首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Engwall M  Brunström B  Näf C  Hjelm K 《Chemosphere》1999,38(10):2327-2343
A bioassay for the detection of dioxin-like compounds was used to estimate levels in sewage sludge from Swedish sewage treatment plants (STPs). The sludge extracts were HPLC-separated into three fractions containing a) monoaromatic/aliphatic, b) diaromatic (e.g. polychlorinated biphenyls [PCBs], polychlorinated dibenzodioxins and polychlorinated dibenzofurans [PCDDs/Fs]), and c) polyaromatic compounds (e.g. polycyclic aromatic hydrocarbons [PAHs]). The bioassay, which is based on EROD (7-ethoxyresorufin O-deethylase) induction in cultured chicken embryo livers detected dioxin-like activity in all unfractionated extracts and in the di- and polyaromatic fractions of all sludge extracts, but not in the monoaromatic/aliphatic fractions. The levels ranged between 6 and 109 pg bio-TEQ/g sludge (d.w.). In sediment samples from rural lakes in Sweden, levels of about 5 pg bio-TEQ/g (d.w.) have been found. The polyaromatic fractions of the sludge samples were potent in the bioassay, probably due to various PAHs and other polyaromatics in the sludge. The levels of six PAHs that are screened for in the sludge at Swedish STPs accounted for only 3-10% of the observed EROD-induction by the polyaromatic fractions. Consequently, many other polyaromatic EROD-inducing compounds were present in the sludge. Inclusion of a biological test like the chicken embryo liver bioassay in the screening of sludge would improve the ability to detect the presence of bioactive dioxin-like compounds. A theoretical estimation of bio-TEQ concentrations in farm-soil following long-term application of sludge with bio-TEQ concentrations similar to those observed in this investigation indicated that the bio-TEQ levels in soil would increase very slowly over time. The chicken embryo liver bioassay proved useful in assessing levels of dioxin-like compounds in sewage sludge and it gives valuable complementary information to chemical analysis data.  相似文献   

2.
An Australian survey of dioxin-like compounds in sewage sludge was conducted in two parts (a) a national survey, and (b) a time-study. All sewage sludge samples analysed as part of these studies had low overall concentrations of dioxin-like compounds. Out of 37 samples, all except one, were within the reported concentration range of soil within the Australian environment. The mean concentration of dioxin-like compounds in the Australian sewage sludge survey of 2006 was found to be 5.6 (s.d. 4.5) ng WHO(05) TEQkg(-1) (n=14) and were within the range of 1.2-15.3 ng WHO(05) TEQ kg(-1). All the Australian sewage sludge samples cited in these studies were below the Victorian EPA "investigation limit" of 50 ng WHO(98) TEQ kg(-1), and well below the European proposed guidelines of 100 ng I-TEQ kg(-1). The burden of dioxin-like compounds in Australian sewage sludge is low and its land application as biosolids is not likely to pose a problem. A general positive relationship was found between population of the town producing the waste and both dioxin-like PCDD/Fs and dioxin-like PCBs. The one exception to this trend was sludge from a town that had a history of smelting and had a relatively high burden of dioxin-like compounds. Sludge from one rural WWTP also had a higher burden of dioxin-like compounds. The treatment plant services a geographically isolated town with a low population and no known emitters of dioxin-like compounds. However, this sample also had a relatively high burden of dioxin-like PCBs, which could be the source of the dioxin-like PCDD/Fs found in this sludge. The time study analyzing sludges from three WWTP from the same city between the years 2002 and 2006 found no apparent difference between WWTPs, but a statistically significant decline of 1.49 ng WHO(05) TEQ kg(-1) per year. Also, a comprehensive review of the scientific literature, presents typical levels and sources of dioxin-like compounds in international sewage sludges.  相似文献   

3.
A greenhouse trial investigated the uptake of cadmium and zinc by the bird-cherry oat aphid (Rhopalosiphum padi) feeding on wheat grown on sewage sludge amended soil. The trial was conducted at application rates of 0, 5, 7.5, 10, 15 and 20 tonnes ha(-1) dry solids. Concentrations of Cd and Zn were within current UK limits for potentially toxic elements in soils amended with sewage sludge. Cd and Zn in wheat plants were significantly greater than controls. Batches of aphids feeding on the wheat also showed a significant increase in the uptake of Cd and Zn. This study demonstrates a potential route of exposure to Cd and Zn for the predators of cereal aphids.  相似文献   

4.
Goal, Scope and Background Sewage sludge produced in wastewater treatment contains large amounts of organic matter and nutrients and could, therefore, be suitable as fertiliser. However, with the sludge, besides heavy metals and pathogenic bacteria, a variety of organic contaminants can be added to agricultural fields. Whether the organic contaminants from the sludge can have adverse effects on human health and wildlife if these compounds enter the food chain or groundwater still remains a point of controversial discussion. Main Features This paper presents an overview on the present situation in Europe and a summary of some recent results on the possible uptake of organic contaminants by crops after addition to agricultural fields by sewage sludge. Results Greenhouse experiments and field trials were performed to study the degradation and uptake of organic micro-contaminants in sludge-amended agricultural soil in crops, such as barley and carrots grown in agricultural soil amended with anaerobically-treated sewage sludge from a wastewater treatment plant, but studies hitherto have revealed no immediate risks. Common sludge contaminants such as linear alkylbenzene sulphonates (LAS), nonylphenol ethoxylates (NPE), polycyclic aromatic hydrocarbons (PAH), bis(diethylhexyl) phthalate (DEHP), showed neither accumulation in soil nor uptake in plants. Discussion It is assumed that the annual amount of sewage sludge produced in Europe will increase in the future, mainly due to larger amounts of high quality drinking water needed by an increasing population and due to increasing demands for cleaner sewage water. Application of sewage sludge to agricultural soils is sustainable and economical due to nutrient cycling and disposal of sewage sludge. However, this solution also involves risks with respect to the occurrence of organic contaminants and other potentially harmful contents such as pathogens and heavy metals present in the sludge. There have been concerns that organic contaminants may accumulate in the soil, be taken up by plants and thereby transferred to humans via the food chain. Results obtained so far revealed, however, no immediate risk of accumulation of common organic sludge contaminants in soil or uptake in plants when applying sewage sludge to agricultural soil. With very high dosages of sewage sludge, there may be a risk for accumulation of very apolar contaminants, such as DEHP, to the soil. Conclusions Any conclusions on the safe use of sewage sludge in agriculture have to be drawn carefully, as the studies performed until now have been limited. Further studies are required, and before final statements can be drawn, it is imminent to study a larger variety of common crops and the effect sewage sludge application may have on a possible accumulation of organic contaminants in the crops. Furthermore, a larger variety of organic contaminants need to be studied and special focus should be given to contaminants newly introduced into the environment. Besides investigating possible plant uptake of organic contaminants, the fate of these compounds in soil after sludge application need to be monitored too. Here, special attention has to begiven to studies on degradation and the formation of degradation products, to weathering and to leaching effects on groundwater, to the application of different crops on the same field (crop rotation), to the use of full-width tillage and strip tillage, and to long term application of sewage sludge on the soil. Recommendations and Perspectives There are environmental, political as well as economical incentives to increase the agricultural application of sludge. However, such usage should be performed with care as there are also ways in which sludge fertilisation could harm the environment and human health. Recently, a new European COST Action (859) has been established covering the field of food safety and improved food quality. Part of the Action is dealing with the application of sewage sludge in agriculture. Before any political and economical measures can be taken, the pros and cons have to be sufficiently investigated on a scientific level first. ESS-Submission Editor: Prof. Elena Maestri (elena.maestri@unipr.it)  相似文献   

5.
Singh RP  Agrawal M 《Chemosphere》2007,67(11):2229-2240
Use of sewage sludge, a biological residue produced from sewage treatment processes in agriculture is an alternative disposal technique of waste. To study the usefulness of sewage sludge amendment for palak (Beta vulgaris var. Allgreen H-1), a leafy vegetable and consequent heavy metal contamination, a pot experiment was conducted by mixing sewage sludge at 20% and 40% (w/w) amendment ratios to the agricultural soil. Soil pH decreased whereas electrical conductance, organic carbon, total N, available P and exchangeable Na, K and Ca increased in soil amended with sewage sludge in comparison to unamended soil. Sewage sludge amendment led to significant increase in Pb, Cr, Cd, Cu, Zn and Ni concentrations of soil. Cd concentration in soil was found above the Indian permissible limit in soil at both the amendment ratios.

The increased concentration of heavy metals in soil due to sewage sludge amendment led to increases in heavy metal uptake and shoot and root concentrations of Ni, Cd, Cu, Cr, Pb and Zn in plants as compared to those grown on unamended soil. Accumulation was more in roots than shoots for most of the heavy metals. Concentrations of Cd, Ni and Zn were more than the permissible limits of Indian standard in the edible portion of palak grown on different sewage sludge amendments ratios. Sewage sludge amendment in soil decreased root length, leaf area and root biomass of palak at both the amendment ratios, whereas shoot biomass and yield decreased significantly at 40% sludge amendment. Rate of photosynthesis, stomatal conductance and chlorophyll content decreased whereas lipid peroxidation, peroxidase activity and protein and proline contents, increased in plants grown in sewage sludge-amended soil as compared to those grown in unamended soil.

The study clearly shows that increase in heavy metal concentration in foliage of plants grown in sewage sludge-amended soil caused unfavorable changes in physiological and biochemical characteristics of plants leading to reductions in morphological characteristics, biomass accumulation and yield. The study concludes that sewage sludge amendment in soil for growing palak may not be a good option due to risk of contamination of Cd, Ni and Zn and also due to lowering of yield at higher mixing ratio.  相似文献   


6.
Su DC  Wong JW  Jagadeesan H 《Chemosphere》2004,56(10):957-965
Rhizospheric distribution of nutrients and heavy metals in sludge amended soil was investigated using the rhizobag technique to give an indication of the release of metals from wastewater sludge. DTPA-extractable Zn, Cd, Ni and Mn, and available P, K and NH4+-N in the rhizosphere were markedly depleted when soil was amended with sludge. There was no conspicuous depletion or accumulation of DTPA-extractable Cu in the rhizosphere when the soil was amended with sewage sludge but DTPA-extractable Fe accumulated in the rhizosphere when the soil was amended with increasing amounts of sludge. The pH value in the rhizosphere increased with distance from the roots when soil was amended with larger amounts of sludge. The exchangeable fraction of Cu in the rhizosphere was depleted whether or not the soil was treated with sludge. Carbonate, oxide, organic and residual fractions of Cu and Zn were depleted in the rhizosphere at a distance of 0-2 mm from the roots when soil was amended with 50% sludge. Application of sewage sludge had a positive effect on alfalfa growth. With an increase in sludge amounts, the concentrations of Fe, Cu and Zn in alfalfa shoots did not change. Soil amendments with less than 25% sludge did not increase the availability or mobility of heavy metals. The depletion in rhizospheric DTPA-extractable Zn, Cd and Ni indicates that with the sole exception of Cu, release of metals from sludge amended soil was very limited.  相似文献   

7.
A field study was conducted to investigate the impact of soil amendments on concentrations of two volatile organic compounds, 2-undecanone and 2-tridecanone, in onion bulbs. The soil in five plots was mixed with sewage sludge, five plots were mixed with yard waste compost, five plots were mixed with laying hen manure each at 15 t acre?1, and five unamended plots that never received soil amendments were used for comparison purposes. Plots (n = 20) were planted with onion, Allium cepa L. var. Super Star-F1 bulbs. Gas chromatographic/mass spetrometric (GC/MS) analyses of mature onion bulbs crude extracts revealed the presence of two major fragment ions that correspond to 2-undecanone and 2-tridecanone. Soil amended with yard waste compost enhanced 2-undecanone and 2-tridecanone production by 31 and 59%, respectively. Soil amended with chicken manure enhanced 2-undecanone and 2-tridecanone production by 28 and 43%, respectively. Concentrations of 2-undecanone and 2-tridecanone were lowest in onion bulbs of plants grown in sewage sludge and unamended soil, respectively. The increased concentrations of 2-undecanone and 2-tridecanone in onion bulbs may provide a protective character against insect and spider mite attack in field grown onions.  相似文献   

8.
Sediment, pore water and water samples from the Hyeongsan River, Korea were analyzed for several classes of halogenated aromatic hydrocarbons (HAHs) and their dioxin-like activities were evaluated using the in vitro H4IIE-luc bioassay. Polychlorinated dibenzo-p-dioxins (PCDDs), dibenzofurans (PCDFs), and biphenyls (PCBs) were detected in sediments from all six sampling locations with mean concentrations of 2.8 x 10(2) pg/g, 190 pg/g, and 61.4 ng/g, dw, respectively. Polycyclic aromatic hydrocarbons (PAHs) were predominated by 4-6 ring compounds with concentrations in the range of 5.30-7680 ng/g, dw. Chemical profiles of target analytes in sediment and water samples revealed that there was a gradient of concentrations along the river from upstream to downstream, which suggested that the primary source was a wastewater reservoir adjacent to a sewage treatment plant (STP). TEQs derived by summing the product of concentrations of individual congeners by their respective relative potencies (REPs or TEFs) ranged from 4.3 x 10(-1) to 1.1 x 10(3) pg/g, dw. Raw Soxhlet extracts from all six sampling locations induced significant dioxin-like responses in the H4IIE-luc bioassay. TCDD-EQs derived from H4IIE bioassay ranged from 7 x 10(-3) to 1.5 x 10(3) pg/g, dw, which were significantly correlated with TEQs (r2 = 0.994, p < 0.05). Among the three Florisil fractions tested, PCDD/Fs in fraction (F2) induced the greatest magnitude of response (range: 24-83%-TCDD-max.) in the H4IIE-luc assay. Comparison of the TEQ and TCDD-EQ suggested little non-additive interaction between fractions and AhR-active and inactive compounds. Concentrations of individual congeners as well as TEQs and TCDD-EQs suggest inputs from the industrial center waste stream in the Hyeongsan River.  相似文献   

9.
A rapid method for extracting soil solutions using porous plastic soil-moisture samplers was combined with a cation resin equilibration based speciation technique to look at the chemical availability of metals in soil. Industrially polluted, metal sulphate amended and sewage sludge treated soils were used in our study. Cadmium sulphate amended and industrially contaminated soils all had > 65% of the total soil solution Cd present as free Cd2+. However, increasing total soil Cd concentrations by adding CdSO4 resulted in smaller total soil solution Cd. Consequently, the free Cd2+ concentrations in soil solutions extracted from these soils were smaller than in the same soil contaminated by sewage sludge addition. Amendment with ZnSO4 gave much greater concentrations of free Zn2+ in soil solutions compared with the same soil after long-term Zn contamination via sewage sludge additions. Our results demonstrate the difficulty in comparing total soil solution and free metal ion concentrations for soils from different areas with different physiochemical properties and sources of contamination. However, when comparing the same Woburn soil, Cd was much less available as Cd2+ in soil solution from the CdSO4 amended soils compared with soil contaminated by about 36 years of sewage sludge additions. In contrast, much more Zn was available in soil solution as free Zn2+ in the ZnSO4 amended soils compared with the sewage sludge treated soils.  相似文献   

10.
The fate of polybrominated diphenyl ethers (PBDEs) in sewage sludge after agricultural application was analysed. This study was based on the analysis of sewage sludge and sludge amended soil samples collected during 2005. PBDE concentrations in sewage sludge ranged from 197 to 1185ng/g dry weight (dw), being deca-BDE-209 the predominant congener. PBDE levels in soils ranged between 21 and 690ng/g dw, being BDE-209 also the predominant congener in all soil samples. Sewage-sludge amendment at the research stations increased concentrations of all BDE congeners 1.2- to 45-fold, with the highest increases for BDE-209. Results obtained evidenced the cumulative effect of the sludge application rates. Moreover, high levels found at soils four years after the last sludge application indicate persistence of PBDEs in soils, including deca-BDE-209.  相似文献   

11.
Transfer of bioactive organic compounds from soil to plants might represent animal and human health risks. Sewage sludge and manure are potential sources for bioactive compounds such as human- and veterinary drugs. In the present study, uptake of the anti-diabetic compound, metformin, the antibiotic agent ciprofloxacin and the anti-coccidial narasin in carrot (Daucuscarota ssp. sativus cvs. Napoli) and barley (Hordeumvulgare) were investigated. The pharmaceuticals were selected in order to cover various chemical properties, in addition to their presence in relevant environmental matrixes. The root concentration factors (RCF) found in the present study were higher than the corresponding leaf concentration factors (LCF) for the three test pharmaceuticals. The uptake of metformin was higher compared with ciprofloxacin and narasin for all plant compartments analyzed. Metformin was studied more explicitly with regard to uptake and translocation in meadow fescue (Festucapratense), three other carrot cultivars (D.carota ssp. sativus cvs. Amager, Rothild and Nutri Red), wheat cereal (Triticumaestivum) and turnip rape seed (Brassicacampestris). Uptake of metformin in meadow fescue was comparable with uptake in the four carrot cultivars (RCF 2-10, LCF approximately 1.5), uptake in wheat cereals were comparable with barley cereals (seed concentration factors, SCF, 0.02-0.04) while the accumulation in turnip rape seeds was as high as 1.5. All three pharmaceuticals produced negative effects on growth and development of carrots when grown in soil concentration of 6-10 mg kg−1 dry weight.  相似文献   

12.
The objectives of this investigation were to examine the long-term residual effects of metal loading through sewage sludge applications on the total vs. diethylene triamine pentacetic acid (DTPA) extractable metal concentrations in soil and leaf accumulations in tobacco. Maryland tobacco (Nicotiana tabacum L.), cv. 'MD 609', was grown in 1983 and 1984 at two sites in Maryland that had been amended in 1972 with dewatered, digested sewage sludge from washington, DC, at rates equal to 0, 56, 112 and 224 mg ha(-1). The metal concentrations in the sludge, in mg kg(-1) dry weight, were: 1300 Zn, 570 Cu, 280 Pb, 45 Ni and 13 Cd. Soil samples collected from the surface horizon and composite leaf samples of cured tobacco were analyzed for total Zn, Cu, Mn, Fe, Pb, Ni and Cd concentrations. The soil samples were also examined for soil pH and DTPA extractable metals. Equations were generated using polynomic and stepwise regression analyses which described the relationships between total vs. DTPA extractable soil metals, and between DTPA soil and soil pH vs. plant metal concentrations, respectively. Significant increases were observed for both total and DTPA extractable metal concentrations for all metals, with all but total Mn and Ni being significant for linear and quadratic effects regarding sludge rates. However, linear relationships were found between DTPA extractable vs. total soil concentrations for all elements except Pb and Ni which were quadratic. Significant increases in plant Zn, Cu, Mn, Ni and Cd and decreases in Fe were observed with increased sludge rates. Plant Pb levels were unaffected by sludge applied Pb. Linear relationships were observed between plant Zn and Cd and DTPA soil metal levels: however, Mn and Cu levels were described by quadratic and cubic relationship, respectively. Relationships between plant Fe and Pb and DTPA extractable concentrations were nonsignificant. Additional safeguards to protect crop contamination from heavy metals such as Cd were discussed.  相似文献   

13.
The use of sewage sludge and effluent as a source of nutrients and water for crop production is increasing worldwide. A study was conducted in 2001 at Pension farm (near Harare) to determine the effect of long term (>30 yrs) application of sewage sludge and effluent on Zn and Cu accumulation in top soil, uptake of these metals by lettuce (Lactuca sativa L.) and mustard rape (Brassica juncea L.), and dry matter yield. Application of sewage sludge/effluent significantly (p<0.001) increased total Zn (13.7-1563.9 mg kg(-1)) and Cu (2.5-133.3 mg kg(-1)) in the top soil (0-20 cm depth) compared to the control. Sewage sludge/effluent addition significantly (p<0.001) increased Zn uptake by both test crops, while Cu uptake was significant in the first crop of lettuce and the second crop of mustard rape. Based on the dietary patterns of poor urban households in Zimbabwe, the maximum possible intake of Cu will only constitute 40% the Maximum Daily Intake (MDI). The toxicological implications for Zn will however be more severe, exceeding the MDI by 77% through exposure by lettuce consumption and by 251% consumption of mustard rape. It was concluded that long-term addition of sewage sludge/effluent to soil at Pension farm had increased the concentration of Zn and Cu in top soil to levels that pose environmental concern. The consumption of leafy vegetables produced on these soils pose a health risk to poor communities that reside around the study site, especially children, through possible Zn toxicity.  相似文献   

14.
Pyrolytic conversion of sewage sludge into biochar could be a sustainable management option for Mediterranean agricultural soils. The aim of this work is to evaluate the effects of biochar from sewage sludge pyrolysis on soil properties; heavy metals solubility and bioavailability in a Mediterranean agricultural soil and compared with those of raw sewage sludge. Biochar (B) was prepared by pyrolysis of selected sewage sludge (SL) at 500 °C. The pyrolysis process decreased the plant-available of Cu, Ni, Zn and Pb, the mobile forms of Cu, Ni, Zn, Cd and Pb and also the risk of leaching of Cu, Ni, Zn and Cd. A selected Mediterranean soil was amended with SL and B at two different rates in mass: 4% and 8%. The incubation experiment (200 d) was conducted in order to study carbon mineralization and trace metal solubility and bioavailability of these treatments. Both types of amendments increased soil respiration with respect to the control soil. The increase was lower in the case of B than when SL was directly added. Metals mobility was studied in soil after the incubation and it can be established that the risk of leaching of Cu, Ni and Zn were lower in the soil treated with biochar that in sewage sludge treatment. Biochar amended samples also reduced plant availability of Ni, Zn, Cd and Pb when compared to sewage sludge amended samples.  相似文献   

15.

When sewage sludge is incorrectly applied, it may adversely impact agro-system productivity. Thus, this study addresses the reaction of Cucumis sativus L. (cucumber) to different amendment rates (0, 10, 20, 30, 40 and 50 g kg?1) of sewage sludge in a greenhouse pot experiment, in which the plant growth, heavy metal uptake and biomass were evaluated. A randomized complete block design with six treatments and six replications was used as the experimental design. The soil electrical conductivity, organic matter and Cr, Fe, Zn and Ni concentrations increased, but the soil pH decreased in response to the sewage sludge applications. As approved by the Council of European Communities, all of the heavy metal concentrations in the sewage sludge were less than the permitted limit for applying sewage sludge to land. Generally, applications of sewage sludge of up to 40 g kg?1 resulted in a considerable increase in all of the morphometric parameters and biomass of cucumbers in contrast to plants grown on the control soil. Nevertheless, the cucumber shoot height; root length; number of leaves, internodes and fruits; leaf area; absolute growth rate and biomass decreased in response to 50 g kg?1 of sewage sludge. All of the heavy metal concentrations (except the Cu, Zn and Ni in the roots, Mn in the fruits and Pb in the stems) in different cucumber tissues increased with increasing sewage sludge application rates. However, all of the heavy metal concentrations (except the Cr and Fe in the roots, Fe in the leaves and Cu in the fruits) were within the normal range and did not reach phytotoxic levels. A characteristic of these cucumbers was that all of the heavy metals had a bioaccumulation factor <1.0. All of the heavy metals (except Cd, Cu and Zn) had translocation factors that were <1.0. As a result, the sewage sludge used in this study could be considered for use as a fertilizer in cucumber production systems in Saudi Arabia and can also serve as a substitute method of sewage sludge disposal.

The effects of different sewage sludge amendment rates on the heavy metal bioaccumulation, growth and biomass of cucumbers

  相似文献   

16.
Amendment of agricultural soils with municipal sewage sludges provides a valuable source of plant nutrients and organic matter. Nevertheless, addition of heavy metals and risks of eutrophication continue to be of concern. Metal behaviour in soils and plant uptake are dependent on the nature of the metal, sludge/soil physico-chemical properties and plant species. A pot experiment was carried out to evaluate plant production and heavy metal uptake, soil heavy metal pools and bioavailability, and soil P pools and possible leaching losses, in agricultural soils amended with sewage sludge for at least 10 years (F20) compared to non-amended soils (control). Sewage sludge application increased soil pH, N, Olsen-extractable-P, DOC and exchangeable Ca, Mg and K concentrations. Total and EDTA-extractable soil concentrations of Cu and Zn were also significantly greater in F20, and soil metal (Cu, Mn and Zn) and P fractionation altered. Compared to the control, in F20 relative amounts of acid-extractable (Mn, Zn), reducible (Mn, Zn) and oxidisable (Cu, Zn) metal fractions were greater, and a dominance of inorganic P forms was observed. Analyses of F20 soil solutions highlighted risks of PO4 and Cu leaching. However, despite the observed increases in metal bioavailability sewage sludge applications did not lead to an increase in plant shoot concentrations (in wild plants or crop species). On the contrary, depending on the plant species, Mn and Zn tissue concentrations were within the deficiency level for most plants.  相似文献   

17.
《Chemosphere》2013,90(11):1354-1359
Pyrolytic conversion of sewage sludge into biochar could be a sustainable management option for Mediterranean agricultural soils. The aim of this work is to evaluate the effects of biochar from sewage sludge pyrolysis on soil properties; heavy metals solubility and bioavailability in a Mediterranean agricultural soil and compared with those of raw sewage sludge. Biochar (B) was prepared by pyrolysis of selected sewage sludge (SL) at 500 °C. The pyrolysis process decreased the plant-available of Cu, Ni, Zn and Pb, the mobile forms of Cu, Ni, Zn, Cd and Pb and also the risk of leaching of Cu, Ni, Zn and Cd. A selected Mediterranean soil was amended with SL and B at two different rates in mass: 4% and 8%. The incubation experiment (200 d) was conducted in order to study carbon mineralization and trace metal solubility and bioavailability of these treatments. Both types of amendments increased soil respiration with respect to the control soil. The increase was lower in the case of B than when SL was directly added. Metals mobility was studied in soil after the incubation and it can be established that the risk of leaching of Cu, Ni and Zn were lower in the soil treated with biochar that in sewage sludge treatment. Biochar amended samples also reduced plant availability of Ni, Zn, Cd and Pb when compared to sewage sludge amended samples.  相似文献   

18.
The aim of this study was to assess thallium (Tl) uptake into the aerial parts of selected crop species grown on French soils with high Tl content of pedogeochemical origin (0.3-40 mg Tl kg(-1) on a dry wt (DW) basis). Husked wheat and maize grains contained less than 4 microg Tl kg(-1) DW, but rape shoots accumulated Tl with a shoot-soil partition coefficient (PC) > 1, and rape seeds had PC > 3. Tl content of rape seed reached 33 mg Tl kg(-1) DW and higher concentrations in soil corresponded to increased concentrations in rape seeds. It is argued that parent material of the soil and pedogenesis have a considerable effect on Tl accumulation in rape seeds. These results show enhanced phytoavailability of Tl of pedogeochemical origin and prompt questions on the potential for food chain contamination by Tl in rape cattle cakes.  相似文献   

19.
The effects of organic fertilization (sludge application) and/or different levels of Ni pollution on tomato fruit yield, quality, nutrition, and Ni accumulation were investigated. The mass loading of sewage sludge solids used in this study for the amendment of a calcareous soil with low organic matter content was 2% (w/w). A control with no sewage sludge amendment was also included (S). Nickel was added to the sludge amended soil at 0, 60, 120 and 240 mg kg-1 concentrations. Sewage sludge addition to the calcareous soil significantly increased fruit yield but did not adversely affect the quality and nutritional status of the tomato fruit. The results demonstrated that sewage sludge could be successfully used as a horticultural fertilizer. Only the highest addition rate of Ni (240 mg kg-1) to an organic amended calcareous soil had negative effects on fruit yield and quality, and caused a Ni accumulation in fruit that could be considered as a hazard for human health. Thus, no toxic problems will be encountered in tomato fruit due to Ni pollution provided the total Ni (soil Ni plus Ni incorporated with sludge amendment) concentration is kept below the maximum concentration of Ni allowed for agricultural alkaline soils in Spain (112 mg Ni kg-1).  相似文献   

20.
Emerging contaminants in wastewater and sewage sludge spread on agricultural soil can be transferred to the human food web directly by uptake into food crops or indirectly following uptake into forage crops. This study determined uptake and translocation of the organophosphates tris(1-chloro-2-propyl) phosphate (TCPP) (log K ow 2.59), triethyl-chloro-phosphate (TCEP) (log K ow 1.44), tributyl phosphate (TBP) (log K ow 4.0), the insect repellent N,N-diethyl toluamide (DEET) (log K ow 2.18) and the plasticiser N-butyl benzenesulfonamide (NBBS) (log K ow 2.31) in barley, wheat, oilseed rape, meadow fescue and four cultivars of carrot. All species were grown in pots of agricultural soil, freshly amended contaminants in the range of 0.6–1.0 mg/kg dry weight, in the greenhouse. The bioconcentration factors for root (RCF), leaf (LCF) and seed (SCF) were calculated as plant concentration in root, leaf or seed over measured initial soil concentration, both in dry weight. The chlorinated flame retardants (TCEP and TCPP) displayed the highest bioconcentration factors for leaf and seed but did not show the same pattern for all crop species tested. For TCEP, which has been phased out due to toxicity but is still found in sewage sludge and wastewater, LCF was 3.9 in meadow fescue and 42.3 in carrot. For TCPP, which has replaced TCEP in many products and also occurs in higher residual levels in sewage sludge and wastewater, LCF was high for meadow fescue and carrot (25.9 and 17.5, respectively). For the four cultivars of carrot tested, the RCF range for TCPP and TCEP was 10–20 and 1.7–4.6, respectively. TCPP was detected in all three types of seeds tested (SCF, 0.015–0.110). Despite that DEET and NBBS have log K ow in same range as TCPP and TCEP, generally lower bioconcentration factors were measured. Based on the high translocation of TCPP and TCEP to leaves, especially TCPP, into meadow fescue (a forage crop for livestock animals), ongoing risk assessments should be conducted to investigate the potential effects of these compounds in the food web.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号