首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
    
This article describes the collaborative modeling process and the resulting water resources planning model developed to evaluate water management scenarios in the transboundary Rio Grande basin. The Rio Grande is a severely water stressed basin that faces numerous management challenges as it crosses numerous jurisdictional boundaries. A collaborative process was undertaken to identify and model water management scenarios to improve water supply for stakeholders, the environment, and international obligations of water delivery from Mexico to the United States. A transparent and open process of data collection, model building, and scenario development was completed by a project steering committee composed of university, nongovernmental, and governmental experts from both countries. The outcome of the process was a planning model described in this article, with data and operations that were agreed on by water planning officials in each country. Water management scenarios were created from stakeholder input and were modeled and evaluated for effectiveness with the planning model.  相似文献   

3.
    
There has recently been a return in climate change risk management practice to bottom‐up, robustness‐based planning paradigms introduced 40 years ago. The World Bank's decision tree framework (DTF) for “confronting climate uncertainty” is one incarnation of those paradigms. In order to better represent the state of the art in climate change risk assessment and evaluation techniques, this paper proposes: (1) an update to the DTF, replacing its “climate change stress test” with a multidimensional stress test; and (2) the addition of a Bayesian network framework that represents joint probabilistic behavior of uncertain parameters as sensitivity factors to aid in the weighting of scenarios of concern (the combination of conditions under which a water system fails to meet its performance targets). Using the updated DTF, water system planners and project managers would be better able to understand the relative magnitudes of the varied risks they face, and target investments in adaptation measures to best reduce their vulnerabilities to change. Next steps for the DTF include enhancements in: modeling of extreme event risks; coupling of human‐hydrologic systems; integration of surface water and groundwater systems; the generation of tradeoffs between economic, social, and ecological factors; incorporation of water quality considerations; and interactive data visualization.  相似文献   

4.
    
Does collaborative modeling improve water resource management outcomes? How does collaborative modeling improve these outcomes? Does it always work? Under what conditions is collaborative modeling most appropriate? With support from the U.S. Army Corps of Engineers' Institute for Water Resources (IWR), researchers developed an evaluation framework to help address these questions. The framework links the effects of collaborative modeling on decision‐making processes with improvements in the extent to which resource management decisions, practices, and policies balance societal needs. Both practitioners' and participants' experiences suggest that under the right circumstances, collaborative modeling can generate these beneficial outcomes. Researchers developed performance measures and a survey to systematically capture these experiences and evaluate the outcomes of collaborative modeling processes. The survey can provide immediate feedback during a project to determine whether collaborative modeling is having the desired effect and whether course correction is warranted. Over the longer term, the systematic evaluation of collaborative modeling processes will help demonstrate in what ways and under what circumstances collaborative modeling is effective, inform and improve best practices, and raise awareness among water resource planners regarding the use of collaborative modeling for resource management decisions.  相似文献   

5.
    
General backcasting as a decision support and planning method starts from desired future states and simulates developments backwards until reaching the present state. Development pathways that reveal steps to be taken to reach a certain future state, and milestones that serve as interim goals, are created during the process. Backcasting has hitherto only been applied in workshops or as a theoretical framework and no spatially explicit backcasting model has previously been established. This paper presents the development of a spatially explicit backcasting model. The proposed model first creates a future scenario utilizing an agent-based model and then simulates backwards. It is implemented using the programming language Python. The model has been applied to a case study for sustainable land-use planning in Salzburg, Austria. The results of the model run show a successful backcasting of land-use classes from a future state back to the present, in 10 year time steps.  相似文献   

6.
    
ABSTRACT: Integrated watershed management in the Lower Mississippi Alluvial Plain (Delta) requires blending federal, state, and local authority. The federal government has preeminent authority over interstate navigable waters. Conversely, state and local governments have authority vital for comprehensive watershed management. In the Delta, integrating three broad legal and administrative regimes: (1) flood control, (2) agricultural watershed management, and (3) natural resources and environmental management, is vital for comprehensive intrastate watershed, and interstate river basin management. Federal Mississippi River flood control projects incorporated previous state and local efforts. Similarly, federal agricultural programs in the River's tributary headwaters adopted watershed management and were integrated into flood control efforts. These legal and administrative regimes implement national policy largely in cooperation with and through technical and financial assistance to local agencies such as levee commissions and soil and water conservation districts. This administrative infrastructure could address new national concerns such as nonpoint source pollution which require a watershed scale management approach. However, the natural resources and environmental management regime lacks a local administrative infrastructure. Many governmental and non governmental coordinating organizations have recently formed to address this shortcoming in the Delta. With federal and state leadership and support, these organizations could provide mechanisms to better integrate natural resources and environmental issues into the Delta's existing local administrative infrastructure.  相似文献   

7.
Waage, Marc D. and Laurna Kaatz, 2011. Nonstationary Water Planning: An Overview of Several Promising Planning Methods. Journal of the American Water Resources Association (JAWRA) 47(3):535‐540. DOI: 10.1111/j.1752‐1688.2011.00547.x Abstract: Climate change is challenging the way water utilities plan for the future. Observed warming and climate model projections now call into question the stability of future water quantity and quality. As water utilities cope with preparing for the large range of possible changes in climate and the resulting impacts on their water systems, many are searching for planning techniques to help them consider multiple possible conditions to better prepare for a different, more uncertain, future. Many utilities need these techniques because they cannot afford to delay significant decisions while waiting for scientific improvements to narrow the range of potential climate change impacts. Several promising methods are being tested in water utility planning and presented here for other water utilities to consider. The methods include traditional scenario planning, classic decision making, robust decision making, real options, and portfolio planning. Unfortunately, for utilities vulnerable to climate change impacts, there is no one‐size‐fits‐all planning solution. Every planning process must be tailored to the needs and capabilities of the individual utility.  相似文献   

8.
    
Abstract: Flood management problems are inherently complex, time‐bound and multi‐faceted, involving many decision makers (with conflicting priorities and dynamic preferences), high decision stakes, limited technical information (both in terms of quality and quantity), and difficult tradeoffs. Multi‐Criteria Decision Support Systems (MCDSS) can help to manage this complexity and decision load by combining value judgments and technical information in a structured decision framework. A brief overview of MCDSS is presented, an original MCDSS architecture is put forth, and future research directions are discussed, including extensions to Multi‐Criteria Spatial Decision Support Systems and group MCDSS (as flood management involves shared resources and broad constituencies). With application to the September 11‐12, 2000 Tokai floods in Japan, the proposed multi‐criteria decision support instruments enhance communication among stakeholders and improve emergency management resource allocation. In summary, by making the links among flood knowledge, assumptions and choices more explicit, MCDSS increases stakeholder satisfaction, saves lives, and reduces flood management costs, thereby increasing decision‐making effectiveness, efficiency and transparency.  相似文献   

9.
    
ABSTRACT: In two workshops, we evaluated decision analysis methods for comparing Lake Erie levels management alternatives under climate change uncertainty. In particular, we wanted to see how acceptable and effective those methods could be in a public planning setting. The methods evaluated included simulation modeling, scenario analysis, decision trees and structured group discussions. We evaluated the methods by interviewing the workshop participants before and after the workshops. The participants, who were experienced Great Lakes water resources managers, concluded that simulation modeling is user-friendly enough to enable scenario analysis even in workshop settings for large public planning studies. They felt that simulation modeling can improve not only understanding of the system, but also of the options for managing it. Scenario analysis revealed that the decision for the case study, Lake Erie water level regulation, could be altered by the likelihood of climate change. The participants also recommended that structured group discussions be used in public planning settings to elicit ideas and opinions. On the other hand, the participants were less optimistic about decision trees because they felt that the public might view subjective probabilities as difficult to understand and subject to manipulation.  相似文献   

10.
    
ABSTRACT: Our nation periodically reviews national water policy and considers its directions for the future. The most recent examination was directed at the western United States and the role of the federal agencies in meeting its needs. The West is no longer the frontier, but rather contains vibrant cities and booming centers of international trade, as well as tourism, mineral, and oil and gas development, agricultural, and other development. In this changing environment, federal water policies need to consider the long term sustainability of the West, provide justice to Indian tribes, protect the rivers and ecosystems on which natural systems depend, balance the needs of newcomers with those of agricultural users and communities, and meet a myriad of other demands. The Western Water Policy Review Advisory Commission has just concluded its review of these issues and issued its report. Key among the recommendations is the need to coordinate federal agencies at the basin and watershed level and make government more responsive to local needs, but within a framework that includes national mandates. The Commission's recommendations are presented here, along with some of the issues that surrounded the operations of the Commission.  相似文献   

11.
    
ABSTRACT: Changes in watershed management and policy in Hawaii are an instructive case study on the evolution of resource management from a traditional vertically integrated system, to a segmented central government‐based system, and now towards a community and watershed focus. The rise of European social and economic influences coupled with the precipitous decline in the Hawaiian population in the years following European contact led to the destruction of traditional management structures. Subsequently, the dominance of outside interests in Hawaii society and politics, culminating with the sugar industry, facilitated the unrestricted use and privatization of land and water resources. The post‐World War II era ushered in fundamental changes in Hawaii society and politics including renewed appreciation of traditional management practices. Government policies, increased community interest in resource management, and a renaissance in Hawaiian culture have converged in recent years to facilitate the development of new management structures that draw on both traditional and contemporary management. These structures hold great promise for improving Hawaiian watershed management. Our observations suggest that other jurisdictions may find it productive to examine traditional management and policy structures and try to relate them to contemporary community‐based resource management policies and activities.  相似文献   

12.
ABSTRACT: A research project was undertaken for the U.S. Army Corps of Engineers to determine the relative utility and effectiveness of four well-known multicriteria decision making (MCDM) models for applications in realistic water resources planning settings. A series of experiments was devised to examine the impact of rating and ranking procedures on the decision making behavior of users (e.g., planners, managers, analysts, etc.) when faced with situations involving multiple evaluation criteria and numerous alternative planning projects. The four MCDM models tested were MATS-PC, EXPERT CHOICE, ARIADNE, and ELECTRE. Two groups of analysts and decision makers were tested. One group consisted of experienced U.S. Army Corps planners, while the other was comprised of graduate students. Based on a series of nonparametric statistical tests, the results identified EXPERT CHOICE as the preferred MCDM model by both groups based largely on ease of use and understandability. ARIADNE fostered the largest degree of agreement within and among the two groups of individuals tested. The tests also lend support to the claim that rankings are not affected significantly by the choice of decision maker (i.e., who uses any of these MCDM models) or which of these four models is used.  相似文献   

13.
    
ABSTRACT: The population in the Jemez y Sangre Water Planning Region of New Mexico has reached the point at which the demand for water exceeds available supplies, particularly when precipitation is below average, as has frequently occurred in recent years. The desire to develop a sustainable water supply that relies on renewable supplies in wet years and preserves the water in storage for times of drought motivated a diverse set of stakeholders in the region to participate in regional water planning. The planning effort culminated in development of the Jemez y Sangre Regional Water Plan, which was adopted by municipal and county governments in the region. The plan assesses and compares water supply and demand in the region and recommends alternatives for protecting and restoring the existing water supply and addressing the pending gap between supply and demand anticipated by the year 2060. To convey to decision makers the alternatives available to solve the future water shortage, option charts were developed to portray the amount of water that could be obtained or conserved through their implementation. The option charts show that the projected gap between supply and demand cannot be met through one alternative only, but will require a combination of alternatives.  相似文献   

14.
    
ABSTRACT: In response to recent severe drought conditions throughout the state, Arizona recently developed its first drought plan. The Governor's Drought Task Force focused on limiting the economic and social impacts of future droughts through enhanced adaptation and mitigation efforts. The plan was designed to maximize the use of new, scientific breakthroughs in climate monitoring and prediction and in vulnerability assessment. The long term objective of the monitoring system is to allow for evaluation of conditions in multiple sectors and at multiple scales. Stakeholder engagement and decision support are key objectives in reducing Arizona's vulnerability in light of the potential for severe, sustained drought. The drivers of drought conditions in Arizona include the El Nino‐Southern Oscillation, the Pacific Decadal Oscillation, and the Atlantic Multidecadal Oscillation.  相似文献   

15.
    
ABSTRACT: The technocratic approach for managing the Missouri River and other large rivers is not effective in resolving conflicts among competing uses of water and dealing with uncertainty about how river ecosystems respond to alternative management actions. Adaptive management offers an alternative way to address these and other issues. It has the potential to alleviate management gridlock and provide lasting solutions to management of the Missouri River and other large river ecosystems. In passive adaptive management, simulation models and expert judgment are combined to select a preferred management action. While passive adaptive management is relatively simple and inexpensive to use, it does not necessarily provide reliable information for making management decisions. Active adaptive management uses statistically designed experiments to test assumptions or hypotheses about ecosystem responses to management actions. It is best carried out by a collaborative working group. Active adaptive management has several advantages, but the inability to satisfy certain prerequisites for successful application makes it more difficult to implement in large river ecosystems. A second‐best approach is proposed here to select, implement, monitor, and evaluate a preferred management action and retain that action provided ecological conditions improve and socioeconomic indicators do not fall below established acceptability limits.  相似文献   

16.
Booth, Nathaniel L., Eric J. Everman, I‐Lin Kuo, Lori Sprague, and Lorraine Murphy, 2011. A Web‐Based Decision Support System for Assessing Regional Water‐Quality Conditions and Management Actions. Journal of the American Water Resources Association (JAWRA) 47(5):1136‐1150. DOI: 10.1111/j.1752‐1688.2011.00573.x Abstract: The U.S. Geological Survey National Water Quality Assessment Program has completed a number of water‐quality prediction models for nitrogen and phosphorus for the conterminous United States as well as for regional areas of the nation. In addition to estimating water‐quality conditions at unmonitored streams, the calibrated SPAtially Referenced Regressions On Watershed attributes (SPARROW) models can be used to produce estimates of yield, flow‐weighted concentration, or load of constituents in water under various land‐use condition, change, or resource management scenarios. A web‐based decision support infrastructure has been developed to provide access to SPARROW simulation results on stream water‐quality conditions and to offer sophisticated scenario testing capabilities for research and water‐quality planning via a graphical user interface with familiar controls. The SPARROW decision support system (DSS) is delivered through a web browser over an Internet connection, making it widely accessible to the public in a format that allows users to easily display water‐quality conditions and to describe, test, and share modeled scenarios of future conditions. SPARROW models currently supported by the DSS are based on the modified digital versions of the 1:500,000‐scale River Reach File (RF1) and 1:100,000‐scale National Hydrography Dataset (medium‐resolution, NHDPlus) stream networks.  相似文献   

17.
    
ABSTRACT: Watershed stewardship activities throughout North America have evolved into a process that requires more involvement in planning and decision making by community stakeholders. Active involvement of all stakeholders in the process of watershed stewardship is dependent on effective exchange of information among participants, and active involvement of a wide range of stakeholders from “communities of place” as well as those from “communities of interest.” We developed a map‐based stream narrative tool as a means to: (a) assemble a wealth of incompletely documented, “traditional” ecological or natural history observations for rivers or streams; and (b) promote a higher level of active involvement by community stakeholders in contributing to information‐based, watershed management. Creation of stream narratives is intended for use as a tool to actively engage local stakeholders in the development of a more comprehensive information system to improve management for multiple stewardship objectives in watersheds. Completion of map‐based stream narrative atlases provides a valuable supplement to other independent efforts to assemble observations and knowledge about land‐based natural resources covering entire watersheds. We are confident that completion of stream narrative projects will make a valuable addition to the information and decision making tools that are currently available to the public and resource agencies interested in advancing the cause of community‐based approaches to watershed and ecosystem management.  相似文献   

18.
    
Aligning water supply with demand is a challenge, particularly in areas with large seasonal variation in precipitation and those dominated by winter precipitation. Climate change is expected to exacerbate this challenge, increasing the need for long-term planning. Long-term projections of water supply and demand that can aid planning are mostly published as agency reports, which are directly relevant to decision-making but less likely to inform future research. We present 20-year water supply and demand projections for the Columbia River, produced in partnership with the Washington State Dept. of Ecology. This effort includes integrated modeling of future surface water supply and agricultural demand by 2040 and analyses of future groundwater trends, residential demand, instream flow deficits, and curtailment. We found that shifting timing in water supply could leave many eastern Washington watersheds unable to meet late-season out-of-stream demands. Increasing agricultural or residential demands in watersheds could exacerbate these late-season vulnerabilities, and curtailments could become more common for rivers with federal or state instream flow rules. Groundwater trends are mostly declining, leaving watersheds more vulnerable to surface water supply or demand changes. Both our modeling framework and agency partnership can serve as an example for other long-term efforts that aim to provide insights for water management in a changing climate elsewhere around the world.  相似文献   

19.
    
ABSTRACT: Warm summer stream temperatures due to low flows and high air temperatures are a critical water quality problem in many western United States river basins because they impact threatened fish species’habitat. One way to alleviate this problem is for local and federal organizations to purchase water rights to be used to increase flows, hence decrease temperatures. Presented is a Decision Support System (DSS) that can be used in an operations mode to effectively use water acquired to mitigate warm stream temperatures. The DSS uses a statistical model for predicting daily stream temperatures and a rule‐based module to compute reservoir releases. Water releases are calculated to meet fish habitat temperature targets based on the predicted stream temperature and a user specified confidence of the temperature predictions. Strategies that enable effective use of a limited amount of water throughout the season have also been incorporated in the DSS. The utility of the DSS is demonstrated by an example application to the Truckee River near Reno, Nevada, using hypothetical operating policy and 1988 through 1994 inflows. Results indicate that the DSS could substantially reduce the number of target temperature violations (i.e., stream temperatures exceeding the target temperature levels detrimental to fish habitat).  相似文献   

20.
    
ABSTRACT: The Metropolitan Water District of Southern California has for more than 70 years shaped the development of an immense urban region. The district's current strategic planning process therefore could have substantial effects on regional water planning and management. The rate restructuring phase of the planning process has produced a multiple component, cost of service based framework. This paper describes that framework as well as some criticisms that have been directed toward it. The rate restructuring was shaped, and for a while stalled, by old disputes among member agencies over rights to water supplied by Metropolitan. That controversy has diverted attention from the resource management implications of the rate structure. This paper presents an alternative future focused approach to regional integrated water resource planning for Southern California based on projections of current trends and anticipation of future events. This discussion raises the question of how regional integrated water resources planning of this sort may proceed, and what role Metropolitan will play in that process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号