首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
煤与秸秆成型燃料的复合生命周期对比评价   总被引:3,自引:1,他引:2  
利用复合生命周期对比评价方法,引入能量返还率、资源耗竭系数、环境影响负荷和生命周期成本4个参数,对煤和秸秆成型燃料在整个生命周期内的能源消耗、环境影响和经济性做了对比分析.同时,为了平衡能源、环境与经济三者之间的关系,建立EEE (Energy, Environment, Economic)综合指标进行整体评价.结果表明,在整个生命周期内,与煤相比,秸秆成型燃料的能量返还率低、资源耗竭系数小.秸秆成型燃料的全球变暖潜值、酸化潜值、富营养化潜值、工业烟尘、粉尘潜值及固体废弃物潜值均比煤小,因此,秸秆成型燃料的环境影响负荷比煤小.秸秆成型燃料的EEE指标值比煤小79.8%,所以,从平衡生命周期能源消耗、环境排放和经济性角度出发,秸秆成型燃料具有替代煤的潜力.但是,秸秆成型燃料的生命周期成本比煤高,其大力推广需要政府的财政补贴.  相似文献   

2.
多晶硅光伏组件生产可持续性评价   总被引:1,自引:1,他引:0       下载免费PDF全文
分别采用了全生命周期评价软件、全生命周期成本法、社会性指数评价法,对我国多晶硅光伏组件生产阶段的环境影响、经济性和社会性影响进行了定量评估.结果表明:多晶硅生产、多晶硅电池片生产、电池组装3个阶段的环境影响相对较大,其中多晶硅生产阶段对气候变化的贡献率在50%以上.经济成本分析显示,原料和劳动力的成本占总成本的70%以上.多晶硅电池片生产阶段的成本在光伏组件生产过程的5个阶段中所占的比重最大.社会性影响分析结果显示,在光伏组件生产中,劳动岗位增加的贡献指数值为0.72,劳动力就业贡献较大,而生产能力提高的贡献指数值仅为0.18,显示生产能力提高的贡献较小.研究显示,为提高多晶硅光伏组件的可持续性,在生产过程中需寻找清洁能源、寻找环保替代材料以降低环境影响;积极鼓励支持企业进行技术研发创新,着力提高电池转换效率以降低生产成本;通过市场良性竞争提高多晶硅光伏行业的社会贡献.   相似文献   

3.
Underground coal gasification (UCG) is an advancing technology that is receiving considerable global attention as an economic and environmentally friendly alternative for exploitation of coal deposits. UCG has the potential to decrease greenhouse gas emissions (GHG) during the development and utilization of coal resources. In this paper, the life cycle of UCG from in situ coal gasification to utilization for electricity generation is analyzed and compared with coal extraction through conventional coal mining and utilization in power plants. Four life cycle assessment models have been developed and analyzed to compare (greenhouse gas) GHG emissions of coal mining, coal gasification and power generation through conventional pulverized coal fired power plants (PCC), supercritical coal fired (SCPC) power plants, integrated gasification combined cycle plants for coal (Coal-IGCC), and combined cycle gas turbine plants for UCG (UCG-CCGT). The analysis shows that UCG is comparable to these latest technologies and in fact, the GHG emissions from UCG are about 28 % less than the conventional PCC plant. When combined with the economic superiority, UCG has a clear advantage over competing technologies. The comparison also shows that there is considerable reduction in the GHG emissions with the development of technology and improvements in generation efficiencies.  相似文献   

4.
The greenhouse gas (GHG) emissions from MSW landfill, and control methods to eliminate or minimize these impacts including energy recovery from landfill gas (LFG) of MSW landfill in Thailand have been evaluated. Life Cycle Assessment (LCA) is used as the analytical tool to evaluate the environmental consequences of landfilling holistically. The economic implications of the control methods are also briefly assessed. The results show that in terms of GHG emissions as well as in terms of economics, it is more advantageous to have a large centralized landfill and produce electricity from the LFG rather than having several small, localized landfills despite significantly lower transportation requirement for the latter case. Sensitivity analysis revealed that the global warming potential was sensitive to gas collection efficiency as well as methane oxidation rate in the landfill. This study shows the utility of a life cycle approach for evaluating LFG-to-energy (LFGTE) projects.  相似文献   

5.
A cradle-to-grave life cycle assessment was done to identify the environmental impacts related to borate-treated lumber used as structural framing and to determine how the impacts compare to the primary alternative product, galvanized steel framing members. Borate-treated lumber may be used for framing buildings in locations of high decay or termite hazard. A model of borate-treated lumber life cycle stages was created and used to calculate inputs and outputs during the lumber production, treating, use, and disposal stages. Lumber production data are based on published sources. Primary wood preservative treatment data were obtained by surveying wood treatment facilities in the United States. Product use and disposal inventory data are based on published data and professional judgment. Life cycle inputs, outputs, and impact indicators for borate-treated lumber were quantified using life cycle assessment LCA methodologies at functional units of 1000 board feet, 100 linear feet (30.5 linear meters) of structural perimeter wall framing, and framing required for the perimeter walls of one representative home. In a similar manner, a life cycle inventory model was developed for the manufacture, use, and disposal of the primary alternative product, galvanized steel framing, and comparisons were done using an equivalent measure of 100 linear feet of structural perimeter wall framing. Impact indicator values such as greenhouse gas (GHG) emissions, fossil fuel use, water use, acidification, ecological toxicity, smog forming potential, and eutrophication were quantified for each of the two framing products.National normalization was done to compare the significance of the framing in a representative U.S. family home to the family’s total annual impact footprint.If a U.S. family of three builds a 2225 square feet (207 square meters) home using borate-treated lumber for structural perimeter wall framing, the framing impact “footprint” (normalized over the use life of the structure) for GHG emissions, fossil fuel use, acidification, ecological toxicity, smog forming potential, and eutrophication each is less than one-tenth of a percent of the family’s annual overall impact. The cradle-to-grave life cycle impacts of borate-treated lumber framing were approximately four times less for fossil fuel use, 1.8 times less for GHGs, 83 times less for water use, 3.5 times less for acidification, 2.5 times less for ecological impact, 2.8 times less for smog formation, and 3.3 times less for eutrophication than those for galvanized steel framing.  相似文献   

6.
随着我国新能源汽车产业的快速发展,大批动力电池进入退役期.针对退役动力电池循环利用现状,识别降本减碳协同效应并开展系统优化分析,成为重要研究课题.本文综合采用生命周期评价和生命周期成本方法,分析了当前我国退役三元锂电池循环利用系统的碳足迹和经济成本.结果表明,1GWh容量的退役三元锂电池循环利用系统碳足迹和生命周期成本分别为-2.33×107kgCO2eq和-33613.15万元.结合碳足迹和生命周期成本二维指标开展减碳效率评估和情景分析发现,相对于现实系统,汽车生产商主导的优化情景减碳效率较低,提高梯次利用比例的优化情景具有最优减碳效率.通过提高梯次利用比例和采用先进资源化技术均能够显著提升退役三元锂电池循环利用系统的减碳效率.  相似文献   

7.
The measurement framework of the green productivity (GP) of a product system, or process, and its improvement are discussed. Two types of GP indicators are developed to help understand the practical concept and executive approaches of GP, using environmental management tools such as life cycle assessment (LCA) and total cost assessment (TCA). GP index is defined as the ratio of productivity of a system to its environmental impacts. This index is intended for estimating the GP performance of an existing product or process and comparing it with other equivalents. Specifically, the GP index is a measure of the GP performance of a product system throughout its entire life cycle. The “overall” GP index can be divided into a “direct” GP index and an “indirect” GP index which are intended to analyze the GP performances of direct production processes and indirect upstream processes, respectively. For internal managerial decision, GP ratio is developed to select one alternative out of a list of contenders in order to improve the GP performance of an existing system. In addition, GP portfolio is drawn up to check the strengths and weaknesses of alternatives. A case study of a petrochemical company in Korea is provided as an example for illustrating the feasibility of the indicators developed here (GP index and GP ratio) for the measurement of GP and its improvement.  相似文献   

8.
温室气体减排项目评价方法研究   总被引:8,自引:0,他引:8  
阐述了温室气体减排技术选择的准则与优先领域,以及温室气体减排项目评价应包括的主要内容;对3类主要的温室气体减排项目——节能技术改造项目、新建提高能源转换或利用效率项目及能源替代项目,分别探讨了基准线的确定方法、减排量和增量减排成本的计算方法在这3个项目评价中的难点;介绍了温室气体间接减排项目评价方法;最后以张北风电场二期风电项目为例对全球环境效益进行评价。   相似文献   

9.
准确评估种养一体化奶牛场的经济性能与环境绩效,是相关支持政策制定的基础,也是促进奶业低碳生产的关键.本文基于生命周期视角,对非种养一体化奶牛场(non-IPBS)和种养一体化奶牛场(IPBS)养殖过程中的温室气体排放、能源消耗、水消耗、土地占用等环境成本和经济效益进行评估.结果表明,non-IPBS生产1t标准牛奶(FPCM)的净收益为1427元,而IPBS的实际净收益提高7%,如果青贮玉米自给率从当前的32%提升到100%,则实际净收益将提高19%,同时,该净收益的提高率取决于耕地流转费用,临界点为14695元/hm2;相比non-IPBS,IPBS生产1tFPCM的温室气体排放、能源消耗、水消耗、土地占用分别减少6%、6%、5%、7%,如果青贮玉米自给率提升到100%,则相应减少16%、16%、11%、14%.IPBS在降低青贮玉米种植的化肥施用、解决养殖场粪便污染等方面优势明显,在提升养殖经济效益、降低温室气体排放等方面具有巨大潜力,值得推广.  相似文献   

10.
粟月欢  张宇  段华波  李强峰 《环境工程》2022,40(5):184-192+236
地铁大规模建设和运营消耗了大量资源能源,已逐渐成为城市交通环境影响的主要贡献源。基于生命周期评价(life cycle assessment,LCA)方法,以深圳市为研究区域,定量分析了地铁建设过程的资源与能源消耗强度,选取全球变暖潜能值(global warming potential,GWP)为度量指标,构建了地铁建设碳排放分析框架及测算方法,并基于情景分析法预估了减排潜力。结果表明:截至2020年底,深圳已开通运营的地铁线站建设造成的碳排放量约累积达到2730万t CO2e,其中地铁车站建设碳排放量占比约为72%,地铁隧道建设碳排放量占比约为28%。建设阶段单位里程盾构隧道碳排放强度约为1.3万t CO2e/km,单位面积车站碳排放强度约为371 t CO2e/100 m2。通过推广绿色建造技术,如采用再生混凝土和再生钢材,地铁建设阶段最高碳减排率可达到8.5%/a,2021—2035年累积节碳可达到508万tCO2e,可一定程度上能缓解地铁建设的碳排放压力。  相似文献   

11.
A cradle-to-grave life cycle assessment was done to identify the environmental impacts related to alkaline copper quaternary (ACQ)-treated lumber used for decking and to determine how the impacts compare to the primary alternative product, wood plastic composite (WPC) decking. A model of ACQ-treated lumber life cycle stages was created and used to calculate inputs and outputs during the lumber production, treating, use, and disposal stages. Lumber production data are based on published sources. Primary wood preservative treatment data were obtained by surveying wood treatment facilities in the United States. Product use and disposal inventory data are based on published data and professional judgment. Life cycle inventory inputs, outputs, and impact indicators for ACQ-treated lumber were quantified using functional units of 1000 board feet and per representative deck (assumed to be 320 square feet (30 square meters) of surface decking material) per year of use. In a similar manner, an inventory model was developed for the manufacture, use, and disposal of the primary alternative product, WPC. Impact indicator values, including greenhouse gas (GHG) emissions, fossil fuel use, water use, acidification, smog forming potential, ecological toxicity, and eutrophication were quantified for each of the two decking products. National normalization was done to compare the significance of a representative deck surface per year of use to a family’s total annual impact footprint.If an average U.S. family adds or replaces a deck surfaced with ACQ-treated lumber, their impact “footprint” for GHG emissions, fossil fuel use, acidification, smog forming potential, ecological toxicity, and eutrophication releases each is less than one-tenth of a percent of the family’s annual impact. ACQ-treated lumber impacts were fourteen times less for fossil fuel use, almost three times less for GHG emissions, potential smog emissions, and water use, four times less for acidification, and almost half for ecological toxicity than those for WPC decking. Impacts were approximately equal for eutrophication.  相似文献   

12.
为评估车用钛酸锂(LTO)电池对能源、环境与资源的影响,构建了包括重制与二次使用阶段在内的车用锂电池全生命周期评价模型,以某款国产纯电动客车用钛酸锂电池包为评价对象,计算得出每kW·h钛酸锂电池全生命周期的总能量消耗(CED)、全球变暖潜值(GWP)和不可再生矿产资源耗竭潜值(ADP(e))分别为2.80×104MJ、1.86×103kg CO2eq.以及4.77×10-3kg Sbeq.其全生命周期CED与GWP主要与两个使用阶段中由电池充放电效率引起的能量损耗相关,生产阶段GWP主要来源于正负极材料、铝制材料和N-甲基吡咯烷酮.基于全生命周期存储-释放每MJ能量的视角,发现二次使用可显著降低电池全生命周期GWP;与已有研究中其他锂电池对比可知LTO电池生产阶段GWP最低.  相似文献   

13.
Magnesium (Mg) has a great potential to reduce vehicle weight, fuel consumption, and greenhouse gas emissions. The Chinese Mg industry has developed rapidly since the 1990s. The output of Mg reached 700,000 tons in 2006, accounting for more than 70% of global Mg production. Most of Mg is produced in China through the Pidgeon process that has an intensive energy usage and generates a large amount of greenhouse gas (GHG) emissions, which may offset the potential advantage of using Mg parts in automobiles. It is critical to quantify the energy usage and GHG emissions through entire life cycle when the Mg are applied to automobiles. It is also essential to evaluate cost implications of the Mg parts application in automobiles and ensure it to be cost competitive. The objectives of this study are (1) Build a life cycle inventory (LCI) of Mg produced by Pidgeon process; (2) Establish an LCA model that can evaluate GHG emissions and energy usage for the Mg automotive application; (3) Estimate the cost implications of the Mg parts application in automobiles.An Mg LCI was built based on interviews and surveys and the GREET model was adapt for this study. The results indicated that, for each kilogram of Mg produced by Pidgeon process, GHG emissions and energy usage would be 27 kg CO2eq and 280 MJ, which are five times higher than steel production. Replacing steel with 82 kg Mg on a base automobile would lower curb weight by 5.7%, but only reduce life cycle GHG emissions and energy usage by 0.8% and 1.3%. Scenario analyses indicated that potential reduction of life cycle GHG emissions and energy usage could reach to 15%, if secondary weight saving and a smaller engine were included. Cost analyses also show 18% reduction when the additional weight saving and a smaller displacement engine were included, under a 100,000 km driving distance and gasoline price at $1.0/l.  相似文献   

14.
Biodiesel, produced from various vegetable and/or animal oils, is one of the most promising alternative fuels for transportation in Thailand. Currently, the waste oils after use in cooking are not disposed adequately. Such oils could serve as a feedstock for biodiesel which would also address the waste disposal issue. This study compares the life cycle greenhouse gas (GHG) emissions from used cooking oil methyl ester (UCOME) and conventional diesel used in transport. The functional unit (FU) is 100 km transportation by light duty diesel vehicle (LDDV) under identical driving conditions. Life cycle GHG emissions from conventional diesel are about 32.57 kg CO2-eq/FU whereas those from UCOME are 2.35 kg CO2-eq/FU. The GHG emissions from the life cycle of UCOME are 93% less than those of conventional diesel production and use. Hence, a fuel switch from conventional diesel to UCOME will contribute greatly to a reduction in global warming potential. This will also support the Thai Government's policy to promote the use of indigenous and renewable sources for transportation fuels.  相似文献   

15.
The aim of this study is to contribute to the analysis of the environmental impacts deriving from common aspects of the service sector activity and to identify auxiliary actions and hot spots in order to improve the environmental performance of offices used for educational purposes. In that aspect, a screening life cycle assessment (LCA) for a university office-workstation of Democritus University of Thrace, Greece, was performed with the application of the SimaPro LCA software, and the Impact 2002+ method with fifteen impact categories for the interpretation of results. Findings from this research indicated that energy consumption for the powering electronic appliances was the key factor affecting most of the environmental impact categories examined. The impact categories most seriously affected by the office life cycle were the emissions of respiratory inorganics (39%), global warming (31%) and non-renewable energy use (27%). The saving of the energy consumed due to standby mode could lead to a reduction of 2.4% of the total energy consumption in the office in a yearly basis with proportional positive influence in all the respective impact categories. Additionally, utilization of solar energy through photovoltaic panels could lead to a reduction close to 90% for a number of impact categories. Therefore, actions and strategies for improving the environmental performance of academic offices should focus on the reduction of energy consumption.  相似文献   

16.
As one of the largest human activities, World Expo is an important source of anthropogenic Greenhouse Gas emission (GHG), and the GHG emission and other environmental impacts of the Expo Shanghai 2010, where around 59,397 tons of waste was generated during 184 Expo running days, were assessed by life cycle assessment (LCA). Two scenarios, i.e., the actual and expected figures of the waste sector, were assessed and compared, and 124.01 kg CO2-equivalent (CO2-eq.), 4.43 kg SO2-eq., 4.88 kg NO3--eq., and 3509 m3 water per ton tourist waste were found to be released in terms of global warming (GW), acidification (AC), nutrient enrichment (NE) and spoiled groundwater resources (SGWR), respectively. The total GHG emission was around 3499 ton CO2-eq. from the waste sector in Expo Park, among which 86.47% was generated during the waste landfilling at the rate of 107.24 kg CO2-eq., and CH4, CO and other hydrocarbons (HC) were the main contributors. If the waste sorting process had been implemented according to the plan scenario, around 497 ton CO2-eq. savings could have been attained. Unlike municipal solid waste, with more organic matter content, an incineration plant is more suitable for tourist waste disposal due to its high heating value, from the GHG reduction perspective.  相似文献   

17.
华北高产粮区夏玉米生命周期环境影响评价   总被引:7,自引:3,他引:4  
以山东省桓台县夏玉米生产体系为例,应用生命周期评价方法,以单位产量为评价功能单元,把夏玉米生命周期分为原料开采与运输、农资生产与运输、作物种植3个生产阶段,对不同施氮水平下夏玉米生命周期的资源消耗与污染物排放进行了清单分析和影响评价.结果表明,随着施氮量的增加,夏玉米生命周期环境影响呈指数上升趋势,其中,主要影响类型为水资源耗竭,这与农作物需水量较大、水分生产率较低有关.在低氮量条件下,主要污染影响类型是全球变暖,随着施氮量的增加,富营养化上升为主要污染影响类型.提高作物种植阶段水肥利用效率是控制夏玉米生命周期环境影响的关键,它可减少夏玉米对水资源和氮肥的需求,从而直接减少农田氮素损失污染影响,也间接降低了上游生产环节的资源消耗与污染物排放影响,进而有助于降低夏玉米生命周期环境影响总潜力.  相似文献   

18.
This paper compares the life cycle global warming potential of three of Australia’s important agricultural production activities – the production of wheat, meat and wool in grazed subterranean clover (sub-clover) dominant pasture and mixed pasture (perennial ryegrass/phalaris/sub-clover/grass and cape weed) systems. Two major stages are presented in this life cycle assessment (LCA) analysis: pre-farm, and on-farm. The pre-farm stage includes greenhouse gas (GHG) emissions from agricultural machinery, fertilizer, and pesticide production and the emissions from the transportation of these inputs to paddock. The on-farm stage includes GHG emissions due to diesel use in on-farm transport and processing (e.g. seeding, spraying, harvesting, topdressing, sheep shearing), and non-CO2 (nitrous oxide (N2O), and methane (CH4)) emissions from pastures and crop grazing of lambs.The functional unit of this life cycle analysis is the GHG emissions (carbon dioxide equivalents – CO2 -e) from 1 kg of wheat, sheep meat and wool produced from sub-clover, wheat and mixed pasture plots. The GHG emissions (e.g. CO2, N2O and CH4 emission) from the production, transportation and use of inputs (e.g. fertilizer, pesticide, farm machinery operation) during pre-farm and on-farm stages are also included. The life cycle GHG emissions of 1 kg of wool is significantly higher than that of wheat and sheep meat. The LCA analysis identified that the on-farm stage contributed the most significant portion of total GHG emissions from the production of wheat, sheep meat and wool. This LCA analysis also identified that CH4 emissions from enteric methane production and from the decomposition of manure accounted for a significant portion of the total emissions from sub-clover and mixed pasture production, whilst N2O emissions from the soil have been found to be the major source of GHG emissions from wheat production.  相似文献   

19.
建立光伏-储能系统成本收益经济模型和全生命周期碳排放和能源分析模型,以静态投资回收期和内部收益率、碳排放强度和碳补偿回收期、能量回收期分别作为经济效益、碳减排效益和能源效益的评价指标,并以山东省胶州农村5,8,10,15kW光伏和11kW-h储能系统为案例,分析增加储能系统后的经济-碳排放-能源特征.案例表明,增加储能...  相似文献   

20.
指标体系是战略环境评价的具体评价内容,即评价因子.本文根据汽车工业环境影响具有多领域、多成分、多层次立体交叉、时空范围广泛的特点,采用生命周期分析框架,系统识别汽车工业规划的环境影响因子;提出了指标的选取原则;基于生命周期分析框架对指标进行分类;以山东省汽车工业规划环境影响评价为例进行了实证研究.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号