首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Death in fishing gear of non-target species (called ‘bycatch’) is a major concern for marine wildlife, and mostly worrying for long-lived species like cetaceans, considering their demographic characteristics (slow population growth rates and low fecundity). In European waters, cetaceans are highly impacted by this phenomenon. Under the Common Fishery Policy, the EC 812/2004 regulation constitutes a legal frame for bycatch monitoring on 5–10% of fishing vessels >15 m. The aim of this work was to compare parameters and bycatch estimates of common dolphins (Delphinus delphis) provided by observer programmes in France and UK national reports and those inferred from stranding data, through two approaches. Bycatch was estimated from stranding data, first by correcting effectives from drift conditions (using a drift prediction model) and then by estimating the probability of being buoyant. Observer programmes on fishing vessels allowed us to identify the specificity of the interaction between common dolphins and fishing gear, and provided low estimates of annual bycaught animals (around 550 animals year−1). However, observer programmes are hindered by logistical and administrative constraints, and the sampling scheme seems to be poorly designed for the detection of marine mammal bycatches. The analyses of strandings by considering drift conditions highlighted areas with high levels of interactions between common dolphins and fisheries. Since 1997, the highest densities of bycaught dolphins at sea were located in the southern part of the continental shelf and slope of the Bay of Biscay. Bycatch numbers inferred from strandings suggested very high levels, ranging from 3650 dolphins year−1 [2250–7000] to 4700 [3850–5750] dolphins year−1, depending on methodological choices. The main advantage of stranding data is its large spatial scale, cutting across administrative boundaries. Diverging estimates between observer programmes and stranding interpretation can set very different management consequences: observer programmes suggest a sustainable situation for common dolphins, whereas estimates based on strandings highlight a very worrying and unsustainable process.  相似文献   

2.
Developing countries situated mostly in latitudes that are projected for the highest climate change impact in the twenty-first century will also have a predictable increase in demand on energy sources. India presents us with a unique opportunity to study this phenomenon in a large developing country. This study finds that climate adaptation policies of India should consider the significance of air conditioners (A/Cs) in mitigation of human vulnerability due to unpredictable weather events such as heat waves. However, the energy demand due to air conditioning usage alone will be in the range of an extra ~750,000 GWh to ~1,350,000 GWh with a 3.7 °C increase in surface temperatures under different population scenarios and increasing incomes by the year 2100. We project that residential A/C usage by 2100 will result in CO2 emissions of 592 Tg to 1064 Tg. This is significant given that India's total contribution to global CO2 emissions in 2009 was measured at 1670 Tg and country's residential and commercial electricity consumption in 2007 was estimated at 145,000 GWh.  相似文献   

3.
The effects of scouring parameters on the scouring efficiency, including the weight ratio of de-sizing agent and fabric (5–80 g/g fabric), temperature of de-sizing agent tank (60–90 °C) and dipping time (2–8 s), were investigated. The results demonstrated that weight loss of sizing agent was significantly observed only in the de-sizing agent tank particularly in the first de-sizing tank and was found to a small extent in water tank. The optimum condition in the scouring machine was found at a de-sizing agent to fabric ratio of 20 g/g fabric, with a temperature of the first de-sizing agent tank of 80 °C, a temperature of the second de-sizing agent tank of 90 °C, and dipping time of fabric of 7 s. According to these conditions, more than 89% of the sizing agent was eliminated and only 3.52 mg/g fabric of sizing agent remained in the scoured fabric which was in an acceptable range for feeding to the down stream process known as dyeing process. Application of our results to actual textile plant has shown that there is a cost reduction due to improved utilization of rinse water, chemicals and energy in the process and consequent decreases in the generation of wastewater. Furthermore, the production capacity was increased from 30 m/min to 34.4 m/min.  相似文献   

4.
Depletion of plant-available soil phosphorus (P) from excessive to agronomically optimum levels is a measure being implemented in Ireland to reduce the risk of diffuse P transfer from land to water. Within the Nitrates and Water Framework Directive regulations the policy tool is designed to help achieve good status by 2015 in water bodies at risk from eutrophication. To guide expectation, this study used soil plot data from eight common soil associations to develop a model of Soil Test P (STP) (Morgan's extract) decline following periods of zero P amendment. This was used to predict the time required to move from excessive (Index 4) to the upper boundary of the optimum (Index 3) soil P concentration range. The relative P balance (P balance : Total soil P) best described an exponential decline (R2 = 63%) of STP according to a backwards step-wise regression of a range of soil parameters. Using annual field P balance scenarios (?30 kg P ha?1, ?15 kg P ha?1, ?7 kg P ha?1), average time to the optimum soil P boundary condition was estimated from a range of realistic Total P and STP starting points. For worst case scenarios of high Total P and STP starting points, average time to the boundary was estimated at 7–15 years depending on the field P balance. However, uncertainty analysis of the regression parameter showed that variation can be from 3 to >20 years. Combined with variation in how soil P source changes translate to resulting P delivery to water bodies, water policy regulators are advised to note this inherent uncertainty from P source to receptor with regard to expectations of Water Framework Directive water quality targets and deadlines.  相似文献   

5.
The conventional deacidification methods have many disadvantages. In this paper, we reported a new method using microwave irradiation to remove the naphthenic acid from the vacuum cut #1 distillate oil of Daqing. When the distilled oil (the volume rate of solvent-to-oil was 0.23:1) was irradiated for 5 min under constant pressure (0.11 MPa), and then rested for 25 min, the acid number was reduced from 0.63 mg KOH/g to 0.0478 mg KOH/g, which was sufficient to meet the specification of Q/SHR001-95 (less than 0.05 mg KOH/g) on lubricating oil, and the recovery rate of the distilled oil was 99.3%. The microwave irradiation method has many advantages, such as, it is highly effective, it consumes less time and it is environmentally friendly.  相似文献   

6.
A methodology has been developed to characterise the in-use stocks of copper and zinc at a variety of spatial levels. The approach employs representative concentrations of copper and zinc in their main in-use reservoirs (which account for virtually all the metal put into service) together with geographic information system (GIS) data sets of the spatial locations and densities of these reservoirs. The authors have applied this methodology to Australia at four spatial levels: central city, urban region, states/territories, and country, to produce what is believed to be the first multi-level spatial characterisations of the in-use stocks of technological materials. The results are presented quantitatively and as a series of stock density maps for Inner Sydney, Sydney Metro, all Australian states/territories, and Australia itself. The total stocks in Australia are estimated at about 4.3 Tg Cu (4.3 thousand million kg) and 3.8 Tg Zn (3.8 thousand million kg), or about 240 kg Cu/capita and 205 kg Zn/capita. A statistical analysis of the data shows that the metal stock density at a given spatial level is largely determined by a small number of high-density components at the next lower level. The spatial analysis of the in-use stocks indicates that 50% of all copper and zinc stock resides in just 10% of Australia's local government areas. The largest stocks occur in large urban regions, which can contain copper and zinc densities more than a hundred times higher than rural areas. These regions are expected to be major Australian “metal mines” in the future.  相似文献   

7.
Heterogeneous photocatalytic oxidation is a water reclamation technology which avoids chemical consumption and can be powered by solar radiation. Because this generally sustainable process is of limited efficiency for the treatment of biologically pretreated greywater, it was combined with activated carbon adsorption. The effluent of a constructed wetland for treatment of separately collected greywater was subjected to photocatalytic oxidation using the photocatalyst titanium dioxide (TiO2) “P25” in both the absence and the presence of powdered activated carbon (PAC). Photocatalytic oxidation alone with UV fluences of about 10 Wh L?1 was not capable of reducing total organic carbon (TOC) from an initial concentration of 5.5 mg L?1 safely below 2 mg L?1 as a prerequisite for high-quality water reuse purposes. However, when PAC was added, TOC concentrations subsequent to photocatalytic oxidation were less than 2 mg L?1 even after reusing the TiO2/PAC mixture 10 times. PAC addition is estimated to reduce the insolation area necessary to achieve this target by solar photocatalytic oxidation of biologically treated greywater by a factor 7. This combination process represents an innovative chemical-free technology within wastewater reuse schemes.  相似文献   

8.
Excessive loss of fine-grained sediment to rivers is widely recognised as a global environmental problem. To address this issue, policy teams and catchment managers require an estimate of the ‘gap’ requiring remediation, as represented by the excess above ‘background’ losses. Accordingly, recent work has estimated the exceedance of modern ‘background’ sediment delivery to rivers at national scale across England and Wales due to (i) current agricultural land cover, cropping and stocking, and (ii) current land use corrected for the uptake of on-farm mitigation measures. This sectoral focus recognises that, nationally, agriculture has been identified as the principal source of fine sediment loss to the aquatic environment. Two estimates of modern ‘background’ sediment loss, based on paleolimnological evidence, were used in the analysis; the target modern ‘background’ (TMBSDR) and maximum modern ‘background’ (MMBSDR) sediment delivery to rivers. For individual (n = 4485) non-coastal water bodies, the sediment ‘gap’ in excess of TMBSDR and MMBSDR, due to current land cover, cropping and stocking, was estimated to range up to 1368 kg ha−1 yr−1 (median 61 kg ha−1 yr−1) and 1321 kg ha−1 yr−1 (median 19 kg ha−1 yr−1), respectively. The respective ranges in conjunction with current land cover, cropping and stocking but corrected for the potential impact of on-farm sediment mitigation measures were up to 1315 kg ha−1 yr−1 (median 50 kg ha−1 yr−1) and 1269 kg ha−1 yr−1 (median 8 kg ha−1 yr−1). Multiplication of the estimates of excess sediment loss corrected for current measure uptake, above TMBSDR and MMBSDR, with estimated maximum unit damage costs for the detrimental impacts of sediment pollution on ecosystem goods and services, suggested respective water body ranges up to 495 £ ha−1 yr−1 and 478 £ ha−1 yr−1. Nationally, the total loss of sediment in excess of TMBSDR was estimated at 1,389,818 t yr−1 equating to maximum environmental damage costs of £523 M yr−1, due to current structural land use, compared to 1,225,440 t yr−1 equating to maximum damage costs of £462 M yr−1 due the uptake of on-farm sediment control measures. The corresponding total loss of sediment in excess of MMBSDR was estimated at 1,038,764 t yr−1 equating to maximum damage costs of £462 M yr−1, compared with 890,146 t yr−1 and £335 M yr−1 correcting excess agricultural sediment loss for current implementation of abatement measures supported by policy instruments. This work suggests that the current uptake of sediment control measures on farms across England and Wales is delivering limited benefits in terms of reducing loadings to rivers and associated environmental damage costs.  相似文献   

9.
A streamlined hybrid life cycle assessment is conducted to compare the global warming potential (GWP) and primary energy use of conventional and organic wheat production and delivery in the US. Impact differences from agricultural inputs, grain farming, and transport processes are estimated. The GWP of a 1 kg loaf of organic wheat bread is about 30 g CO2-eq less than the conventional loaf. When organic wheat is shipped 420 km farther to market, organic and conventional wheat systems have similar impacts. These results can change dramatically depending on soil carbon accumulation and nitrous oxide emissions from the two systems. Key parameters and their variability are discussed to provide producers, wholesale and retail consumers, and policymakers metrics to align their decisions with low-carbon objectives.  相似文献   

10.
The lower tidal stretch of the river Ganges, known as Hugli (ca. 280 km), flows southward before entering the Bay of Bengal forming a vast mangrove-enriched estuarine delta called Sunderbans. Hugli estuary is a typical example of tide-dominated sink for contaminants from multifarious sources. This major important river is subjected to anthropogenic stress due to the socio-economic importance of these areas based on growth of industry, agriculture, aquaculture, port activities, fishing and tourism. The living resources have been degraded recently due to increases in population pressure, pollution and natural resource consumption to the extent of overexploitation. The present paper critically examines the physicochemical characteristics and level of dissolved heavy metals at three ecologically distinct zones along the course of the river – Babughat located in the eastern part of the metropolitan megacity Calcutta (140 km upstream from seaface), Diamond Harbor (70 km upstream from sea face) and Gangasagar positioned at the mouth of the Ganges estuary.Physicochemical characteristics of this partially mixed estuary are largely influenced by the interaction of seawater and discharge of riverine freshwater, annual precipitation and surface runoff. The levels of salinity, total dissolved solids, hardness and conductivity showed an increasing downward trend. Marked increase in biochemical oxygen demand (BOD) values (2.20–5.95 mg/l) was recorded in Babughat whereas correspondingly low values (0.75–2.82 mg/l) were noticed at Gangasagar. This can be attributed mainly due to huge organic load of untreated sewage from the twin city Howrah and Calcutta situated in the east and west of the river. Spatiotemporal distribution of heavy metals reveals a wide range of variations reflecting input of huge anthropogenic inputs associated with a number of physical and chemical processes. Levels of metals registered a seasonal pattern, with an increase during late monsoon months (September–October), a period characterized by low salinity and relatively low pH of the water. Elevated levels of dissolved Hg and Pb were also recorded in Babughat, with values ranging from 0.16 to 0.95 μg/ml and 0.017 to 0.076 μg/ml, respectively, this high values for Hg can be attributed to the discharge from pulp and paper manufacturing units and to atmospheric input and runoff of automobile emission for Pb.It was revealed that the socio-economic development of Calcutta, the most potential economic zone in India situated on the east bank of Hugli river, has had a significant impact on the water quality of this major river. The deterioration of water quality is directly related to nonfunctioning and malfunctioning of wastewater treatment plants and lack of environmental planning and coordination. To restore the ecological stability and economic vitality of this river, the following measures have been suggested: (i) strong vigilance programme is to be undertaken towards installation and maintenance of the wastewater treatment plants to check the flow of persistent contaminants in the river water and (ii) execution of legislation and mass awareness programmes are to be enacted to restore the sound health of the river. The authors urge that environmental education should be used as an effective tool for water resource management dealing with intricate and complex problems in the interaction between nature, technology and human beings.  相似文献   

11.
Nitrous oxide (N2O) emissions from agriculture are currently estimated from N inputs using emission factors, and little is known about the importance of regional or management-related differences. This paper summarizes the results of a study in which N2O emission rates were recorded on 15–26 occasions during a 12-month period in organic and conventional dairy crop rotations in five European countries (Austria, Denmark, Finland, Italy, UK). A common methodology based on static chambers was used for N2O flux measurements, and N2O data were compiled together with information about N inputs (from fertilizers, N2 fixation, atmospheric deposition and excretal returns), crop rotations and soil properties. Organic rotations received only manure as N fertilizer, while manure accounted for 0–100% of fertilizer N in conventional rotations. A linear regression model was used to examine effects of location, system and crop category on N2O emissions, while a second model examined effects of soil properties. Nitrous oxide emissions were higher from conventional than from organic crop rotations except in Austria and, according to the statistical analysis, the differences between locations and crop categories were significant. Ammonium was significantly related to N2O emissions, although this effect was dominated by observations from a grazing system. Despite the limited number of samplings, annual emissions were estimated by interpolation. Across the two systems and five locations there was a significant relationship between total N inputs and N2O emissions at the crop rotation level which indicated that annually 1.6 ± 0.2% (mean ± standard error) of total N inputs were lost as N2O, while there was a background emission of 1.4 ± 0.3 kg N2O-N ha−1 year−1. Although this measurement program emphasized system effects at the expense of high temporal resolution, the results indicate that N input is a significant determinant for N2O emissions from agricultural soils.  相似文献   

12.
A site-specific particulate matter PM source apportionment model has been used to estimate the contributions from local primary PM emissions, regional primary PM emissions and the regional background to PM2.5 concentrations at 102 monitoring site locations and to the centres of 1 km × 1 km grid squares across the United Kingdom. The local primary PM contributions have then been compared with Europe-wide urban PM2.5 increments estimated at 50 km × 50 km in European-scale integrated assessment models. It is concluded that Europe-wide PM increments used in policy analyses grossly underestimate urban PM concentrations obtained from the site-specific PM source apportionment model for the United Kingdom. Europe-wide urban PM2.5 increments estimated at 5 km × 5 km scale are significantly improved, particularly for London, but underestimate those for smaller towns and cities by factors of 2–3. These underestimations have important air quality policy ramifications. Although environmental policies may well be best formulated at the European scale, the underpinning air quality modelling may be best carried out at the local scale.  相似文献   

13.
Organic farming methods are claimed to be more environmentally friendly than conventional methods and the EU MIDAIR project had an overall aim to compare emissions from organic dairy farming with conventional methods of milk production. Manure stores are the second largest source of methane emissions (after enteric fermentation) on European dairy farming.The aim of this project was to measure green house gas (GHG) emissions from manures in covered and uncovered slurry stores and farm yard manure (FYM) heaps. The chosen method for measuring these emissions was the tracer ratio method, using sulphur hexafluoride (SF6) as the tracer gas, the limitations of this method prevented successful measurements being made on some of the stores and a modified method was used on the covered stores. The difference in concentration of the upwind and downwind samples and interfering sources were limiting factors. FYM emission measurements were successful only when the manure was stored indoors.Methane emissions were successfully measured over a 12 month period from the uncovered slurry stores. Emission rates from the uncovered slurry stores on the conventional farm and the organic farm ranged from 14.4 to 49.6 and from 12.4 to 42.3 g C m−3 d−1, respectively, with the mean CH4 emission rates of 35 and 26 g C m−3 d−1. On both farms, nitrous oxide emissions were close to zero.Methane emissions measured from the indoor organic FYM in summer were 17.1 g C m−3 d−1 and the nitrous oxide emission was 411 mg N m−3 d−1.The covered slurry stores were in such close proximity to other GHG sources that the tracer ratio method was unsuitable and the air-injection method was adopted. The measured emissions from covered slurry stores of CH4, CO2 and NH3 were, respectively, 14.9 g C m−3 d−1, 12.9 g C m−3 d−1 and 18.6 mg NH3 m−2 d−1 of slurry in February and 12.0 g C m−3 d−1, 9.5 g C m−3 d−1 and 335 mg NH3 m−2 d−1 slurry in March. No nitrous oxide production could be measured.  相似文献   

14.
The projected increase of atmospheric CO2 concentration [CO2] is expected to increase yield of agricultural C3 crops, but little is known about effects of [CO2] on lodging that can reduce yield. This study examined the interaction between [CO2] and nitrogen (N) fertilization on the lodging of rice (Oryza sativa L.) using free-air CO2 enrichment (FACE) systems installed in paddy fields at Shizukuishi, Iwate, Japan (39°38′N, 140°57′E). Rice plants were grown under two levels of [CO2] (ambient = 365 μmol mol−1; elevated [CO2] = 548 μmol mol−1) and three N fertilization regimes: a single initial basal application of controlled-release urea (8 g N m−2, CRN), split fertilization with a standard amount of ammonium sulfate (9 g N m−2, MN), and ample N (15 g N m−2, HN). Lodging score (six ranks at 18° intervals, with larger scores indicating greater bending), yield, and yield components were measured at maturity. The lodging score was significantly higher under HN than under CRN and MN, but lodging was alleviated by elevated [CO2] under HN. This alleviation was associated with the shortened and thickened lower internodes, but was not associated with a change in the plant's mass moment around the culm base. A positively significant correlation between lodging score and ripening percentage indicated that ripening percentage decreased by 4.5% per one-unit increase in lodging score. These findings will be useful to develop functional algorithm that can be incorporated into mechanistic crop models to predict rice production more accurately in a changing climate and with different cultural practices.  相似文献   

15.
This paper presents a study on the resource and environmental profile of leather for communicating to the consumers about the environmental burdens of leather products. The results indicate that significant environmental impacts were caused during the tanning and finishing of leather as well as the electricity production and transportation required in the life cycle. The use of fossil fuels in the production of energy has greater impact with increased emissions leading to about 15190 kg CO2 equivalent of global warming and about 73 kg SO2 equivalent of acidification while producing 100 m2 of leather for shoe uppers. Further resource use of 174 kg of coal, 6.5 kg of fuel oil, 17.4 m3 of water and 348 kg of chemicals of which about 204 kg are hazardous are consumed, and wastewater of about 17 m3, BOD of 55 kg, COD of about 146 kg, TDS of 732 kg and solid waste of about 1445 kg are generated during the life cycle for the production of 100 m2 of leather. The total solid waste generated is 1317 kg, out of which about 80% is biodegradable contributed by slaughtering, tanning and finishing stage, 14% is non-biodegradable contributed by tanning, finishing and electricity production stages and 6% is hazardous mainly from tanning and finishing stage of leather.  相似文献   

16.
In many peri-urban areas of Southeast Asia, land use has been transformed from rice-based to more profitable vegetable-based systems in order to meet the increasing market demand. The major management related flows of nitrogen (N), phosphorus (P), potassium (K), copper (Cu) and zinc (Zn) were quantified over a 1-year period for intensive small-scale aquatic and terrestrial vegetable systems situated in two peri-urban areas of Hanoi City, Vietnam. The two areas have different sources of irrigation water; wastewater from Hanoi City and water from the Red River upstream of Hanoi. The first nutrient balances for this region and farming systems are presented. The main sources of individual elements were quantified and the nutrient use efficiency estimated. The environmental risks for losses and/or soil accumulation were also assessed and discussed in relation to long-term sustainability and health aspects.The primary source of nutrient input involved a combination of chemical fertilisers, manure (chicken) and irrigation water. A variable composition and availability of the latter two sources greatly influenced the relative magnitude of the final total loads for individual elements. Despite relatively good nutrient use efficiencies being demonstrated for N (46–86%) and K (66–94%), and to some extent also for P (19–46%), high inputs still resulted in substantial annual surpluses causing risks for losses to surface and ground waters. The surplus for N ranged from 85 to 882 kg ha−1 year−1, compared to P and K which were 109–196 and 20–306 kg ha−1 year−1, respectively. Those for Cu and Zn varied from 0.2 to 2.7 and from 0.6 to 7.7 kg ha−1 year−1, respectively, indicating high risk for soil accumulation and associated transfers through the food chain.Wastewater irrigation contributed to high inputs, and excess use of organic and chemical fertilisers represent a major threat to the soil and water environment. Management options that improve nutrient use efficiency represent an important objective that will help reduce annual surpluses. A sustainable reuse of wastewater for irrigation in peri-urban farming systems can contribute significantly to the nutrient supply (assuming low concentrations of potential toxic or hazardous substances in the water). Nutrient inputs need to be better related to the crop need, e.g. through better knowledge about the nutrient concentrations in the wastewater and improved management of the amount of irrigation water being applied.  相似文献   

17.
Tree/crop systems under agroforestry practice are capable of sequestering carbon (C) in the standing biomass and soil. Although studies have been conducted to understand soil organic C increases in some agroforestry technologies, little is known about C sequestered in simultaneous tree/crop intercropping systems. The main objective of this study was to determine the effect of agroforestry practice on C sequestration and CO2-C efflux in a gliricidia-maize intercropping system. The experiment was conducted at an experimental site located at the Makoka Agricultural Research Station, in Malawi. The studies involved two field plots, 7-year (MZ21) and 10-year (MZ12), two production systems (sole-maize and gliricidia-maize simultaneous intercropping systems). A 7-year-old grass fallow (Grass-F) was also included. Gliricidia prunings were incorporated at each time of tree pruning in the gliricidia-maize. The amount of organic C recycled varied from 0.8 to 4.8 Mg C ha−1 in gliricidia-maize and from 0.4 to 1.0 Mg C ha−1 in sole-maize. In sole-maize, net decreases of soil carbon of 6 Mg C ha−1 at MZ12 and 7 Mg C ha−1 at MZ21 in the topsoil (0–20 cm) relative to the initial soil C were observed. After 10 years of continuous application of tree prunings C was sequestered in the topsoil (0–20 cm) in gliricidia-maize was 1.6 times more than in sole-maize. A total of 123–149 Mg C ha−1 were sequestered in the soil (0–200 cm depth), through root turnover and pruning application in the gliricidia-maize system. Carbon dioxide evolution varied from 10 to 28 kg ha−1 day−1 in sole-maize and 23 to 83 kg ha−1 day−1 in gliricidia-maize. We concluded that gliricidia-maize intercropping system could sequester more C in the soil than sole-maize.  相似文献   

18.
Effects of agricultural land-use and land-use change on soil organic carbon (SOC) pools play an important role in the mitigation of the global greenhouse effect. To estimate these effects, baseline SOC data for individual regions or countries are needed. The aim of this study was to quantify current SOC stocks in Swiss agricultural soils, to identify meaningful predictors for SOC, and to estimate historical SOC losses. SOC stocks in mineral soils were estimated from combined georeferenced data for land-use, topography, and profile data (n=544) from soil surveys. Mean SOC density in the layer 0–20 cm ranged between 40.6±8.9 t ha−1 (±95% confidence interval (CI)) for arable land and 50.7±12.2 t ha−1 for favourable permanent grassland, and in the layer 0–100 cm from 62.9±15.2 t ha−1 for unfavourable grassland to 117.4±29.8 t ha−1 for temporary grasslands (leys). SOC stocks in organic soils were quantified separately for intact and cultivated peatlands using data from peatland inventories and current SOC densities calculated from average peat decay rates. Organic soils account for less than 3% of the total area but store about 28% (47.2±7.3 Mt) of the total SOC stock of 170±17 Mt. Land-use type, clay content, and altitude (serving as a climate proxy for grassland soils at higher altitudes) were identified as main SOC predictors in mineral soils. Clay content explained up to 44% of the variability in SOC concentrations in the fine earth of arable soils, but was not significantly related to SOC in grassland soils at higher altitudes. SOC concentration under permanent grassland increases linearly with altitude, but because soil depth and stone content limit carbon storage in alpine grassland soils, no relationship was found between altitude and SOC stock. A preliminary estimate suggested that about 16% of the national SOC stock has been lost historically due to peatland cultivation, urbanisation, and deforestation. It seems unlikely that future changes in agricultural practices could compensate for this historical SOC loss in Swiss agricultural soils.  相似文献   

19.
Agricultural development to meet rapidly growing demands for food and biofuel and the abandonment of traditional land use have had major impacts on biodiversity. Habitat diversity is one of the most important factors influencing biodiversity in agricultural landscapes. In this study we propose an ecological index of ecosystem or habitat diversity in agricultural landscapes – the Satoyama Index (SI) – that is discernible under appropriate spatial units (e.g., 6 km × 6 km) from 1 km × 1 km gridded land-cover data available from an open-access web site. A high SI value is an indicator of high habitat diversity, which is characteristic of traditional agricultural systems, including Japanese satoyama landscapes, while a low value indicates a monotonic habitat condition typical of extensive monoculture landscapes. The index correlated well with the spatial patterns of occurrence of a bird of prey (Butastur indicus) and species richness of amphibians and damselflies in Japan. The values of the SI also corresponded well to the spatial patterns of typical traditional agricultural landscapes with high conservation value in other countries, for example, the dehesas of the Iberian Peninsula and shade coffee landscapes in Central America. Globally, the pattern of East/South-East Asian paddy belts with their high index values contrasts markedly with the low values of the Eurasian, American, and Australian wheat or corn belts. The SI, which correlates landscapes with biodiversity through potential habitat availability, is highly promising for assessing and monitoring the status of biodiversity irrespective of scale.  相似文献   

20.
The development of cladding through microwave radiation is recently explored and very few, initial studies were reported elsewhere. In order to explore more viability of process, (EWAC (Ni based) + 20% Cr23C6 powder) composite cladding has been developed on substrate austenitic stainless steel (SS-316). The experiments were conducted in domestic microwave oven and the clad of thickness, approximate 500 m has been developed by the exposure of microwave radiation at frequency 2.45 GHz for duration of 360 s. Typical clads cross sections of composite clads showed good metallurgical bonding with the substrate by partial dilution. The back scattered electron image of clad cross section showed the reinforced chromium carbide (Cr23C6) particles are uniformly distributed and well embedded in the Ni based matrix. The developed clad is free from visible solidification cracking and has significantly less porosity which is of the order of 0.90%. The XRD pattern of the developed clad showed the presence of FeNi3, NiSi and Cr23C6 phases. The average Vicker's microhardness of developed clad was observed as 425 ± 140 Hv.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号