首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The consumption of large volumes of water and the generation of organic compounds as liquid effluents are major environmental problems in sugar cane processing industry. The volume of freshwater required by this industry can be significantly reduced by recovering the intrinsic water present in sugar cane. This amount of freshwater will depend on the process technology. Three new indices for sugar cane plants are introduced in this work: WIN, which indicates the efficiency of water use, and EIN1 and EIN2, which quantify Chemical Oxygen Demand of wastewater. Selected case studies illustrate the advantages of employing these indices as guides for the selection among process design alternatives that account for environmental performance.  相似文献   

2.
通过对云南蔗糖厂的清洁生产的分析、总结、回顾和对清洁生产审核的成果的介绍,用事实说明了在糖厂认真实施清洁生产的作用和体会。  相似文献   

3.
The main organic wastes produced in modern wine industries include grape pomace (62%), lees (14%), stalk (12%) and dewatered sludge (12%). Some of these wastes are being used as by-products (grape pomace and lees) whereas the rest of organic wastes (stalk and wastewater sludge) has been traditionally incinerated or disposed in landfill. In this work, composting is proposed for the recovery of stalk and wastewater sludge to produce a sanitized organic amendment for application in the vineyard, closing the organic matter cycle. The environmental and economical analyses of the different alternatives to manage organic wastes from the wine industry are also presented. Composting costs are almost negligible when compared to other management options. From the environmental point of view, in-situ composting presents the best performance in 8 of the 10 impact categories analysed. Finally, the energy balance shows that the 4 composting systems involved less energy than the systems based on Mineral Fertilizer consumption.  相似文献   

4.
This paper presents the findings of a life cycle assessment (LCA) of electricity generated from the combustion of sugar cane bagasse in Mauritian sugar mills. The study arose from the identification of the need for to provide data for the development of an LCA profile for the electricity mix in Mauritius. The system is limited geographically to the island of Mauritius and is intended to be the representative of current agricultural techniques practiced and current manufacturing processes used by Mauritian sugar mills. The unit operations that make up the system are the growing and harvesting of sugar cane, the transport of the harvested cane to sugar mills, the production of bagasse as a by-product from the sugar milling process, and the combustion of bagasse to generate heat and electricity. The functional unit of the study is the generation of 1 GWh of electricity exported to the national electricity grid. The characterised data for 1 GWh of bagasse-derived electricity were compared with data for 1 GWh of coal-derived electricity, using the same set of characterisation factors. The results of this comparison indicate that bagasse-derived electricity performs well in the areas of greenhouse gas emissions, acidification, and non-renewable energy inputs, but performs poorly in relation to water consumption and eutrophication.  相似文献   

5.
为提升生物制药废水处理效率,以某制药厂的右旋糖酐废水作为主要发酵原料,设计2种不同循环流化的水力搅拌方案,进行653.5 L规模的厌氧消化对比中试试验。1号罐为底部进水高位集中压力出水(单口),4号罐为底部进水高位分散式压力出水(四口)。28 d连续发酵实验表明,1号罐较不搅拌的对照组(0号罐)的产气率和COD去除率分别提升了45%和20%,4号罐则分别提升了58%和24%。研究结论可为指导右旋糖酐废水产气潜能提升设计和进一步机理研究提供借鉴。  相似文献   

6.
One of the major justifications for bio-energy systems is their low greenhouse gas (GHG) emissions compared to fossil-energy ones. Transforming a sugar mill into a bio-energy plant would contribute to climate change mitigation via the extraction of renewable electricity and ethanol. This study takes the case of the sugar industry in Thailand and identifies scenario options that offer GHG reduction benefits. Improving efficiency in electricity generation from sugar cane residues e.g. excess bagasse and cane trash is such a beneficial option. Furthermore, extracting ethanol in a so-called bio-refinery, where the co-product stillage is utilized for energy, tends to magnify the potential benefit. The largest savings potential achieved with extracting ethanol from surplus sugar versus current practice in the sugar industry in Thailand amounts to 14 million tonnes CO2e a year. This cannot be realized in practice until the carbon debt from land conversion is repaid, which takes 4.5–7 years, assuming that the land converted is grassland.  相似文献   

7.
Biofuels are heavily debated as to their potential to reduce transport-related greenhouse gas emissions. Life cycle thinking gave rise to formal evaluations of the energy balance of such fuels, which led to the vigorously conducted “corn to ethanol” debates. Just as consensus was building on such evaluations came the “carbon debt” insights, a result of applying consequential Life Cycle Assessment (LCA) backed by advanced economic modeling. Increasingly, hopes have shifted to the 2nd generation biofuels, viewed as a “technological home run”. Could this also backfire? We investigate a simple South African case in which there might not be improvements in environmental performance: a sugar mill sells its bagasse, currently used at low efficiency to provide process heat, to an advanced biofuels producer, and buys an equivalent amount of coal without investing in efficiency improvements. Seven scenarios are generated, ranging from the status quo, where no bagasse is diverted, to 100% bagasse diversion, with one scenario including an energy efficiency improvement in the sugar mill. A consequential LCA is applied to the seven scenarios, covering global warming potential (GWP), non-renewable energy use, aquatic eutrophication and terrestrial acidification. A basic financial analysis of the proposed scenarios shows that they are realistic, with potentially lucrative returns. Results show that diverting bagasse without efficiency improvements from its current use to an ethanol bio-refinery would indeed backfire for all environmental impacts studied. The base case outperforms all the other scenarios, with the 100% bagasse diversion scenario emerging the worst. Investments into energy efficiency are therefore a precondition for diverting cellulosic residues into biofuel production.  相似文献   

8.
辽宁省铁岭市昌图县是国家的重点产粮大县,重要商品粮基地,丰富的农牧业资源促使禽畜养殖业发展较快,由于企业环境污染治理滞后,造成禽畜屠宰废水超标排放污染河水现象十分严重.设计中对粪便资源化利用、采取气浮-生物接触氧化的工艺流程来进行处理禽畜屠宰废水,处理禽畜废水规模1000吨/日,工程造价低,设备简单,建设周期短,出水水质能够满足排放标准需要,同时粪便资源化转变沼气、生态活性有机肥料也能产生可观的经济效益.  相似文献   

9.
This paper evaluates life cycle greenhouse gas (GHG) balances in production and use of molasses-based ethanol (EtOH) in Nepal. The total life cycle emissions of EtOH is estimated at 432.5 kgCO2eq m−3 ethanol (i.e. 20.4 gCO2eq MJ−1). Avoided emissions are 76.6% when conventional gasoline is replaced by molasses derived ethanol. A sensitivity analysis was performed to verify the impact of variations in material and energy flows, and allocation ratios in the GHG balances. Market prices of sugar and molasses, amount of nitrogen-fertilizers used in sugarcane production, and sugarcane yield per hectare turn out to be important parameters for the GHG balances estimation. Sales of the surplus electricity derived from bagasse could reduce emissions by replacing electricity produced in diesel power plants. Scenario analysis on two wastewater processes for treatment of effluents obtained from ethanol conversion has also been carried out. If wastewater generated from ethanol conversion unit is treated in pond stabilization (PS) treatment process, GHG emissions alarmingly increase to a level of 4032 kgCO2eq m−3 ethanol. Results also show that the anaerobic digestion process (ADP) and biogas recovery without leakages can significantly avoid GHG emissions, and improve the overall emissions balance of EtOH in Nepal. At a 10% biogas leakage, life cycle emissions is 1038 kgCO2eq m−3 ethanol which corresponds to 44% avoided emissions compared to gasoline. On the other hand, total emissions surpass the level of its counterpart (i.e. gasoline) when the leakage of biogas exceeds 23.4%.  相似文献   

10.
餐厨垃圾在储存、运输过程中容易腐败变质,对其资源化利用有一定影响。考察了不同条件下储存时餐厨垃圾pH和细菌总数的变化规律,研究了室温以及5℃条件下,不同储存时间的餐厨垃圾的厌氧发酵产气潜力。结果表明:随储存温度的降低,餐厨垃圾pH值的下降趋势有所减缓,在5℃条件下,8 h内可使餐厨垃圾的pH维持在6.0以上;15℃下餐厨垃圾储存8 h以内,细菌总数小于1.0×10~6cfu/g。室温(30℃)新鲜垃圾的累积产气量最高,达到1 422 mL。在5℃下储存4 h内的餐厨垃圾,其厌氧发酵累积产气量与新鲜餐厨垃圾的产气结果相当,而在5℃下储存8 h时,产气量与新鲜垃圾相比下降了3%,之后,随着储存时间的延长,累积产气量逐渐下降。  相似文献   

11.
The Solvay Process aims at the production of soda ash. The solid and liquid effluents from the soda ash production have been a target of investigation since decades or centuries, often attempting to make use of the wastes. In this paper, all sources of waste from the Solvay Process and their environmental impact are reviewed and possible applications are discussed. It could be shown that, upon disposal into waterways, solid and insoluble wastes have a much higher environmental impact than salt solutions. The results of this study allow the conclusion, that cleaner production in this field can be achieved primarily by the use of cleaner raw materials or by technologies aiming at the avoidance of (solid) wastes or at the increase of the conversion rate of the raw material sodium chloride, whereas the utilization of by-products made from the industrial wastes often faces technical or economical problems.  相似文献   

12.
有机负荷对秸秆床反应器厌氧生物产沼气的影响   总被引:2,自引:0,他引:2       下载免费PDF全文
在实验室条件下,以打捆麦秸为固定相,以猪场废水为流动相,采用半连续进料方式,考察了不同猪场废水容积负荷对秸秆床反应器产沼气的影响.结果表明:发酵前25d,较高的猪场废水有机负荷对反应器产气有一定抑制,之后日产气量和容积产气量迅速增加,并明显高于低猪场废水有机负荷的处理,当猪场废水容积负荷为7.2kgCOD/(m3×d)时,厌氧反应器最大容积产气量达2.29m3/(m3×d),产气稳定后维持在1.52~1.76m3/(m3×d),较猪场废水容积负荷为2.4,1.44kgCOD/(m3×d)的处理分别提高了50%和130%以上,对产气中甲烷含量无明显影响;较高的猪场废水容积负荷不利于麦秸厌氧发酵产沼气,发酵后麦秸干物质损失率、纤维素和半纤维素分解率均与猪场废水容积负荷成反比,红外的结果与之一致.对发酵后麦秸水浸提液的DGGE检测表明,维持反应器高有机负荷、低发酵液HRT,促进了厌氧微生物在麦秸表面定植,微生物种群数量和丰富度均明显高于低有机负荷、高发酵液HRT的处理,反应器耐高有机负荷冲击的能力增强.采用秸秆床反应器处理农村常见的秸秆和畜禽养殖污水产沼气是可行的,且较高的废水有机负荷有利于提高反应器容积产气率.  相似文献   

13.
资源紧缺与气候变化已成为制约人类繁荣发展的巨大挑战。如何对污水资源进行再生利用是循环经济发展的重要议题之一,也是污水治理低碳转型的潜在路径。以再生水、能源、微生物蛋白和鸟粪石等污水资源化产品为研究对象,分析总结了不同污水资源化技术与工艺的生命周期碳排放研究现状。分析指出,污水再生与增值利用具有可观的减碳效益,但应结合利用场景在系统水平开展量化评估。此外,数据来源、系统边界和功能单位等是碳排放评估的关键影响因素。未来,揭示污水再生与增值利用全生命周期过程的碳减排效益,提出污水资源化利用的零(负)碳技术路径,发展污水治理协同资源化的低碳模式,也应是亟待解决的科技难题。  相似文献   

14.
Bagasse, a biomass fuel, is the waste generated by the sugar-making process from sugar cane. Sugar making is one of the most important agricultural-produce processing industries for developing countries in Southeast Asia, Latin America and Africa. As sugar producing plants need electric power and process steam, co-generation using bagasse as an alternate fuel for petroleum has been in use for some time. Thailand recently became one of the largest sugar exporters by enlarging plant capacities and improving equipment, thus reducing its production cost. In addition, the Thai government promotes power generation using bagasse as a means to combat global warming by raising the purchase price of the surplus power. The industry is in the process of further raising the plant capacity, and improving the power-generating efficiency. This will enable a plant to generate more electric power than its in-plant need so that the surplus power can be sold to the commercial grid. It also plans to become a local power supplier during off-season of sugar making by adding a condensing turbine generator. A typical Thai sugar plant of the latest design generates steam of 4Mpa at the bagasse boiler outlet with the temperature of 400°C at 84% boiler efficiency. With the bagasse LHV of 7,540 kJ/kg and that of fuel oil 41, 840 kJ/kg, and taking 90%as oil-burning boiler efficiency, 5.95 kg of bagasse would replace 1 kg of oil. The Kyoto Mechanism defines CO2 generation by fuel oil as 2.65 kg per liter. Using 0.85for the specific gravity of fuel oil, the amount of CO2 generation will be 3.12 kg-CO2/kg. Therefore, CO2reduction per ton of bagasse in terms of fuel oil will be: 3.12/5.95 =0.524 kg-CO2/kg-bagasse. As 1 kg of bagasse generates 2 kg of steam, the CO2reduction of a 100t/h steam boiler will be112,660 ton/year for an annual operation of4,300 hours, as follows. 0.524 × 100/2 = 26.2 t-CO2/h, 26.2 × 4,300 =112,660 t-CO2/year. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

15.
为促进我国全氟辛基磺酸及其盐类和全氟辛基磺酰氟(PFOS/PFOSF)的削减和逐步淘汰,防控环境风险,迫切需要对淘汰、废弃的含PFOS/PFOSF产品、副产物以及生产和使用过程中产生的含PFOS/PFOSF废物进行安全无害化处理处置. 调研和数据分析结果表明,2021年我国已停产PFOSF,2002—2020年我国PFOS/PFOSF的生产总量约为2 120 t. 我国典型含PFOS/PFOSF液态废物包括废弃消防泡沫、消防泡沫使用后收集的残液、废弃电镀镀液、工艺或清洗废水、废有机溶剂,以及固态/半固态废物有蒸(精)馏釜残、废水处理污泥、污染土壤、电镀滤渣、废吸附剂和过滤材料等. 目前针对液态废物,可行的PFOS/PFOSF非破坏处理技术主要有活性炭和树脂吸附、膜滤、混凝,可行的PFOS/PFOSF破坏处理技术有焚烧/水泥窑、超声降解和亚/超临界水处理技术,但在应用时都有一定的前置条件;针对固态/半固态废物,可行的PFOS/PFOSF非破坏处理技术包括稳定化和废物填埋,而焚烧/水泥窑是目前最为可行的PFOS/PFOSF破坏处理技术. 建议根据我国典型含PFOS/PFOSF废物的特点采取相应可行的处理处置技术,在应用成熟技术的同时,适当尝试采用亚/超临界水处理技术、超声降解技术以及其他较新的技术;对PFOS/PFOSF物质含量≥50 mg/kg的废物采用可行的破坏技术处置,对PFOS/PFOSF物质含量<50 mg/kg的废物经稳定化预处理后方可进入填埋场.   相似文献   

16.
有机废弃物氢发酵制备生物氢气的研究   总被引:12,自引:1,他引:11  
在批式培养实验中以有机废弃物为原料,通过厌氧生物发酵制备生物氢气研究了菌种来源、有机废弃物种类对产氢能力的影响,以及生物氢发酵过程中液相组成的变化以活性污泥为菌种来源,以淀粉为底物,在30L改进的UASB反应器中进行了放大实验,生物气中氢气浓度达40%~51%,CO2浓度为49%~60%,且没有检测到甲烷气体,生物气经碱液吸收后氢气纯度大于97%持续产氢时间超过120d.  相似文献   

17.
Global demand for bio-fuels continues unabated. Rising concerns over environmental pollution and global warming have encouraged the movement to alternate fuels, the world ethanol market is projected to reach 86 billion litres this year. Bioethanol is currently produced from land-based crops such as corn and sugar cane. A continued use of these crops drives the food versus fuel debate. An alternate feed-stock which is abundant and carbohydrate-rich is necessary. The production of such a crop should be sustainable, and, reduce competition with production of food, feed, and industrial crops, and not be dependent on agricultural inputs (pesticides, fertilizer, farmable land, water). Marine biomass could meet these challenges, being an abundant and carbon neutral renewable resource with potential to reduce green house gas (GHG) emissions and the man-made impact on climate change. Here we examine the current cultivation technologies for marine biomass and the environmental and economic aspects of using brown seaweeds for bio-ethanol production.  相似文献   

18.
利用甘蔗渣生产纸浆厂堆垛蔗渣产生的渗出液CODCr,浓度高达8000~13000mg/L,属于较难处理的高浓度有机废水。将UASB废水处理技术应用于处理清洁堆垛蔗渣产生的渗出液,不仅能够获得良好的处理效果,而且能降低废水处理成本,从而实现经济效益、环境效益和社会效益三赢。  相似文献   

19.
为深入探讨堆肥预处理对秸秆厌氧发酵产沼气的影响,分别以堆肥0d(T1)、3d(T2)、6d(T3)和9d(T4)的麦秸与奶牛废水混合物(质量比1:2)为原料进行厌氧消化实验.结果表明,堆肥造成麦秸干物质(TS)大量损失,堆肥3,6,9d麦秸TS损失率分别为2.63%、11.46%和20.00%,各处理间差异显著,堆肥后麦秸纤维素结晶程度增强;厌氧发酵后,T1、T2、T3和T4的TS产气量分别为377.50,388.85,354.71353.65mL/g,考虑到堆肥过程中麦秸TS的损失,T2、T3和T4的TS产气量仅为T1的100.30%、83.19%和77.59%;各处理麦秸产气中甲烷含量差异不显著(P=0.3681);堆肥后麦秸产气速率和气峰值均增加,T2、T3累积产气量达到总产气量80%的时间较对照提前了8d和2d,T2产气峰值较对照增加了2.65mL/d,但堆肥9d麦秸产气速率和产气峰值反而降低;厌氧发酵后麦秸TS和挥发性固体损失率均随着堆肥时间的延长而降低.从提高麦秸产沼气量的角度看,堆肥预处理并不合适,但对加快反应器启动,提高麦秸产气速率有一定促进作用,以堆肥3d的效果最好.  相似文献   

20.
生活有机垃圾用作沼气发酵原料的参数与特性研究   总被引:4,自引:0,他引:4  
对分类收集于城市生活的有机垃圾作为沼气发酵原料的相关参数与特性进行了研究。结果显示:来自对固定区域的城市生活有机垃圾,其总体TS(总固体)、VS(近发性固体)、COD含量相对较为稳定,在连续8个月的监测中,其含量的平均值分别为:10.17%、4.64%和8.17%;生活有机垃圾作为整体,在兼氧沤解预处理条件下常温发酵,每公斤TS具有0.389m^3或每公斤COD具有0.499m^3的产气潜力,产气特性表现为,投料2d后进入产气高潮,20d时的产气量达总产气量的90%以上。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号