首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
    
Interbasin transfers (IBTs) are manmade transfers of water that cross basin boundaries. In an analysis of 2016 data, this work identified 2,161 reaches crossing United States (U.S.) Geological Survey hydrologic unit code 6 boundaries in the U.S. The objectives of this study were to characterize and classify IBTs, and examine the development drivers for a subset of 109 (~5%) of the IBT reaches through examination of samples from different climate regions of the U.S. The IBTs were classified as being near irrigated agricultural lands, near cities, or rural IBTs not near cities or irrigated land. IBTs near both cities and irrigated agricultural land were designated as city + irrigated agriculture. The 109 samples were selected, based on approximate proportional distribution to the total number of IBTs within each climate region, with representation of areas having a high density of IBTs. Analysis of the samples revealed that in the U.S., there have been four major drivers for basin transfers: irrigation for agriculture, municipal and industrial water supply, commercial shipping or navigation, and drainage or flood management. The most common has been drainage or flood management, though IBTs at least partially driven by agricultural needs are also prevalent. The majority of the sampled IBTs were constructed between 1880 and 1980, with peaks in development between 1900–1910 and 1960–1970. The samples also showed the drivers of IBT development evolved over time, reflecting changes in regional economies, populations, and needs.  相似文献   

2.
    
The U.S. Geological Survey is developing a new geospatial hydrographic framework for the United States, called the National Hydrography Dataset Plus High Resolution (NHDPlusHR), that integrates a diversity of the best‐available information, robustly supports ongoing dataset improvements, enables hydrographic generalization to derive alternate representations of the network while maintaining feature identity, and supports modern scientific computing and Internet accessibility needs. This framework is based on the High Resolution National Hydrography Dataset, the Watershed Boundaries Dataset, and elevation from the 3‐D Elevation Program, and will provide an authoritative, high precision, and attribute‐rich geospatial framework for surface‐water information for the United States. Using this common geospatial framework will provide a consistent basis for indexing water information in the United States, eliminate redundancy, and harmonize access to, and exchange of water information.  相似文献   

3.
    
We update the Wigington et al. (2013) hydrologic landscape (HL) approach to make it more broadly applicable and apply the revised approach to the Pacific Northwest (PNW; i.e., Oregon, Washington, and Idaho). Specific changes incorporated are the use of assessment units based on National Hydrography Dataset Plus V2 catchments, a modified snowmelt model validated over a broader area, an aquifer permeability index that does not require preexisting aquifer permeability maps, and aquifer and soil permeability classes based on uniform criteria. Comparison of Oregon results for the revised and original approaches found fewer and larger assessment units, loss of summer seasonality, and changes in rankings and proportions of aquifer and soil permeability classes. Differences could be explained by three factors: an increased assessment unit size, a reduced number of permeability classes, and use of smaller cutoff values for the permeability classes. The distributions of the revised HLs in five groups of Oregon rivers were similar to the original HLs but less variable. The improvements reported here should allow the revised HL approach to be applied more often in situations requiring hydrologic classification and allow greater confidence in results. We also apply the map results to the development of hydrologic landscape regions.  相似文献   

4.
Abstract: The 1:24,000‐scale high‐resolution National Hydrography Dataset (NHD) mapped hydrography flow lines require regular updating because land surface conditions that affect surface channel drainage change over time. Historically, NHD flow lines were created by digitizing surface water information from aerial photography and paper maps. Using these same methods to update nationwide NHD flow lines is costly and inefficient; furthermore, these methods result in hydrography that lacks the horizontal and vertical accuracy needed for fully integrated datasets useful for mapping and scientific investigations. Effective methods for improving mapped hydrography employ change detection analysis of surface channels derived from light detection and ranging (LiDAR) digital elevation models (DEMs) and NHD flow lines. In this article, we describe the usefulness of surface channels derived from LiDAR DEMs for hydrography change detection to derive spatially accurate and time‐relevant mapped hydrography. The methods employ analyses of horizontal and vertical differences between LiDAR‐derived surface channels and NHD flow lines to define candidate locations of hydrography change. These methods alleviate the need to analyze and update the nationwide NHD for time relevant hydrography, and provide an avenue for updating the dataset where change has occurred.  相似文献   

5.
Abstract: The U.S. Federal Emergency Management Agency (FEMA) flood maps depict the 100‐year recurrence interval floodplain boundary as a single line. However, because of natural variability and model uncertainty, no floodplain extents can be accurately defined by a single line. This article presents a new approach to floodplain mapping that takes advantage of accepted methodologies in hydrologic and hydraulic analysis while including the effects of uncertainty. In this approach, the extents of computed floodplain boundaries are defined as a continuous map of flood probabilities, rather than as a single line. Engineers and planners can use these flood probability maps for viewing the uncertainty of a floodplain boundary at any recurrence interval. Such a flood probability map is a useful tool for visualizing the uncertainty of a floodplain boundary and represents greater honesty in engineering technologies that are used for flood mapping. While institutional barriers may prevent adoption of such definitions for use in graduated flood insurance rates (as most other insurance industries use to account for relative risks), the methods open the door technically to such a reality.  相似文献   

6.
Mittman, Tamara, Lawrence E. Band, Taehee Hwang, and Monica Lipscomb Smith, 2012. Distributed Hydrologic Modeling in the Suburban Landscape: Assessing Parameter Transferability from Gauged Reference Catchments. Journal of the American Water Resources Association (JAWRA) 48(3): 546-557. DOI: 10.1111/j.1752-1688.2011.00636.x Abstract: Distributed, process-based models of catchment hydrologic response are potentially useful tools for the assessment of Low Impact Development (LID) techniques in urbanized catchments. Their application is often limited, however, by the lack of continuous streamflow records to calibrate poorly constrained parameters. This article examines the transferability of soil and groundwater parameters from a forested reference catchment to a nearby suburban catchment. We use the Regional Hydro-Ecologic Simulation System (RHESSys) to develop hydrologic models of one gauged forested and one ungauged suburban catchment within the Baltimore Ecosystem Study (BES) study area. We use a parameter uncertainty framework to calibrate soil and groundwater parameters for the forested catchment, and discrete measurements of streamflow from the suburban catchment to assess parameter transferability. Results indicate that the transfer of soil and groundwater parameters from forested reference to nearby suburban catchments is viable, with performance measures for the suburban catchment often exceeding those for the forested catchment. We propose that the simplification of hydrologic processes in urbanized catchments may account for the increase in model performance in the suburban catchment.  相似文献   

7.
Abstract: The spatial variability of the data used in models includes the spatial discretization of the system into subsystems, the data resolution, and the spatial distribution of hydrologic features and parameters. In this study, we investigate the effect of the spatial distribution of land use, soil type, and precipitation on the simulated flows at the outlet of “small watersheds” (i.e., watersheds with times of concentration shorter than the model computational time step). The Soil and Water Assessment Tool model was used to estimate runoff and hydrographs. Different representations of the spatial data resulted in comparable model performances and even the use of uniform land use and soil type maps, instead of spatially distributed, was not noticeable. It was found that, although spatially distributed data help understand the characteristics of the watershed and provide valuable information to distributed hydrologic models, when the watershed is small, realistic representations of the spatial data do not necessarily improve the model performance. The results obtained from this study provide insights on the relevance of taking into account the spatial distribution of land use, soil type, and precipitation when modeling small watersheds.  相似文献   

8.
ABSTRACT: Usability assessments were used to obtain feedback on the development of a flood forecasting decision support system. The feedback was used to guide design of system functionality, interface, training, implementation, and operations. The usability process was user focused and was dependent upon implementation of a prototype system in an operational setting. This paper describes concepts and methods applied to collect reflective and objective data on DSS components and information outputs. The general structure of the usability assessments is discussed and results of assessments are summarized.  相似文献   

9.
    
Headwater streams have a significant nexus or physical, chemical, and/or biological connection to downstream reaches. Generally, defined as 1st‐3rd order with ephemeral, intermittent, or perennial flow regimes, these streams account for a substantial portion of the total stream network particularly in mountainous terrain. Due to their often remote locations, small size, and large numbers, conducting field inventories of headwater streams is challenging. A means of estimating headwater stream location and extent according to flow regime type using publicly available spatial data is needed to simplify this complex process. Using field‐collected headwater point of origin data from three control watersheds, streams were characterized according to a set of spatial parameters related to topography, geology, and soils. These parameters were (1) compared to field‐collected point of origin data listed in three nearby Jurisdictional Determinations, (2) used to develop a geographic information system (GIS)‐based stream network for identifying ephemeral, intermittent, and perennial streams, and (3) applied to a larger watershed and compared to values obtained using the high‐resolution National Hydrography Dataset (NHD). The parameters drainage area and local valley slope were the most reliable predictors of flow regime type. Results showed the high‐resolution NHD identified no ephemeral streams and 9 and 65% fewer intermittent and perennial streams, respectively, than the GIS model.  相似文献   

10.
    
Interbasin transfers (IBTs) are man‐made transfers of water that cross basin boundaries. These transfers are used to distribute water resources according to supply and demand. The objectives of this work were to quantify the number of IBTs that exist in the United States (U.S.) and to examine the distribution of IBTs and potential causes associated with any observed clustering of IBTs. Defining “basin” was important to enable determination of which transfers qualify as “interbasin.” A variety of definitions are employed by states, with no federal definition. The most recent national studies of IBTs were conducted by the U.S. Geological Survey (USGS) in 1985 and 1986 using USGS Hydrologic Unit Code (HUC) definitions of basins. To build a 2016 inventory of IBTs in the U.S., and to identify where they most commonly occur, the USGS National Hydrography Database (NHD) was utilized in conjunction with the Watershed Boundary Dataset (WBD). Transfers across HUC6 basin boundaries were considered interbasin. Geographical information analysis with the NHD and WBD databases revealed that there are a total of 2,161 man‐made waterways crossing HUC6 basin boundaries in the U.S. IBTs are somewhat concentrated: Florida, Texas, and North Carolina account for over 50% of the total identified IBTs. For some states, identified IBTs are locally clustered. Analysis of these clusters suggests a variety of reasons that IBTs have been built, including population, drainage, and agricultural factors.  相似文献   

11.
    
The Watershed Flow and Allocation model (WaterFALL®) provides segment‐specific, daily streamflow at both gaged and ungaged locations to generate the hydrologic foundation for a variety of water resources management applications. The model is designed to apply across the spatially explicit and enhanced National Hydrography Dataset (NHDPlus) stream and catchment network. To facilitate modeling at the NHDPlus catchment scale, we use an intermediate‐level rainfall‐runoff model rather than a complex process‐based model. The hydrologic model within WaterFALL simulates rainfall‐runoff processes for each catchment within a watershed and routes streamflow between catchments, while accounting for withdrawals, discharges, and onstream reservoirs within the network. The model is therefore distributed among each NHDPlus catchment within the larger selected watershed. Input parameters including climate, land use, soils, and water withdrawals and discharges are georeferenced to each catchment. The WaterFALL system includes a centralized database and server‐based environment for storing all model code, input parameters, and results in a single instance for all simulations allowing for rapid comparison between multiple scenarios. We demonstrate and validate WaterFALL within North Carolina at a variety of scales using observed streamflows to inform quantitative and qualitative measures, including hydrologic flow metrics relevant to the study of ecological flow management decisions.  相似文献   

12.
    
Flooding is a dominant physical process that drives the form and function of river-floodplain ecosystems. Efficiently characterizing flooding dynamics can be challenging, especially over geographically broad areas or at spatial and temporal scales relevant for ecosystem management activities. Here, we empirically evaluated a low-complexity geospatial model of floodplain inundation in six study segments of the Upper Mississippi River System (UMRS) by pairing spatially extensive, temporally limited and spatially limited, temporally extensive sampling designs. We found little evidence of systematic bias in model performance although discrepancies between model predictions and empirical data did occur locally. Assessments of model predictions revealed low segment-wide discrepancies of wetted extent under contrasting flow conditions and agreement for inundation event detection and duration. Model performance for predicting event frequency and duration was similar among sites expected to exhibit contrasting patterns of hydrologic connectivity with the main channel. Our results suggest that low-complexity models can efficiently characterize a critical physical process across geographically broad, complex river-floodplain ecosystems. Such tools have the potential for advancing scientific understanding of landscape-scale ecological patterns and for prioritizing management actions in large, complex river-floodplain ecosystems like the UMRS.  相似文献   

13.
    
Groundwater pumping depletes streamflow, which can have significant ecological impacts depending on the magnitude of depletion relative to environmental flow needs. Streamflow depletion estimates from groundwater pumping have been quantified using both analytical and numerical methods, but are not routinely compared to environmental flow needs or used in practical water management tools. Decision support tools that incorporate groundwater dynamics are becoming increasingly necessary for water managers as groundwater regulations become more important in environmental policy, particularly concerning the preservation of environmental flow needs. We develop and apply methods for a web‐based decision support tool for conjunctive groundwater and surface water management, demonstrated using a case study watershed in British Columbia, Canada. Open‐source data are analyzed with a combination of spatial algorithms and previously developed analytical models, such that the tool can be applied to other regions. Streamflow depletion estimates are calculated in four regions in the largely undeveloped Bulkley Valley, British Columbia. Our transparent methodology has geographic and data input flexibility which is a significant improvement on currently existing water management tool methods.  相似文献   

14.
    
This study describes the application of the NASA version of the Carnegie‐Ames‐Stanford Approach (CASA) ecosystem model coupled with a surface hydrologic routing scheme previously called the Hydrological Routing Algorithm (HYDRA) to model monthly discharge rates from 2000 to 2007 on the Merced River drainage in Yosemite National Park, California. To assess CASA‐HYDRA's capability to estimate actual water flows in extreme precipitation years, the focus of this study is the 2007 water year, which was very dry, and the 2005 water year, which was a moderately wet year in the historical record. Prior to comparisons to gauge records, CASA‐HYDRA snowmelt algorithms were modified with equations from the U.S. Department of Agriculture Snowmelt‐Runoff Model (SRM), which has been designed to predict daily streamflow in mountain basins where snowmelt is a major runoff factor. Results show that model predictions closely matched monthly flow rates at the Pohono Bridge gauge station (USGS#11266500), with R2 = 0.67 and Nash‐Sutcliffe (E) = 0.65. By subdividing the upper Merced River basin into subbasins with high spatial resolution in the gridded modeling approach, we were able to determine which biophysical characteristics in the Sierra differed to the largest degree in extreme low‐flow and high‐flow years. Average elevation and snowpack accumulation were found to be the most important explanatory variables to understand subbasin contributions to monthly discharge rates.  相似文献   

15.
Booth, Nathaniel L., Eric J. Everman, I‐Lin Kuo, Lori Sprague, and Lorraine Murphy, 2011. A Web‐Based Decision Support System for Assessing Regional Water‐Quality Conditions and Management Actions. Journal of the American Water Resources Association (JAWRA) 47(5):1136‐1150. DOI: 10.1111/j.1752‐1688.2011.00573.x Abstract: The U.S. Geological Survey National Water Quality Assessment Program has completed a number of water‐quality prediction models for nitrogen and phosphorus for the conterminous United States as well as for regional areas of the nation. In addition to estimating water‐quality conditions at unmonitored streams, the calibrated SPAtially Referenced Regressions On Watershed attributes (SPARROW) models can be used to produce estimates of yield, flow‐weighted concentration, or load of constituents in water under various land‐use condition, change, or resource management scenarios. A web‐based decision support infrastructure has been developed to provide access to SPARROW simulation results on stream water‐quality conditions and to offer sophisticated scenario testing capabilities for research and water‐quality planning via a graphical user interface with familiar controls. The SPARROW decision support system (DSS) is delivered through a web browser over an Internet connection, making it widely accessible to the public in a format that allows users to easily display water‐quality conditions and to describe, test, and share modeled scenarios of future conditions. SPARROW models currently supported by the DSS are based on the modified digital versions of the 1:500,000‐scale River Reach File (RF1) and 1:100,000‐scale National Hydrography Dataset (medium‐resolution, NHDPlus) stream networks.  相似文献   

16.
    
There is a critical need for a national agroecosystem model for conservation policy and environmental planning, driven by issues including harmful algal blooms, water scarcity, flooding, and other weather‐related extremes. In this study, we illustrate the feasibility of a national agroecosystem model that will downscale processes to individual fields and first‐order channels. We propose to conceptually divide the conterminous United States (U.S.) into process domains as a framework for simulating processes and management at relevant scales. Specifically, we are proposing five domains: field (1–50 ha), transition (0.2–2.0 km2), headwater (1–15 km2), tributaries (15–150 km2), and main river (>150 km2). The proposed conceptual framework hydrologically connects fields across the U.S. using the National Hydrography Dataset (NHDPlus version 2). Parameterizing the Soil and Water Assessment Tool for the national agroecosystem model resulted in 4,880,000 agricultural fields, 2,250,000 non‐agricultural hydrologic response units, and 7,130,000 transition, 1,610,000 headwater, 591,000 tributary, and 432,400 main channels. Application of this framework was shown for Hydrologic Unit Code 07120002 in central Illinois and Indiana to demonstrate the feasibility of the approach using data that is readily available across the U.S. The new connectivity framework has the potential to dramatically improve national conservation and environmental assessments performed by U.S. Department of Agriculture and U.S. Environmental Protection Agency.  相似文献   

17.
    
Low Impact Development (LID) is alternative design approach to land development that conserves and utilizes natural resources to minimize the potential negative environmental impacts of development, such as flooding. The Woodlands near Houston, Texas is one of the premier master‐planned communities in the United States. Unlike in a typical urban development where riparian corridors are often replaced with concrete channels, pervious surfaces, vegetation, and natural drainage pathways were preserved as much as possible during development. In addition, a number of detention ponds were strategically located to manage runoff on site. This article uses a unique distributed hydrologic model, Vflo?, combined with historical (1974) and recent (2008 and 2009) rainfall events to evaluate the long‐term effectiveness of The Woodlands natural drainage design as a stormwater management technique. This study analyzed the influence of LID in The Woodlands by comparing the hydrologic response of the watershed under undeveloped, developed, and highly urbanized conditions. The results show that The Woodlands drainage design successfully reflects predeveloped hydrologic conditions and produces peak flows two to three times lower than highly urbanized development. Furthermore, results indicate that the LID practices employed in The Woodlands successfully attenuate the peak flow from a 100‐year design event, resulting in flows comparable to undeveloped hydrologic conditions.  相似文献   

18.
    
ABSTRACT: Water quality issues in agriculture are growing in importance. A common theme is the provision of better information to decision makers. This study reports the trial of a prototype decision support system by the U.S. Department of Agriculture Natural Resources Conservation Service and the Agricultural Research Service in the NRCS Harrison County Field Office in 1998. Observed data collected at the Deep Loess Research Station (DLRS) near Treynor, Iowa, were extrapolated using a modified GLEAMS field scale simulation model that included a nitrogen leaching component and a crop growth component. An accounting tool was used to convert crop yield estimates into crop budgets. A model interface was built to specify the climate, soil, and topography of the field, as well as the management scenarios for the alternative management systems. For the Deep Loess Hills area of Harrison County, a total of six soil and slope groups, with 66 total combinations of management practices forming management systems, were defined and simulated based on previously calibrated data from DLRS. A multi‐objective decision support system, the Water Quality Decision Support System, or WQDSS, was used to examine the tradeoffs in a comprehensive set of variables affected by alternative management systems with farmers in Harrison County. The study concluded that a multiobjective decision support system should be developed to support conservation planning by the NRCS. Currently, a larger scale effort to improve water quality decision making is underway.  相似文献   

19.
Meierdiercks, Katherine L., James A. Smith, Mary Lynn Baeck, and Andrew J. Miller, 2010. Analyses of Urban Drainage Network Structure and Its Impact on Hydrologic Response. Journal of the American Water Resources Association (JAWRA) 1-12. DOI: 10.1111/j.1752-1688.2010.00465.x Abstract: Urban flood studies have linked the severity of flooding to the percent imperviousness or land use classifications of a watershed, but relatively little attention has been given to the impact of urban drainage networks on hydrologic response. The drainage network, which can include storm pipes, surface channels, street gutters, and stormwater management ponds, is examined in the Dead Run watershed (14.3 km2). Comprehensive digital representations of the urban drainage network in Dead Run were developed and provide a key observational resource for analyses of urban drainage networks and their impact on hydrologic response. Analyses in this study focus on three headwater subbasins with drainage areas ranging from 1.3 to 1.9 km2 and that exhibit striking contrasts in their patterns and history of development. It is shown that the drainage networks of the three subbasins, like natural river networks, exhibit characteristic structures and that these features play critical roles in determining urban hydrologic response. Hydrologic modeling analyses utilize the Environmental Protection Agency’s Stormwater Management Model (SWMM), which provides a flexible platform for examining the impacts of drainage network structure on hydrologic response. Results of SWMM modeling analyses suggest that drainage density and presence of stormwater ponds impact peak discharge more significantly in the Dead Run subbasins than the percent impervious or land use type of the subbasins.  相似文献   

20.
    
As a key component of the National Flood Interoperability Experiment (NFIE), this article presents the continental scale river flow modeling of the Mississippi River Basin (MRB), using high‐resolution river data from NHDPlus. The Routing Application for Parallel computatIon of Discharge (RAPID) was applied to the MRB with more than 1.2 million river reaches for a 10‐year study (2005‐2014). Runoff data from the Variable Infiltration Capacity (VIC) model was used as input to RAPID. This article investigates the effect of topography on RAPID performance, the differences between the VIC‐RAPID streamflow simulations in the HUC‐2 regions of the MRB, and the impact of major dams on the streamflow simulations. The model performance improved when initial parameter values, especially the Muskingum K parameter, were estimated by taking topography into account. The statistical summary indicates the RAPID model performs better in the Ohio and Tennessee Regions and the Upper and Lower Mississippi River Regions in comparison to the western part of the MRB, due to the better performance of the VIC model. The model accuracy also increases when lakes and reservoirs are considered in the modeling framework. In general, results show the VIC‐RAPID streamflow simulation is satisfactory at the continental scale of the MRB.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号