首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到3条相似文献,搜索用时 0 毫秒
1.
Background, Aim and Scope Modelling of the fate of environmental chemicals can be done by relatively simple multi-media box models or using complex atmospheric transport models. It was the aim of this work to compare the results obtained for both types of models using a small set of non-ionic and non-polar or moderately polar organic chemicals, known to be distributed over long distances. Materials and Methods Predictions of multimedia exposure models of different types, namely three multimedia mass-balance box models (MBMs), two in the steady state and one in the non-steady state mode, and one non-steady state multicompartment chemistry-atmospheric transport model (MCTM), are compared for the first time. The models used are SimpleBox, Chemrange, the MPI-MBM and the MPI-MCTM. The target parameters addressed are compartmental distributions (i.e. mass fractions in the compartments), overall environmental residence time (i.e. overall persistence and eventually including other final sinks, such as loss to the deep sea) and a measure for the long-range transport potential. These are derived for atrazine, benz-[a]-pyrene, DDT, α and γ-hexachlorocyclohexane, methyl parathion and various modes of substance entry into the model world. Results and Discussion Compartmental distributions in steady state were compared. Steady state needed 2–10 years to be established in the MCTM. The highest fraction of the substances in air is predicted by the MCTM. Accordingly, the other models predict longer substance persistence in most cases. The results suggest that temperature affects the compartmental distribution more in the box models, while it is only one among many climate factors acting in the transport model. The representation of final sinks in the models, e.g. burial in the sediment, is key for model-based compartmental distribution and persistence predictions. There is a tendency of MBMs to overestimate substance sinks in air and to underestimate atmospheric transport velocity as a consequence of the neglection of the temporal and spatial variabilities of these parameters. Therefore, the long-range transport potential in air derived from MCTM simulations exceeds the one from Chemrange in most cases and least for substances which undergo slow degradation in air. Conclusions and Perspectives MBMs should be improved such as to ascertain that the significance of the atmosphere for the multicompartmental cycling is not systematically underestimated. Both types of models should be improved such as to cover degradation in air in the particle-bound state and transport via ocean currents. A detailed understanding of the deviations observed in this work and elsewhere should be gained and multimedia fate box models could then be ‘tuned in’ to match better the results of comprehensive multicompartmental transport models. ESS-Submission Editor: Prof. Dr. Michael Matthies (matthies@uos.de)  相似文献   

2.
In the last years, the spatial range (SR) or characteristic travel distance (CTD) of organic chemicals has found increasing scientific interest as an indicator of the long-range transport (LRT) potential and, in combination with persistence, as a kind of 'hazard' indicator on the exposure level. This development coincides with European debates about more effective and more preventive approaches to the chemicals assessment, and about an international, legally-binding instrument for the phase out of persistent organic pollutants (POPs). Persistence and LRT potential are important issues in these debates. Here, the development of the concept of assessing the spatial scale from early ideas in the 1970s and 1980s to recent studies in the field of multimedia fate and transport modeling is summarized. Different approaches to the modeling of environmental transport (advective and dispersive) and different methods for quantifying the SR or CTD are compared. Relationships between SR or CTD and different persistence measures are analyzed. Comparison of these relationships shows that conclusions for chemical assessment should be based on an evaluation of different persistence and spatial scale measures. The use of SR or CTD and persistence as hazard indicators in the chemicals assessment is illustrated.  相似文献   

3.
The joint Swiss National Co-operative for the Disposal of Radioactive Waste (Nagra)/Japan Nuclear Cycle Development Institute (JNC) Radionuclide Migration Programme has now been on-going for over a decade in Nagra's Grimsel Test Site (GTS). The main aim of the programme has been the direct testing of radionuclide transport models in as realistic manner as possible. Although it will never be possible to fully test these models due to the large time and distance scales involved, tests of the model assumptions in scaled down but otherwise realistic conditions will contribute to developing confidence in the predictive power of the models. In this paper, the Nagra/JNC approach is highlighted with examples from a large programme of field, laboratory and natural analogue studies based around the GTS. The successes and failures are discussed as in the general approach to the thorough testing of predictive transport codes which will be used in repository performance assessment (PA). Some of the work is still on-going and this represents the first presentation of a unique set of results and conclusions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号