首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
In view of the increasing interest in the development and dissemination of technologies for harnessing new and renewable sources of energy in India, there have also been some efforts towards their use in the domestic lighting sector. However, the cumulative number of Solar Photovoltaic (SPV) lighting systems such as SPV lanterns and solar home lighting systems in India is far below their theoretical potential despite government subsidy programmes. One of the major barriers is the high capital investment in these systems. The Clean Development Mechanism (CDM) provides industrialized countries with an incentive to invest in emission reduction projects in developing countries to achieve a reduction in CO2 emissions at lowest cost that also promotes sustainable development in the host country. SPV lanterns and solar home lighting systems could be of interest under the CDM because they directly displace greenhouse gas emissions while contributing to sustainable rural development. However, only two SPV projects have been submitted under the CDM so far. This study assesses the maximum theoretical as well as the realistically achievable CDM potential of SPV lanterns and solar home lighting systems in India. The SPV lantern project is financially viable at a certified emissions reductions (CER) price of 34 € whereas the solar home lighting project is financially viable at a CER price of 46 €. While the maximum mitigation volume is about 35 million tonne CO2 on an annual basis, an estimate of achievable CER levels is done using the past diffusion trends of SPV systems. We find that annual CER volumes could reach 0.8 to 2.4 million by 2012 and 5.6 to 13.6 million by 2020. This would require that the government sets the subsidy level for SPV lighting systems at a level that allows them to become viable with the CER revenue. From a macro-economic point of view this makes sense if the sustainability benefits are deemed sufficiently high to warrant promotion of this type of project.
Axel MichaelowaEmail:
  相似文献   

2.
Sub-Saharan Africa lags far behind other regions in terms of the implementation of Clean Development Mechanism (CDM) projects due to several reasons. One of the reasons is a general perception that, since the region contributes very little to global GHG emissions, it also offers few opportunities to reduce these emissions. Using a bottom-up approach, this study investigates the technical potential of reducing GHG emissions from the energy sector in Sub-Saharan Africa through the CDM. The study finds that sub-Saharan Africa could develop 3,227 CDM projects, including 361 programs of activities, which could reduce approximately 9.8 billion tons of GHG emissions during the CDM project cycles. The study also estimates that the realization of this CDM potential could significantly enhance sustainable development in the region as it would attract more than US200 billion in investment and could generate US200 billion in investment and could generate US98 billion of CDM revenue at a CER price of US$10/tCO2. Another notable finding of the study is that the realization of this CDM potential could supply clean electricity by doubling the current capacity and thereby providing access of electricity to millions of people in the region. However, realization of this CDM potential is severely constrained by a number of financial, technical, regulatory and institutional barriers.  相似文献   

3.
Enteric fermentation in livestock is an important source of anthropogenic methane emission. India, with its large livestock population, is estimated to contribute 10.8 Tg of methane annually from this source. An evaluation of various methane mitigation options indicate that some of the available technologies like, diet supplementation with feed additive and molasses urea product are highly cost effective in reducing enteric methane emissions. The gross cost of methane abatement from use of feed additive monensin premix ranges from €0.6 to €1.8/ton CO2 equivalent, for buffaloes and indigenous cows, respectively. The gross cost of enteric methane mitigation from supplementing molasses urea products and dietary manipulation through increased concentrate feeding is much higher. But, as the monetary value of the increased milk production on application of these technologies was higher than the annual cost of reduction strategy for buffaloes and crossbred cows, the net costs of the former mitigation option was negative for buffaloes (€-28.1/ton CO2) and of the latter for crossbred cows (€-7.0/ton CO2,). The availability of cost-effective technologies suggest that the methane mitigation projects under CDM, can be planned in the Indian dairy sector to the mutual benefit of countries with emission targets and India. The vast dairy animal population of India and resulting methane emissions provide good opportunity these countries to buy reasonable quantum of emission credits from projects in India. Such projects will work to the benefit to India by providing a tool for technology transfer to increase animal productivity and attract capital that assists in more prosperous and environmental friendly milk production in the country.  相似文献   

4.
In this paper we demonstrate that the institutionalarrangement (or: design) of Joint Implementation (JI) and the CleanDevelopment Mechanism (CDM) has a decisive impact on theircost-effectiveness. We illustrate our arguments by statistically analyzing thecosts from 94 Activities Implemented Jointly (AIJ) pilot phase projects aswell as by adjusting these data on the basis of simple mathematicalformulas. These calculations explicitly take into account the institutionaldifferences between JI (sinks, no banking) and the CDM (banking, no sinks)under the Kyoto Protocol and also show the possible effects on credit costsof alternative design options. However, our numerical illustrations shouldbe viewed with caution, because AIJ is only to a limited extentrepresentative of potential future JI and CDM projects and because creditcosts are not credit prices. Some of the main figures found in this study are:an average cost figure per unit of emission reduction for AIJ projects of 46dollar per ton of carbon dioxide equivalent ($/Mg CO2-eq), anaverage potential JI credit cost figure which is lowered to 37$/Mg CO2-eq by introducing banking and an average of 6$/Mg CO2-eq per credit for potential low-cost CDM projects whichincludes sinks. However, at CoP6 in November 2000 in The Hague (TheNetherlands), the Parties to the Framework Convention on Climate Change(FCCC) did not (yet) reach consensus on the institutional details of theproject-based mechanisms, such as the possible arrangement of early JIaction or the inclusion of sinks under the CDM.  相似文献   

5.
能源供应安全视角下中印生物质能源利用的比较   总被引:1,自引:0,他引:1  
徐向阳 《自然资源学报》2010,25(10):1806-1812
中国和印度是世界上两个人口最多的国家,中印两国作为世界上两个能源消费大国,如何满足众多人口和经济快速增长对能源的需求,以及提供安全的能源供应是中国和印度都在考虑并试图解决的紧迫问题,分析印度的生物能源利用政策对我国有重要的现实意义和参考价值。我国在1993年成为石油净进口国,1994年我国进口的原油仅为290×104t,进口依赖度为1.9%。到2009年我国石油净进口量为21 888.5×104t,进口原油的依赖度上升到了52.5%。我国日益增加的对国际石油市场的依赖对我国能源安全供应构成了极大的风险和挑战。我国在"十一五"期间,在生物质能源的利用上取得了很大的成绩。但还存在一些问题,主要问题是原料来源和成本不稳定、缺乏统筹规划、发电上网制度不完善、相关政策配套措施和实施细则不完善等因素在一定程度上影响了生物质能产业的发展。印度政府积极支持的生物质利用技术,包括利用清洁发展机制大量开发的生物质能CDM项目,这类项目大约占印度全部注册CDM项目的三分之一左右。印度从能源多元化供应的角度和扶持乡村可持续发展的角度上开发利用生物质能项目的实践是值得我国借鉴的。  相似文献   

6.
Efforts to mitigate climate threats should not exclude the household as the household is a major driver of greenhouse gas (GHG) emissions through its consumption patterns. This paper derives an emission index that could be used to estimate inventories of carbon dioxide (CO2) emissions from kerosene combustion for lighting in Nigeria and also looks at the implications of solar pv lighting replacing kerosene lamp in Nigeria. Findings indicate that (1) average CO2 emissions from kerosene combustion for lighting in Nigeria is about 0.06 kg per hour per lamp, which can be taken as the kerosene lamp CO2 emission index for Nigeria. (2) about 3 × 10Wp solar pv will be required to replace a kerosene lamp, while about 0.124 tonnes of CO2 will be avoided per lamp per year, operating at 6 h daily. At the national level, under the kerosene lamp replacement projection assumptions made, between 0.4 and 1.0 million tonnes of CO2 will be avoided per year. The household investment required to owe a solar pv, including the capital cost of switching from kerosene lamp, is about US356, while the national capital investment outlay is between 1,138.265 and US356, while the national capital investment outlay is between 1,138.265 and US2,848 million. (3) Certified Emission Reduction (CER) units, assuming CO2 is traded, will generate significant annual revenues on the order of 6.96 to almost US17.4 million per year, while earnings from unspent household kerosene fuel could amount to between 2,520 and US17.4 million per year, while earnings from unspent household kerosene fuel could amount to between 2,520 and US6,300 million over the life span of the solar pv. The micro-economic assessment carried out indicates the non-attractiveness of solar pv use at the household level, and (4) to promote solar pv use, both long and short term policy measures that aim at cost reduction were suggested. The paper concludes that, factoring the suggested measures into the climate, energy, and financial policy decision discourse in Nigeria could empower the households to play a significant role in achieving global CO2 emission reduction, but at the local level.  相似文献   

7.
Modern Biomass Conversion Technologies   总被引:4,自引:2,他引:4  
This article gives an overview of the state-of-the-art of key biomass conversion technologies currently deployed and technologies that may play a key role in the future, including possible linkage to CO2 capture and sequestration technology (CCS). In doing so, special attention is paid to production of biofuels for the transport sector, because this is likely to become the key emerging market for large-scale sustainable biomass use. Although the actual role of bio-energy will depend on its competitiveness with fossil fuels and on agricultural policies worldwide, it seems realistic to expect that the current contribution of bio-energy of 40–55 EJ per year will increase considerably. A range from 200 to 300 EJ may be observed looking well into this century, making biomass a more important energy supply option than mineral oil today. A key issue for bio-energy is that its use should be modernized to fit into a sustainable development path. Especially promising are the production of electricity via advanced conversion concepts (i.e. gasification and state-of-the-art combustion and co-firing) and modern biomass derived fuels like methanol, hydrogen and ethanol from ligno-cellulosic biomass, which can reach competitive cost levels within 1–2 decades (partly depending on price developments with petroleum). Sugar cane based ethanol production already provides a competitive biofuel production system in tropical regions and further improvements are possible. Flexible energy systems, in which biomass and fossil fuels can be used in combination, could be the backbone for a low risk, low cost and low carbon emission energy supply system for large scale supply of fuels and power and providing a framework for the evolution of large scale biomass raw material supply systems. The gasification route offers special possibilities to combine this with low cost CO2 capture (and storage), resulting in concepts that are both flexible with respect to primary fuel input as well as product mix and with the possibility of achieving zero or even negative carbon emissions. Prolonged RD&D efforts and biomass market development, consistent policy support and international collaboration are essential to achieve this.  相似文献   

8.
For projects under the UNFCCC Kyoto Protocol Clean Development Mechanism (CDM), a baseline has to be set to allow calculation of the greenhouse gas emissions reductions achieved. An important obstacle to CDM project development is the lack of data for baseline definition; often project developers do not have access to data and therefore incur high transaction costs to collect them. The government of Vietnam has set up all necessary institutions for CDM, wants to promote CDM projects and thus is interested to reduce transaction costs. We calculate emission factors of the Vietnam electricity grid according to the rules defined by the CDM Executive Board for small scale projects and for large renewable electricity generation projects. The emission factors lie between 365 and 899 g CO2/kWh depending on the specification. The weighted operating and build margin reaches 600 g for 2003, while grid average reaches 399 g. Using three-year averages, a combined build and operating margin of 705 g is calculated. We hope that these data facilitate CDM project development in the electricity supply and energy efficiency improvement in Vietnam.  相似文献   

9.
The Clean Development Mechanism (CDM) has successfully demonstrated that market-based mechanisms can achieve some cost effective emissions reductions in developing countries. However the distribution of CDM projects has been extremely uneven across countries and regions, and a few technologies and sectors have dominated the early stages of CDM experience. This has caused some to question whether the CDM has fallen short of its potential in contributing to sustainable development. We review the broad patterns of CDM project approvals and evaluate 10 CDM projects according to their sustainability benefits. The difficulty of defining “sustainable development” and the process of defining criteria by individual non-Annex 1 governments has meant that sustainable development concerns have been marginalized in some countries. Given these observed limitations, we present possible CDM policy futures, focusing on the main proposals for a post-2012 climate regime. Five options for enhancing the sustainable development benefits in the CDM are discussed, including proactive approaches to favour eligibility of emission reduction projects which ensure such co-benefits.  相似文献   

10.
The Clean Development Mechanism (CDM) was adopted in the Kyoto Protocol as a flexibility mechanism to reduce greenhouse gases (GHGs) and has been started with such projects as improving efficiency of individual technology. Although applying various countermeasures to urban areas has significant potentials for reducing GHGs, these countermeasures have not been proposed as CDM projects in the practical stage. A CDM project needs to be validated that it will reduce GHGs additionally compared with a baseline, that is, a predictive value of GHG emissions in the absence of the project. This study examined the introduction of solid waste incineration with electricity generation into three different cities, A, B and C. The combination of main solid waste treatment and fuel source are landfill and coal, respectively, in City A, incineration and natural gas in City B, and landfill and hydro in City C. GHG emission reductions of each city under several baseline options assumed here were evaluated. Even if the same technology is introduced, the emission reduction greatly varies according to the current condition and the future plan of the city: 1043–1406 kg CO2/t of waste in City A, 198–580 kg CO2/t in City B, and wide range of zero to over 1000 kg CO2/tin City C. Baseline options also cause significant difference in the emission reduction even in the same city (City C). Incinerating solid waste after removing plastics by source separation in City B increased GHG emission reduction potential up to 730–900 kg CO2/t, which enhances the effectiveness as a CDM project. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

11.
A community-based Clean Development Mechanism (CDM) project – asolar water heating project in a low-income community in South Africa –is analysed to illustrate the methodological and policy challenges that faceimplementation of the Kyoto Protocol to the United Nations FrameworkConvention on Climate Change. We evaluate four baseline options, andthree potential CDM interventions. The emissions reductions range from –670 to +5 929 Mg CO2 per year, with all option but oneshowing positive emission reductions. Using metered solar water heatingwith liquefied petroleum gas back-up as the CDM intervention, and electricstorage geysers as the baseline, the annual emissions reductions are 5686 Mg CO2. The cost-effectiveness from the national perspective,which is the incremental life cycle costs divided by the lifetime emissionsreductions, is –$18 per Mg CO2 From the perspective of theCDM investor, however, the cost-effectiveness is $5.2 per mgCO2, assuming that the investor receives all of the carbon credits forproviding the incremental capital investment. From our analysis, weconclude that using the current technology (kerosene stoves) as a baselineis probably not appropriate because it does not reflect likely future trendsand also penalises the community for their poverty and current lack ofinfrastructure. We also highlight the importance of credit sharing, and howit affects the cost-effectiveness of the project from the CDM investor'sperspective. The lessons from this analysis are important for the currentinternational policy debate on how to preferentially treat small-scale CDMprojects.  相似文献   

12.
This paper investigates the applicability of CDM to civil engineering projects through a case study on the project to extend Port Samainda in Indonesia. The goal of this project is to improve the physical distribution system of the port so that it can accommodate increasing future demand for the cargo transportation. Based on the project report by JICA (2002), we first outline the predicted demand for the cargo transportation and select possible three options in which a cargo vessel with different capabilities and respective port facilities are assigned. For each option, CO2 emissions from both cargo and dredging vessels are predicted and compared. It is found that the total CO2 emission may be reduced significantly by introducing a large-draft vessel and deep navigation channels. This feature becomes more prominent if a traveling distance of the cargo vessels is long enough so that CO2 emissions from cargo vessels dominates those of dredging vessels. This observation supports the applicability of CDM to civil engineering projects because reduction of the CO2emission is attained by improving distribution systems through civil engineering works such as extension of the port and the maintenance dredging. Finally, we discuss future problems to be investigated for the practical application of CDM to a civil engineering project. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

13.
The power sector in Thailand is the largest contributor to CO2 emissions. There is high potential to mitigate CO2 emission via alternative power generating plants. Alternative plants considered in this study include nuclear plants, integrated gasification combined cycle plants, biomass-based plants and supercritical thermal power plants. The biomass-based plants considered here are fueled with four types of biomass; paddy husk, municipal solid waste (MSW), fuel wood and corncob. The methodology for the optimal expansion plan of the power generating system over the planning horizon is based on the least-cost approach. The results from the least-cost planning analyses show that the nuclear alternative has the highest potential to mitigate not only CO2 but also other airborne emissions. Moreover, the nuclear option is the most effective abatement strategy for CO2 reduction due to its negative incremental cost of CO2 reduction.  相似文献   

14.
This paper analyses the eligibility of different types of biomass energy projects in developing countries for funding under the Kyoto Protocol's Clean Development Mechanism and related funds. Specifically, GHG emission reductions through the replacement of non-renewable types of biomass with renewable energy, or the improvement of the efficiency of energy systems based on non-renewable biomass, is discussed in more detail, as it is currently difficult if not impossible for these to qualify as CDM projects under current rules. These problems are caused by the categorical exclusion of land-use from the CDM (with the exception of afforestation and reforestation projects). The paper offers some possible solutions for both small-scale and large-scale CDM projects. These limitations hold for a number of carbon funds. The paper covers of the major funds operated by the World Bank and that are already operational, to point out differences between existing funds in order to identify the best opportunities for different biomass sources and technologies. This systematic, comparative analysis covers the characteristics of the different funds in terms of eligible technologies, geographical foci, and size (targets and completed and ongoing transactions, CO2 equivalents, project asset values). To provide the context for the analysis of the carbon funds, the regulatory drivers and frameworks influencing the demand side of the market are discussed. This first of its kind analysis for the specifics of the carbon market regarding bioenergy enables decision makers and project managers active or planning to become active in the area, to identify and target the most promising funds for their specific purposes.  相似文献   

15.
Climate equity is a crucial but difficult element in negotiations on a post-2012 climate regime. With respect to the trading of greenhouse gas emissions the equity aspect is considered in the Kyoto Protocol which demands that emissions trading should be supplemental to domestic abatement efforts. The question arises whether a linking of the European Union Emissions Trading Scheme (EU ETS) to non-EU emission trading schemes or the Clean Development Mechanism (CDM) could have an impact on principles of climate justice and thus potentially affect ongoing negotiations. In this study, we present the results of a three step analysis: In a first step, it estimates mid-term greenhouse gas emission entitlements for Annex B and Non-Annex B countries for the year 2020 which keep within reach a stabilization of the CO2 concentration at 450 ppmv in the long-term. In the second step, the resulting emission entitlements are used as an input to an economic partial-equilibrium model in order to assess the shift of abatement efforts under different scenarios of linking the EU ETS. In a third step, we analyze the outcome of the economic model with respect to the future trend of European per capita emissions under the current EU ETS relative to different scenarios of linking the EU ETS. The model results indicate that European per capita emissions have to be reduced to a considerably smaller extent if a linking of the EU ETS is accompanied by an optimal design of the National Allocation Plans and if low-cost CO2 permits became available via the CDM to a large extent.
B. BrounsEmail:
  相似文献   

16.
There is huge knowledge gap in our understanding of many terrestrial carbon cycle processes. In this paper, we investigate the bounds on terrestrial carbon uptake over India that arises solely due to CO 2 -fertilization. For this purpose, we use a terrestrial carbon cycle model and consider two extreme scenarios: unlimited CO2-fertilization is allowed for the terrestrial vegetation with CO2 concentration level at 735 ppm in one case, and CO2-fertilization is capped at year 1975 levels for another simulation. Our simulations show that, under equilibrium conditions, modeled carbon stocks in natural potential vegetation increase by 17 Gt-C with unlimited fertilization for CO2 levels and climate change corresponding to the end of 21st century but they decline by 5.5 Gt-C if fertilization is limited at 1975 levels of CO2 concentration. The carbon stock changes are dominated by forests. The area covered by natural potential forests increases by about 36% in the unlimited fertilization case but decreases by 15% in the fertilization-capped case. Thus, the assumption regarding CO2-fertilization has the potential to alter the sign of terrestrial carbon uptake over India. Our model simulations also imply that the maximum potential terrestrial sequestration over India, under equilibrium conditions and best case scenario of unlimited CO2-fertilization, is only 18% of the 21st century SRES A2 scenarios emissions from India. The limited uptake potential of the natural potential vegetation suggests that reduction of CO2 emissions and afforestation programs should be top priorities.  相似文献   

17.
Deforestation is currentlythe source of about 20% of anthropogenicCO2 emissions. Avoided deforestationhas, nonetheless, been ruled out as a CleanDevelopment Mechanism (CDM) category in theKyoto Protocol's first commitment period,because several methodological issues wereconsidered too difficult to resolve. Thispaper explores whether CDM issues such as(1) carbon quantification, (2)additionality and baseline setting, (3)leakage risks, (4) non-permanence risks,and (5) sustainable development can beadequately dealt with in large, diversifiedforest conservation projects. To this aim,it studies the case of the Costa RicanProtected Areas Project (PAP), anActivities Implemented Jointly (AIJ)project which was meant to consolidate thenational park system to avoiddeforestation, promote the growth ofsecondary forests and regenerate pastureson an area that, in total, covers 10% ofthe national territory. The case studyexamines how the issues mentioned abovehave been addressed in the project designand in the certification process. It isfound that baseline uncertainties are themajor problem in this case. Nonetheless,the case suggests the possibility toaddress CDM issues by specific requirementsfor project design and very conservativeand temporary crediting. Provided thatother case studies support this conclusion,eligibility of well-designed forestconservation projects under the CDM in thesecond commitment period may be worthconsidering, given the secondary benefitsof avoided deforestation.  相似文献   

18.
采用IPCC与可生物降解两种预测模型对安徽省2020年城市生活垃圾填埋气甲烷产量进行预测,并分析比较模型预测结果;进而通过填埋气发电项目对安徽省垃圾填埋气二氧化碳减排潜力进行探讨。结果表明:预计到2020年,安徽总的生活垃圾清运量可达到758.9万吨,可产生的生活垃圾填埋气甲烷产量约45.5万吨,若这些甲烷气体不经处理直接排放到大气中,相当于排放约900万吨的CO2,因此,安徽省垃圾填埋气CO2减排潜力巨大,其基于清洁发展机制(CDM)的减排潜力可达1.46×109吨。该研究对促进安徽省CDM项目的开发,充分利用CDM资金促进安徽经济的可持续、健康发展具有一定的指导意义。  相似文献   

19.
Carbon dioxide capture and permanent storage (CCS) is one of the most frequently discussed technologies with the potential to mitigate climate change. The natural target for CCS has been the carbon dioxide (CO2) emissions from fossil energy sources. However, CCS has also been suggested in combination with biomass during recent years. Given that the impact on the earth's radiative balance is the same whether CO2 emissions of a fossil or a biomass origin are captured and stored away from the atmosphere, we argue that an equal reward should be given for the CCS, independent of the origin of the CO2. The guidelines that provide assistance for the national greenhouse gas (GHG) accounting under the Kyoto Protocol have not considered CCS from biomass (biotic CCS) and it appears that it is not possible to receive emission credits for biotic CCS under the first commitment period of the Kyoto Protocol, i.e., 2008–2012. We argue that it would be unwise to exclude this GHG mitigation alternative from the competition with other GHG mitigation options. We also propose a feasible approach as to how emission credits for biotic CCS could be included within a future accounting framework.  相似文献   

20.
Electric utilities in the US have initiated forestry projects to conserve energy and to offset carbon dioxide (CO2) emissions. In 1995, 40 companies raised US$2.5 million to establish the non-profit UtiliTree Carbon Company which is now sponsoring eight projects representing a mix of rural tree planting, forest preservation, forest management and research efforts at both domestic (Arkansas, Louisiana, Mississippi, and Oregon) and international sites (Belize and Malaysia). The projects include extensive external verification. Such forestry projects — properly documented, monitored and verified — should be a component of domestic and international strategies to address greenhouse gas (GHG) emissions, due to GHG benefits, cost-effectiveness and many other environmental benefits (e.g., related to habitat, erosion and biodiversity). These projects on average are projected to manage CO2 at a cost of about US $1 per ton. Experts have determined through a series of technical workshops and projects that GHG benefits can be accurately quantified for most types of forestry projects and, in fact, forestry projects in general present no greater challenges than energy-related projects. Near-term policy decision-making related to CO2 management via forestry is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号