any OS to run SWAT. In addition to simplifying the use of SWAT across computational platforms, the SWATmodel package allows SWAT modelers to utilize the analytical capabilities, statistical libraries, modeling tools, and programming flexibility inherent to R. The software allows watershed modelers to develop a simple hydrological watershed model conceptualization of the SWAT model and to obtain a first approximation of the minimum expected results a more complicated model should deliver. As a proof of concept, we test the SWAT model by initializing and calibrating 314 U.S. Geological Survey stream gages in the Chesapeake Bay watershed and present the results.  相似文献   

9.
This study analyzed changes in hydrology between two recent decades (1980s and 2010s) with the Soil and Water Assessment Tool (SWAT) in three representative watersheds in South Dakota: Bad River, Skunk Creek, and Upper Big Sioux River watersheds. Two SWAT models were created over two discrete time periods (1981‐1990 and 2005‐2014) for each watershed. National Land Cover Datasets 1992 and 2011 were, respectively, ingested into 1981‐1990 and 2005‐2014 models, along with corresponding weather data, to enable comparison of annual and seasonal runoff, soil water content, evapotranspiration (ET), water yield, and percolation between these two decades. Simulation results based on the calibrated models showed that surface runoff, soil water content, water yield, and percolation increased in all three watersheds. Elevated ET was also apparent, except in Skunk Creek watershed. Differences in annual water balance components appeared to follow changes in land use more closely than variation in precipitation amounts, although seasonal variation in precipitation was reflected in seasonal surface runoff. Subbasin‐scale spatial analyses revealed noticeable increases in water balance components mostly in downstream parts of Bad River and Skunk Creek watersheds, and the western part of Upper Big Sioux River watershed. Results presented in this study provide some insight into recent changes in hydrological processes in South Dakota watersheds. Editor's note: This paper is part of the featured series on SWAT Applications for Emerging Hydrologic and Water Quality Challenges. See the February 2017 issue for the introduction and background to the series.  相似文献   

10.
High variability in precipitation and streamflow in the semiarid northern Great Plains causes large uncertainty in water availability. This uncertainty is compounded by potential effects of future climate change. We examined historical variability in annual and growing season precipitation, temperature, and streamflow within the Little Missouri River Basin and identified differences in the runoff response to precipitation for the period 1976‐2012 compared to 1939‐1975 (n = 37 years in both cases). Computed mean values for the second half of the record showed little change (<5%) in annual or growing season precipitation, but average annual runoff at the basin outlet decreased by 22%, with 66% of the reduction in flow occurring during the growing season. Our results show a statistically significant (< 0.10) 27% decrease in the annual runoff response to precipitation (runoff ratio). Surface‐water withdrawals for various uses appear to account for <12% of the reduction in average annual flow volume, and we found no published or reported evidence of substantial flow reduction caused by groundwater pumping in this basin. Results of our analysis suggest that increases in monthly average maximum and minimum temperatures, including >1°C increases in January through March, are the dominant driver of the observed decrease in runoff response to precipitation in the Little Missouri River Basin.  相似文献   

11.
A sub‐model for the Soil and Water Assessment Tool (SWAT) is developed to predict Escherichia coli levels in the streambed sediment as well as in the water column. New formulations to estimate the levels of E. coli in streambed sediment and the water column are derived. These equations include calculations of E. coli resuspension from the streambed sediment to the water column, E. coli deposition from the water column to the streambed sediment, E. coli growth in the streambed sediment and the water column, and instream E. coli routing. These formulations were programmed in FORTRAN and integrated into SWAT. The modified SWAT model was applied to Squaw Creek Watershed, Iowa, to predict E. coli levels in the stream. Escherichia coli concentrations in the streambed sediment and the water column were monitored extensively in this watershed, and observations were used to verify the model predictions. The model proposed here can predict E. coli concentrations in streambed sediment as well as in the water column. Approximately 58% of the predictions of E. coli levels in the bed sediment were within 1 order of magnitude from the observed value, and in the water column 83% of the predictions of E. coli levels were within 1 order of magnitude. Results suggest that the proposed model will help predictions of instream bacterial contamination.  相似文献   

12.
Phosphorus export coefficients (kg/ha/yr) from selected land covers, also called phosphorus yields, tend to get smaller as contributing areas get larger because some of the phosphorus mobilized on local fields gets trapped during transport to regional watershed outlets. Phosphorus traps include floodplains, wetlands, and lakes, which can then become impaired by eutrophication. The Sunrise River watershed in east central Minnesota, United States, has numerous lakes impaired by excess phosphorus. The Sunrise is tributary to the St. Croix River, whose much larger watershed is terminated by Lake St. Croix, also impaired by excess phosphorus. To support management of these impairments at both local and regional scales, a Soil and Water Assessment Tool (SWAT) model of the Sunrise watershed was constructed to estimate load reductions due to selected best management practices (BMPs) and to determine how phosphorus export coefficients scaled with contributing area. In this study, agricultural BMPs, including vegetated filter strips, grassed waterways, and reduction of soil‐phosphorus concentrations reduced phosphorus loads by 4‐20%, with similar percentage reductions at field and watershed spatial scales. Phosphorus export coefficients from cropland in rotation with corn, soybeans, and alfalfa decreased as a negative power function of contributing area, from an average of 2.12 kg/ha/yr at the upland field scale (~0.6 km2) to 0.63 kg/ha/yr at the major river basin scale (20,000 km2). Editor's note : This paper is part of the featured series on SWAT Applications for Emerging Hydrologic and Water Quality Challenges. See the February 2017 issue for the introduction and background to the series.  相似文献   

13.
The ability to accurately simulate flow and nutrient removal in treatment wetlands within an agricultural, watershed‐scale model is needed to develop effective plans for meeting nutrient reduction goals associated with protection of drinking water supplies and reduction of the Gulf of Mexico hypoxic zone. The objectives of this study were to incorporate new equations for wetland hydrology and nutrient removal in Soil and Water Assessment Tool (SWAT), compare model performance using original and improved equations, and evaluate the ramifications of errors in watershed and tile drain simulation on prediction of NO3‐N dynamics in wetlands. The modified equations produced Nash‐Sutcliffe Efficiency values of 0.88 to 0.99 for daily NO3‐N load predictions, and percent bias values generally less than 6%. However, statistical improvement over the original equations was marginal and both old and new equations provided accurate simulations. The new equations reduce the model's dependence on detailed monitoring data and hydrologic calibration. Additionally, the modified equations increase SWAT's versatility by incorporating a weir equation and an irreducible nutrient concentration and temperature coefficient. Model improvements enhance the utility of SWAT for simulating flow and nutrients in wetlands and other impoundments, although performance is limited by the accuracy of inflow and NO3‐N predictions from the contributing watershed. Editor's note : This paper is part of the featured series on SWAT Applications for Emerging Hydrologic and Water Quality Challenges. See the February 2017 issue for the introduction and background to the series.  相似文献   

14.
In this study, two different versions of the Soil and Water Assessment Tool (SWAT) model were used to simulate the hydrology and biogeochemical response of the Cannonsville Reservoir watershed, in New York. The first version distributes overland flow in ways that are consistent with variable source area (VSA) hydrology driven by saturation excess runoff, whereas the second version is the standard version of SWAT. These two models were each calibrated for streamflow (Flow), particulate phosphorus (PP), total dissolved phosphorus (TDP), and sediment (Sed) against measured data from the 1,200 km2 Cannonsville watershed. The standard version of the model yielded an r2 between the measured and simulated data of 0.85, 0.73, 0.70, and 0.72 for Flow, Sed, TDP, and PP, respectively. The VSA version yielded an r2 of 0.84, 0.69, 0.72, and 0.53 for Flow, Sed, TDP, and PP, respectively. The two models were then used to determine the maximum upper bound on the reduction in phosphorus loading by removing all of the corn in the watershed. The average reductions between the two models were 65 and 37% for PP and TDP, respectively. The VSA version was also used to estimate the effect of moving corn land in the watershed from the wettest, most runoff prone areas to the driest, least runoff prone areas, which cannot be done directly with the standard SWAT model.  相似文献   

15.
In this study, we characterize the greatest sediment loading events by their sediment delivery behavior; dominant climate, watershed, and antecedent conditions; and their seasonal distribution for rural and urban land uses. The study area is Paradise Creek Watershed, a mixed land use watershed in northern Idaho dominated by saturation excess processes in the upstream rural area and infiltration excess in the downstream urban area. We analyzed 12 years of continuous streamflow, precipitation, and watershed data at two monitoring stations. We identified 137 sediment loading events in the upstream rural section of the watershed and 191 events in the downstream urban section. During the majority of these events conditions were transport limited and the sediment flush occurred early in the event, generally in the first 20% of elapsed event time. Statistical analysis including two dozen explanatory variables showed peak discharge, event duration, and antecedent baseflow explained most of the variation in event sediment load at both stations and for the watershed as a whole (R2 = 0.73‐0.78). In the rural area, saturated soils combined with spring snowmelt in March led to the greatest loading events. The urban area load contribution peaked in January, which could be a re‐suspension of streambed sediments from the previous water year. Throughout the study period, one event contributed, on average, 33% of the annual sediment load but only accounted for 2% of the time in a year.  相似文献   

16.
A comprehensive streambank erosion model based on excess shear stress has been developed and incorporated in the hydrological model Soil and Water Assessment Tool (SWAT). It takes into account processes such as weathering, vegetative cover, and channel meanders to adjust critical and effective stresses while estimating bank erosion. The streambank erosion model was tested for performance in the Cedar Creek watershed in north‐central Texas where streambank erosion rates are high. A Rapid Geomorphic field assessment (RAP‐M) of the Cedar Creek watershed was done adopting techniques developed by the Natural Resources Conservation Service (NRCS), and the stream segments were categorized into various severity classes. Based on the RAP‐M field assessment, erosion pin sites were established at seven locations within the severely eroding streambanks of the watershed. A Monte Carlo simulation was carried out to assess the sensitivity of different parameters that control streambank erosion such as critical shear stress, erodibility, weathering depth, and weathering duration. The sensitive parameters were adjusted and the model was calibrated based on the bank erosion severity category identified by the RAP‐M field assessment. The average observed erosion rates were in the range 25‐367 mm year?1. The SWAT model was able to reasonably predict the bank erosion rates within the range of variability observed in the field (R2 = 0.90; E = 0.78). Editor's note : This paper is part of the featured series on SWAT Applications for Emerging Hydrologic and Water Quality Challenges. See the February 2017 issue for the introduction and background to the series.  相似文献   

17.
Data scarcity has been a huge problem in modeling the water resources of the Upper Blue Nile basin, Ethiopia. Satellite data and different statistical methods have been used to improve the quality of conventional meteorological data. This study assesses the applicability of the National Centers for Environmental Prediction's Climate Forecast System Reanalysis (CFSR) climate data in modeling the hydrology of the region. The Soil and Water Assessment Tool was set up to compare the performance of CFSR weather with that of conventional weather in simulating observed streamflow at four river gauging stations in the Lake Tana basin — the upper part of the Upper Blue Nile basin. The conventional weather simulation performed satisfactorily (e.g., NSE ≥ 0.5) for three gauging stations, while the CFSR weather simulation performed satisfactorily for two. The simulations with CFSR and conventional weather yielded minor differences in the water balance components in all but one watershed, where the CFSR weather simulation gave much higher average annual rainfall, resulting in higher water balance components. Both weather simulations gave similar annual crop yields in the four administrative zones. Overall the simulation with the conventional weather performed better than the CFSR weather. However, in data‐scarce regions such as remote parts of the Upper Blue Nile basin, CFSR weather could be a valuable option for hydrological predictions where conventional gauges are not available.  相似文献   

18.
Restored annual streamflow (Qr) and measured daily streamflow of the Chaohe watershed located in northern China and associated long‐term climate and land use/cover data were used to explore the effects of land use/cover change and climate variability on the streamflow during 1961‐2009. There were no significant changes in annual precipitation (P) and potential evapotranspiration, whereas Qr decreased significantly by 0.81 mm/yr (< 0.001) over the study period with a change point in 1999. We used 1961‐1998 as the baseline period (BP) and 1999‐2009 the change period (CP). The mean Qr during the CP decreased by 39.4 mm compared with that in the BP. From 1979 to 2009, the grassland area declined by 69.6%, and the forest and shrublands increased by 105.4 and 73.1%, respectively. The land use/cover change and climate variability contributed for 58.4 and 41.6% reduction in mean annual Qr, respectively. Compared with the BP, median and high flows in the CP decreased by 38.8 and up to 75.5%, respectively. The study concludes that large‐scale ecological restoration and watershed management in northern China has greatly decreased water yield and reduced high flows due to the improved land cover by afforestation leading to higher water loss through evapotranspiration. At a large watershed scale, land use/cover change could play as much of an important role as climate variability on water resources.  相似文献   

19.
Stratton, Benjamin T., Venakataramana Sridhar, Molly M. Gribb, James P. McNamara, and Balaji Narasimhan, 2009. Modeling the Spatially Varying Water Balance Processes in a Semiarid Mountainous Watershed of Idaho. Journal of the American Water Resources Association (JAWRA) 45(6):1390‐1408. Abstract: The distributed Soil Water Assessment Tool (SWAT) hydrologic model was applied to a research watershed, the Dry Creek Experimental Watershed, near Boise Idaho to investigate its water balance components both temporally and spatially. Calibrating and validating SWAT is necessary to enable our understanding of the water balance components in this semiarid watershed. Daily streamflow data from four streamflow gages were used for calibration and validation of the model. Monthly estimates of streamflow during the calibration phase by SWAT produced satisfactory results with a Nash Sutcliffe coefficient of model efficiency 0.79. Since it is a continuous simulation model, as opposed to an event‐based model, it demonstrated the limited ability in capturing both streamflow and soil moisture for selected rain‐on‐snow (ROS) events during the validation period between 2005 and 2007. Especially, soil moisture was generally underestimated compared with observations from two monitoring pits. However, our implementation of SWAT showed that seasonal and annual water balance partitioning of precipitation into evapotranspiration, streamflow, soil moisture, and drainage was not only possible but closely followed the trends of a typical semiarid watershed in the intermountain west. This study highlights the necessity for better techniques to precisely identify and drive the model with commonly observed climatic inversion‐related snowmelt or ROS weather events. Estimation of key parameters pertaining to soil (e.g., available water content and saturated hydraulic conductivity), snow (e.g., lapse rates, melting), and vegetation (e.g., leaf area index and maximum canopy index) using additional field observations in the watershed is critical for better prediction.  相似文献   

20.
Abstract: The Soil and Water Assessment Tool (SWAT) model was evaluated for estimation of continuous daily flow based on limited flow measurements in the Upper Oyster Creek (UOC) watershed. SWAT was calibrated against limited measured flow data and then validated. The Nash‐Sutcliffe model Efficiency (NSE) and mean relative error values of daily flow estimations were 0.66 and 15% for calibration, and 0.56 and 4% for validation, respectively. Also, further evaluation of the model’s estimation of flow at multiple locations was conducted with parametric paired t‐test and nonparametric sign test at a 95% confidence level. Among the five main stem stations, four stations were statistically shown to have good agreement between predicted and measured flows. SWAT underestimated the flow of the fifth main stem station possibly because of the existence of complex flood control measures near to the station. SWAT estimated the daily flow at one tributary station well, but with relatively large errors for the other two tributaries. The spatial pattern of predicted flows matched the measured ones well. Overall, it was concluded from the graphical comparisons and statistical analyses of the model results that SWAT was capable of reproducing continuous daily flows based on limited flow data as is the case in the UOC watershed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号