首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
    
A multi-tier approach for agricultural watershed management has been proposed. The approach involves identification of a watershed management issue/problem, selection or development of simple conceptual model suitable for the exploration of the issue/problem identified and appropriate to the database available, and application of the model the address the identified issue/problem. The procedure is repeated by increasing the complexity in the conceptual model until the identified issue/problem has been addressed satisfactorily. An application of the procedure to an example watershed in southern Ontario conditions is shown. The application example has revealed that for identification of temporal pattern of runoff and sediment loads a simple conceptual model is adequate. For identification of spatial location of the sediment source areas and for the development of a monitoring program for the evaluation of remedial strategies a more complex distributed agricultural watershed model is necessary.  相似文献   

2.
ABSTRACT: A model called SPNM from the words “sediment-phosphorus-nitrogen model” was developed for simulating agricultural contributions to water pollution. SPNM is designed to predict sediment, P, and N yields for individual storms on small basins and to route these yields through streams and valleys of large basins. Users need no computer programming experience because the model is a problem-oriented computer language. SPNM is useful in planning water resources projects and in research. Tests of the model on a watershed provided realistic results.  相似文献   

3.
    
ABSTRACT: Field data collected from the Feitsui Reservoir in Taiwan indicate that the water is at a stage between mesotrophic and eutrophic. Recent measurements such as total phosphorus, chlorophyll a and Secchi depth levels suggest that the water quality has been declining. A two‐dimensional, laterally averaged, finite difference hydrodynamic and water quality model was used to simulate the water quality in the Feitsui Reservoir in an effort to determine sound water quality management strategies. The model was calibrated and verified using data collected in 1996 and 1997. The calibrated model was used to simulate algal biomass (in terms of chlorophyll a) levels under various wasteload reduction scenarios. Model results show that 50 percent reduction of the total phosphorus load will improve the existing water quality, shifting the trophic status from eutrophic/mesotrophic to oligotrophic. The modeling effort has yielded valuable information that can be used by decision makers for the evaluation of different management strategies of reducing watershed nutrient loads.  相似文献   

4.
ABSTRACT: The important ecological and hydrological roles of wetlands are widely recognized, but the geomorphic functions of wetlands are also critical. Wetlands can be defined in geomorphic, as well as in hydrological or biological terms, and a geomorphic definition of wetlands is proposed. An analysis of fluvial sediment budget studies shows that wetlands typically serve as short-term sediment sinks or longer-term sediment storage sites. In ten study basins of various sizes, an estimated 14 to 58 percent of the total upland sediment production is stored in alluvial wetland or other aquatic environments. Of the sediment reaching streams, 29 to 93 percent is stored in alluvial wetland or channel environments. For basins of more than 100 km2, more than 15 percent of total upland sediment production and more than 50 percent of sediment reaching streams is deposited in wetlands. The data underestimates the magnitude of wetland sediment storage due to the lack of data from large river systems. A theoretical analysis of river channel sediment delivery shows that wetland and aquatic sediment storage is inevitable in fluvial systems and systematically related to basin size. Results suggest that wetlands should be managed in the context of drainage basins, rather than as discrete, independent units.  相似文献   

5.
    
ABSTRACT: Increased visitation at Grand Teton National Park (GTNP) has raised concerns about impacts on surface water in the park. The purposes of this study are to perform a benchmark trophic state survey for comparison to future evaluations and to identify possible areas of concern. Four watershed regions based on geographic and geologic features were delineated for study. Six Alpine lakes, six Moraine lakes, three Valley lakes, and two Colter Bay lakes are evaluated. Lakes were sampled for total phosphorus (TP), chlorophyll‐a, and transparency. The water quality, as defined by trophic state, in the park is generally good. Oligotrophic to mesotrophic conditions were found in the Alpine and Moraine lakes and mesotrophic to eutrophic conditions were found in the Colter Bay and Valley lakes. High inflow TP concentrations in the park's northeast side may be due to the presence of natural geologic phosphate from the Phosphoria Formation.  相似文献   

6.
ABSTRACT: West Point Lake is a 10,360 ha mainstream impoundment of the Chattahoochee River located 95 kilometers downstream of Atlanta, Georgia. Origins and magnitude of external total phosphorus (TP) and total suspended solids (TSS) loads from the West Point Lake basin were estimated over a one-year period. Partitioning the drainage basin allowed the sources of these loads to be determined. The upper subbasin area, from Franklin, Georgia, to the headwaters of the Chattahoochee River, contributed 96 percent of the discharge and 97 percent of the TP and TSS loads into West Point Lake. The lower subbasin area, from Franklin to West Point Lake dam, only contributed 3 percent of the TP and TSS loads. Ninety-one percent and 87 percent of the TP and TSS loads, respectively, from the upper subbasin originated from the Atlanta area. Point sources discharged 70 percent and 3 percent of the upper subbasin TP and TSS loads, respectively. A large portion (66 percent) of the TP from the upper subbasin was in the bioavailable form.  相似文献   

7.
    
To reduce nonpoint source pollution from nutrient, chemical, and sediment runoff, a number of environmental policy standards have been proposed. Such standards could be used to reduce nonpoint source pollution from nutrient, chemical, and sediment runoff to impaired water bodies. State governments can use voluntary approaches to meet nonpoint source pollution reduction goals. However, the practices that lower net returns will not be voluntarily adopted by farmers. Crop rotations and tillage practices may help producers to comply with the environmental standards while minimizing losses in farm profits. This study compares runoff from crop rotation practices and conventional continuous row cropping systems in Mississippi. The results are compared for different tillage systems in order to examine robustness of results. Nutrient runoff and sediment runoff are simulated using the Erosion Productivity Impact Calculator (EPIC). Sensitivity analysis of the sediment and nitrate reductions at 15 percent, 25 percent, and 35 percent are conducted. Under these scenarios, net returns are optimized under environmental constraints, and the marginal cost of sediment reduction ranges from US$1.61 to US$9.63 per ton depending on soil conditions, while the corresponding nitrate and phosphorus reductions costs range from US$1.21 to US$7.08 per kg and from US$0.09 to US$31.91, respectively. The empirical results from this study indicate that a nitrate reduction policy is relatively less costly than a sediment reduction policy. The results also demonstrate the importance of geophysical conditions and policy costs, which vary across regions.  相似文献   

8.
    
This paper reviews sediment transport and channel morphology in small, forested streams in the Pacific Northwest region of North America to assess current knowledge of channel stability and morphology relevant to riparian management practices around small streams. Small channels are defined as ones in which morphology and hydraulics may be significantly influenced by individual clasts or wood materials in the channel. Such channels are headwater channels in close proximity to sediment sources, so they reflect a mix of hillslope and channel processes. Sediment inputs are derived directly from adjacent hillslopes and from the channel banks. Morphologically significant sediments move mainly as bed load, mainly at low intensity, and there is no standard method for measurement. The larger clastic and woody elements in the channel form persistent structures that trap significant volumes of sediment, reducing sediment transport in the short term and substantially increasing channel stability. The presence of such structures makes modeling of sediment flux in these channels — a potential substitute for measurement — difficult. Channel morphology is discussed, with some emphasis on wood related features. The problem of classifying small channels is reviewed, and it is recognized that useful classifications are purpose oriented. Reach scale and channel unit scale morphologies are categorized. A “disturbance cascade” is introduced to focus attention on sediment transfers through the slope channel system and to identify management practices that affect sediment dynamics and consequent channel morphology. Gaps in knowledge, errors, and uncertainties have been identified for future research.  相似文献   

9.
    
ABSTRACT: The distribution of sediment physical characteristics, sediment phosphorus (P) pools, and laboratory‐based rates of P release from the sediments were used to identify regions and dosage for alum treatment in Wind Lake, Wisconsin. Using variations in sediment moisture content, we identified an erosional zone at depths < 1.4 m and an accumulation zone at depths > 2.6 m. Mean concentrations of porewater P, loosely‐bound P, iron‐ and aluminum‐bound P, and mean rates of P release from sediments under anoxic conditions were high in the accumulation zone compared to sediment P characteristics in the erosional zone, indicating focusing of readily mobilized sediment P pools from shallow regions and accumulation to deep regions. We determined that a future alum treatment for control of internal P loading would be most effective at depths > 2.6 in the accumulation zone. The mean rate of anoxic P release from sediments encountered in the accumulation zone (8.3 mg m‐2 d‐1) was used in conjunction with a summer anoxic period of 122 d, and a treatment area of 1.6 km2 to estimate an internal P load of 1,600 kg to be controlled. Our results suggest that an understanding of the distribution of sediment P pools and P fluxes in lakes provides a strategy for estimating alum dosage and application areas.  相似文献   

10.
    
ABSTRACT: Forest and grass riparian buffers have been shown to be effective best management practices for controlling nonpoint source pollution. However, little research has been conducted on giant cane [Arundinaria gigantea (Walt. Muhl.)], a formerly common bamboo species, native to the lower midwestern and southeastern United States, and its ability to reduce nutrient loads to streams. From May 2002 through May 2003, orthophosphate or dissolved reactive phosphate (DRP) concentrations in ground water were measured at successive distances from the field edge through 12 m of riparian buffers of both giant cane and mixed hardwood forest along three streams draining agricultural land in the Cache River watershed in southern Illinois. Giant cane and mixed hardwood forest did not differ in their DRP sequestration abilities. Ground water DRP concentrations were significantly reduced (14 percent) in the first 1.5 m of the buffers, and there was an overall 28 percent reduction in DRP concentration by 12 m from the field edge. The relatively low DRP reductions compared to other studies could be attributed to high DRP input levels, narrow (12 m) buffer lengths, and/or mature (28 to 48 year old) riparian vegetation.  相似文献   

11.
ABSTRACT: Evaluation of the non-point source pollutant load entering a lake from multiple tributaries requires either that all tributaries be monitored or that some extrapolation method be used to estimate loads originating in areas not monitored. Unmonitored areas include not only watersheds of tributaries that are not monitored, but also portions of a monitored tributary's drainage basin downstream from the monitoring site and areas of direct drainage. Significant portions of large lake drainage basins are often not monitored, and loads for these areas are often estimated by extrapolation. Six simple extrapolation procedures were evaluated by using them to estimate loads for areas that had been monitored and comparing the estimated loads with the monitored loads. Three approaches were based on inter-basin ratios of area, C-factor, and discharge. The other approaches used regression relationships between concentration and flow to estimate concentrations for the unmonitored basin. The ratio approaches generally were more reliable than the regression approaches. However, extrapolation by any method tested was not very precise. Some methods also were biased when applied to watersheds of a size different than the monitored one. Extrapolation by any of these methods would compromise the precision of the lake-wide load estimate, if the unmonitored area were a significant part of the entire basin.  相似文献   

12.
ABSTRACT Bottom sediment in Hillsdale Lake, Kansas, was analyzed to estimate the annual load of total phosphorus deposited in the lake from nonpoint sources. Topographic, bathymetric, and sediment-core data were used to estimate the total mass of phosphorus in the lake-bottom sediment. Available streamflow and water-quality data were used to compute the mean annual mass of phosphorus (dissolved plus suspended) exiting the lake. The mean annual load of phosphorus added to the lake from point sources was estimated from previous studies. A simple mass balance then was used to compute the mean annual load of phosphorus from non-point sources. The total mass of phosphorus in the lake-bottom sediment was estimated to be 924,000 kg, with a mean annual load of 62,000 kg. The mean annual mass of phosphorus exiting in the lake outflow was estimated to be about 8,000 kg. The mean annual loads of phosphorus added to the lake from point and nonpoint sources were estimated to be 5,000 and 65,000 kg, respectively. Thus, the contribution to the total mean annual phosphorus load in Hillsdale Lake is about 7 percent from point sources and about 93 percent from nonpoint sources.  相似文献   

13.
ABSTRACT: An agricultural nonpoint source polluted stream in northern Idaho was examined to determine seasonal and longitudinal patterns of periphyton chlorophyll α. Chlorophyll a was measured at eight sites along Lapwai Creek, a fifth order stream impacted by agricultural runoff containing nutrients and eroded soils. Seasonally, periphyton chlorophyll α was lowest in the spring (cumulative x?= 60.4 mg m?2) and highest in the summer (cumulative x?= 222 mg m?2). Winter concentrations were higher than expected (cumulative x?= 168.6 mg m?2). The headwaters, flowing through an open grassy meadow, had the lowest concentrations of the study (two-year x?= 49.7 mg m?2). Immediately below a small, eutrophic reservoir, periphyton chlorophyll α increased markedly (two-year x?= 155.8 mg m?2) and remained high through a deep canyon (two year x?= 135.5 mg m?2) and down to the mouth of the stream (two-year x?= 172.3 mg?2). Periphyton chlorophyll α in Lapwai Creek was at least two times greater than values reported in the literature for comparable, undisturbed Idaho streams. We suggest that increased nutrient concentrations via agricultural nonpoint source pollution and increased light penetration from the removal of large, woody riparian vegetation have resulted in high periphyton chlorophyll α along the continuum of Lapwai Creek.  相似文献   

14.
Urban Waste Pollution in the Korle Lagoon, Accra, Ghana   总被引:1,自引:0,他引:1  
The Korle Lagoon in Accra, Ghana, has become one of the most polluted water bodies on earth. It is the principal outlet through which all major drainage channels in the city empty their wastes into the sea. Large amounts of untreated industrial waste emptied into surface drains has led to severe pollution in the lagoon and disrupted its natural ecology. The increased levels of industrial activity and consumption by the urban population lead to the generation of copious quantities of waste. Managing the volume of wastes poses a major challenge for the city authorities, particularly, ensuring that all the waste generated is collected for disposal. In Accra, the Waste Management Department is currently capable of collecting only 60 percent of the waste generated daily. The rest is dumped in open spaces, in surface drains, and into water bodies which end up in the Korle Lagoon. High eutrophication levels have developed in the shallow water body. The net effect is that, at the slightest downpour, the lagoon overflows its banks causing regular flooding in parts of the city.The Government of Ghana, having realized the adverse impacts of pollution in the lagoon on the physical and economic environment of Accra, with the support of donor agencies, is implementing measures to restore the lagoon to its natural ecology. Attempts are also being made to get the communities in the catchment area to become involved in managing their environment through environmental education and awareness programes.  相似文献   

15.
    
Phosphorus (P) and sediment inputs from agricultural drainage contribute to the development of hypereutrophic conditions in lakes across the world. Two‐stage (2‐S) ditches, an agricultural best management practice gaining acceptance in the Midwestern United States, increase floodplain area within drainage ditches to help capture nutrients and sediment. While denitrification has been shown to increase on 2‐S benches, less is known about their P retention ability. This study assessed the abiotic and biotic P retention of two separate 2‐S ditches compared to their corresponding traditional reaches directly upstream within the Macatawa watershed, located in West Michigan. Soluble reactive P export was significantly reduced in 2‐S baseflow of both ditch systems. Equilibrium P concentration values suggest retention of P within the 2‐S sediment. P was bound within stable fractions in both 2‐S and traditional reaches. An analysis of P stock within the ditches revealed sediment held over 96% of total P (TP) within each reach compared to <4% in bench vegetation and periphyton combined. Turbidity, but not TP, was reduced in one study ditch, whereas TP, but not turbidity, was reduced in the other study ditch. Geomorphic stability may have been responsible for differing P retention between ditches. Ability to retain P appears to be impacted by physical as well as biogeochemical characteristics; hence, structure and age of 2‐S reaches influence P retention.  相似文献   

16.
Summer lake survey measurements of total phosphorus (TP) and chlorophyll a (CHLa) from 188 reserviors and natural lakes in the midwest were analyzed to determine the magnitude of major sources of variability. Median variance among replicate samples collected at the same location and time was about 7-8 percent of the mean for both TP and CHLa. Median observed temporal variability within summers was 27 percent of the mean for TP and 45 percent of the mean for CHLa. Median values of year-to-year variance in average TP and CHLa were 22 percent and 31 percent of the mean, respectively. A range of approximately two orders of magnitude was observed among individual estimates of variance in each of these categories. The magnitude of observed temporal variability was affected only slightly by variance among replicate samples on individual days and was weakly correlated with the length of time during which samples were collected from individual lakes. Observed temporal variation was similar between reservoirs and natural lakes when variances were calculated with logtransformed data. The magnitude of temporal and year-to-year variance can severely limit the power of statistical comparisons of TP and CHLa means, but has less effect on establishing relative rankings of lake means, Sources and relative magnitude of variability are important in the use of TP and CHLa data in regression models and in the planning of lake surveys and subsequent data analysis.  相似文献   

17.
    
Total phosphorus (TP) loads in many rivers in the north-central United States have increased, including the Illinois River at Valley City, Illinois, USA, which increased 39% from the periods 1989–1996 to 2015–2019 despite efforts to reduce loads from point and nonpoint sources. Here, we quantify long-term variations in phosphorus (P) loads in the Illinois River and its tributaries and identify factors that may be causing the variations. We calculated river loads of dissolved (DP) and particulate P (PP), total and volatile suspended solids (TSS and VSS), and other potentially related constituents at 41 locations. DP loads generally increased and PP and TSS loads generally decreased from 1989–1996 to 2015–2019. During 1989–1996, P accumulated in the lower basin between Marseilles and Valley City (excluding monitored tributaries). This portion of the basin is very flat and accumulates sediment. During 2015–2019, this section shifted from being a net sink to being a net source of P, accounting for 78% of the increased TP load at Valley City. We present evidence supporting several mechanisms that could have caused this shift: increased DP and chloride loads, reduced sulfate and nitrate concentrations influencing ionic strength and redox potential in the sediments, and increased VSS loads at Valley City possibly indicating greater algal production and contributing to hypoxia in lower river sediments. Additional research is needed to quantify the relative importance of these mechanisms.  相似文献   

18.
Abstract: Over the past 35 years, a trend of decreasing water clarity has been documented in Lake Tahoe, attributable in part to the delivery of fine‐grained sediments emanating from upland and channel sources. The overall objective of the research reported here was to determine the amount of fine sediment delivered to Lake Tahoe from each of the 63 contributing watersheds. The research described in this report used combinations of field‐based observations of channel and bank stability with measured and simulated data on fine‐sediment loadings to estimate fine‐sediment loadings from unmonitored basins throughout the Lake Tahoe Basin. Loadings were expressed in the conventional format of mass per unit time but also in the number of particles finer than 20 μm, the latter for future use in a lake‐clarity model. The greatest contributors of fine sediment happened to be those with measured data, not requiring extrapolation. In descending order, they are as follows: Upper Truckee River [1,010 tonnes per year (T/year)], Blackwood Creek (846 T/year), Trout Creek (462 T/year), and Ward Creek (412 T/year). Summing estimated values from the contributing watersheds provided an average, annual estimate of fine‐sediment (<0.063 mm) loadings to the lake of 5,206 T/year. A total of 7.79E + 19 particles in the 5‐20 μm fraction were calculated to enter Lake Tahoe in an average year with the Upper Truckee River accounting for almost 25% of the total. Contributions from Blackwood, Ward, Trout, and Third creeks account for another 23% of these very fine particles. Thus, these five streams making up about 40% of the basin area, account for almost 50% of all fine‐sediment loadings to the lake. Contribution of fine sediment from streambank erosion were estimated by developing empirical relations between measured or simulated bank‐erosion rates with a field‐based measure of the extent of bank instability along given streams. An average, annual fine‐sediment loading from streambank erosion of 1,305 T/year was calculated. This represents about 25% of the average, annual fine‐sediment load delivered to the lake from all sources. The two largest contributors, the Upper Truckee River (639 T/year) and Blackwood Creek (431 T/year), account for slightly more than 80% of all fines emanating from streambanks, representing about 20% of the fine sediment delivered to Lake Tahoe from all sources. Extrapolations of fine‐sediment loadings to the unmonitored watersheds are based on documented empirical relations, yet contain a significant amount of uncertainty. Except for those values derived directly from measured data, reported results should be considered as estimates.  相似文献   

19.
Opperman, Jeffrey J., Ryan Luster, Bruce A. McKenney, Michael Roberts, and Amanda Wrona Meadows, 2010. Ecologically Functional Floodplains: Connectivity, Flow Regime, and Scale. Journal of the American Water Resources Association (JAWRA) 46(2):211-226. DOI: 10.1111/j.1752-1688.2010.00426.x Abstract: This paper proposes a conceptual model that captures key attributes of ecologically functional floodplains, encompassing three basic elements: (1) hydrologic connectivity between the river and the floodplain, (2) a variable hydrograph that reflects seasonal precipitation patterns and retains a range of both high and low flow events, and (3) sufficient spatial scale to encompass dynamic processes and for floodplain benefits to accrue to a meaningful level. Although floodplains support high levels of biodiversity and some of the most productive ecosystems on Earth, they are also among the most converted and threatened ecosystems and therefore have recently become the focus of conservation and restoration programs across the United States and globally. These efforts seek to conserve or restore complex, highly variable ecosystems and often must simultaneously address both land and water management. Thus, such efforts must overcome considerable scientific, technical, and socioeconomic challenges. In addition to proposing a scientific conceptual model, this paper also includes three case studies that illustrate methods for addressing these technical and socioeconomic challenges within projects that seek to promote ecologically functional floodplains through river-floodplain reconnection and/or restoration of key components of hydrological variability.  相似文献   

20.
Abstract: Many rivers and streams of the Mid‐Atlantic Region, United States (U.S.) have been altered by postcolonial floodplain sedimentation (legacy sediment) associated with numerous milldams. Little Conestoga Creek, Pennsylvania, a tributary to the Susquehanna River and the Chesapeake Bay, is one of these streams. Floodplain sedimentation rates, bank erosion rates, and channel morphology were measured annually during 2004‐2007 at five sites along a 28‐km length of Little Conestoga Creek with nine colonial era milldams (one dam was still in place in 2007). This study was part of a larger cooperative effort to quantify floodplain sedimentation, bank erosion, and channel morphology in a high sediment yielding region of the Chesapeake Bay watershed. Data from the five sites were used to estimate the annual volume and mass of sediment stored on the floodplain and eroded from the banks for 14 segments along the 28‐km length of creek. A bank and floodplain reach based sediment budget (sediment budget) was constructed for the 28 km by summing the net volume of sediment deposited and eroded from each segment. Mean floodplain sedimentation rates for Little Conestoga Creek were variable, with erosion at one upstream site (?5 mm/year) to deposition at the other four sites (highest = 11 mm/year) despite over a meter of floodplain aggradation from postcolonial sedimentation. Mean bank erosion rates range between 29 and 163 mm/year among the five sites. Bank height increased 1 m for every 10.6 m of channel width, from upstream to downstream (R2 = 0.79, p < 0.0001) resulting in progressively lowered hydraulic connectivity between the channel and the floodplain. Floodplain sedimentation and bank erosion rates also appear to be affected by the proximity of the segments to one existing milldam, which promotes deposition upstream and scouring downstream. The floodplain and bank along the 28‐km reach produced a net mean sediment loss of 5,634 Mg/year for 2004‐2007, indicating that bank erosion was exceeding floodplain sedimentation. In particular, the three segments between the existing dam and the confluence with the Conestoga River (32% of the studied reach) account for 97% of the measured net sediment budget. Future research directed at understanding channel equilibria should facilitate efforts to reduce the sediment impacts of dam removal and legacy sediment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号