首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
高景峰  司春英 《环境科学研究》2015,28(11):1764-1773
基于“以废治废”的理念,以农林业废弃物——油茶饼为原料制备生物吸附剂,吸附去除废水中的RR15(C.I. Reactive Red 15,活性红15)染料,并采用响应曲面法中的Box-Behnken设计对油茶饼生物吸附剂吸附RR15的条件进行优化. 结果表明:pH对油茶饼生物吸附剂吸附RR15的吸附容量和去除率均有显著影响(P<0.000 1);当pH为1.0、初始ρ(RR15)为300 mg/L、吸附温度为20 ℃时,油茶饼生物吸附剂对RR15的吸附效果最佳. 相比于Langmuir和Freundlich吸附等温线模型,Temkin吸附等温线模型可以更好地描述油茶饼生物吸附剂对RR15的吸附平衡数据. 吸附温度为20 ℃时,由Langmuir吸附等温线模型计算得到的Q0(吸附剂的单层饱和吸附量)为74.63 mg/g. 动力学分析显示,油茶饼生物吸附剂对RR15的吸附过程符合准二级动力学模型(R2>0.999 7),支持了限速步骤是化学吸附的理论;内部扩散和边界层扩散都可能影响吸附速率. 热力学分析表明,该吸附过程是一个自发的放热过程. FTIR(fourier transform infrared spectroscopy,傅里叶变换红外光谱)分析发现,油茶饼生物吸附剂上羟基、胺基等官能团可能是RR15染料的主要结合位点. 研究显示,油茶饼生物吸附剂是一种具有潜力的绿色吸附剂,可以有效去除废水中的RR15染料.   相似文献   

2.
pH对厌氧颗粒污泥吸附4-氯酚的影响   总被引:7,自引:0,他引:7  
郜瑞莹  王建龙 《环境科学》2007,28(4):791-794
研究了pH值对4-氯酚在厌氧颗粒污泥上的生物吸附特性的影响.结果表明,pH值对4-氯酚的吸附影响很大,pH值与吸附量呈负相关.随着pH值的升高,颗粒污泥对4-氯酚的吸附能力降低.pH为2.25时,吸附量为6.675 mg/g,而当pH为10.27时,吸附量仅为0.260 mg/g.不同的pH值下,4-氯酚在厌氧颗粒污泥上的吸附行为可以很好地用Langmuir吸附等温方程来描述.本研究还给出了几种pH值下厌氧颗粒污泥吸附4-氯酚的Langmuir和Freundlich方程.  相似文献   

3.
基于响应面优化条件下柚皮对Pb2+的吸附   总被引:4,自引:3,他引:1  
采用Plackett-Burman(P-B)法和中心复合设计(Central Composite Design,简称CCD)对影响柚皮吸附Pb2+的6个条件进行筛选优化.P-B实验设计与统计学分析表明:pH值、Pb2+初始浓度、吸附剂用量是影响吸附率的3个关键因素.以吸附率为响应目标,对3因素进行中心复合设计,并经响应面法优化分析得到影响吸附率的二阶模型,确定了Pb2+吸附实验的最优操作条件:pH值5.4.Pb2+初始浓度为265.86mg·L-1,吸附剂用量为2.56 g·L-1,实测吸附率达到92.47%,吸附量为96.01 mg·g-1;整个吸附过程吸附剂柚皮没有经过任何化学预处理.效果优于一般的天然吸附剂.研究结果表明,柚皮是一种很具潜力的环保型廉价吸附剂.  相似文献   

4.
研究了非活性黄孢原毛平革菌(Phanerochaete chrysosporium)菌丝球对Pb2+的吸附特性及吸附机理.结果表明,菌丝球对Pb2+的吸附是单分子层吸附,Langmuir模型比Freundlich模型更适合于描述Pb2+在菌丝球上的吸附平衡.菌丝球吸附Pb2+的过程可以分为初始的快速吸附和随后的缓慢吸收2个阶段,并可以用二级动力学模型来描述.在菌丝球吸附Pb2+的过程中虽然存在粒内扩散,但它不是吸附过程的限速步骤.Pb2+的生物吸附过程是放热过程,其吸附活化能为-35.78kJ/mol,Pb2+的吸附热与化学反应热相近,为-44.45 kJ/mol.该生物吸附至少存在2种机理:菌体表面一些含氧基团对Pb2+的络合作用;Pb2+与细胞表面H+的离子交换.  相似文献   

5.
新型生物吸附剂去除水中六价铬的研究   总被引:11,自引:0,他引:11  
陶颖  王竞  周集体 《上海环境科学》2000,19(12):572-574
以Pseudomonas sp.Gx4-1发酵培养得到的细菌胞外聚合物作吸附剂,研究其对水中重金属Cr(VI)的吸附,吸附剂对Cr(VI)吸附的最佳pH初值为0.5~2.0。Cr(VI)的吸附分三个阶段:5min达75%的快速吸附阶段;10~40min达表现一级反应动力学吸附阶段;50min以的趋于平衡,吸附过程符合Freundlich和Langmuir吸附等温方程。  相似文献   

6.
沉水植物处理低浓度重金属废水是一项清洁和廉价的技术.主要研究了不同初始浓度和pH条件下,轮叶黑藻鲜样在单一、二元和三元金属离子体系中对铅离子的生物吸附特征.在单一金属离子体系中,不同pH值条件下的实验结果表明,pH值在2.0~6.0间变化时,轮叶黑藻对铅的吸附能力随pH值升高而增强,当初始铅浓度为250 mg/L和pH...  相似文献   

7.
张若诗  田永强 《环境工程》2020,38(11):187-195
工业废水、废渣中铬的存在对环境和人体有着潜在危害。生物吸附修复技术因为其技术上的可行性、经济性以及对环境影响较小的特点,成为从污染场地中去除有毒金属最具前景的技术之一。介绍了铬污染来源、铬的主要存在形式及其毒性,同时对铬吸附机制进行了分类讨论;分析了细菌、真菌、藻类、植物以及其他改性材料对铬的生物吸附特性,分别阐释了其吸附机理及主要影响因素;提出了生物吸附机理的研究、生物吸附参数的优化、生物吸附剂的化学改性是实现生物吸附修复技术规模化应用的关键。  相似文献   

8.
沉水植物轮叶黑藻和穗花狐尾藻对Cu2+的等温吸附特征   总被引:8,自引:3,他引:8  
研究了沉水植物轮叶黑藻和穗花狐尾藻对Cu2+的吸附等温线,分别采用了线性和非线性2种方法拟合吸附等温线,并比较分析2种方法的拟合效果和适用性.结果表明:①在采用等温吸附模型比较和评价不同生物吸附剂的性能时,不能仅仅根据R2χ2的大小进行拟合方程的适用性比较.为了获得更为真实可靠的拟合结果,在实践中可以利用线性和非线性方法分别进行拟合,而每一种拟合方法也要同时采用多种模型,在对多个拟合结果比较的基础上选择更符合实验数据的吸附模型;②在本实验中,沉水植物轮叶黑藻和穗花狐尾藻吸附Cu2+的行为更符合Langmuir模型,而Freundlich模型特别是其线性表达式的计算值与实验数据的误差较大;③沉水植物中粗纤维素占干物质的比重是影响其吸附容量的重要因素之一,其细胞壁上多糖的—OH和—CONH2可能是吸附的活性中心;④根据Langmuir模型线性拟合参数qm,轮叶黑藻、穗花狐尾藻对Cu2+的最大吸附量分别为21.55 mg/g和10.80mg/g,其吸附Cu2+的最大活性比表面积分别为3.23m2/g和1.62m2/g.  相似文献   

9.
生物吸附在贵金属的回收中具有较高的应用潜力.本研究以毛霉菌(Mucor varians)菌株(CGMCC 3.02549)为菌种资源,探究了毛霉菌吸附Au~(3+)的影响因素,包括初始Au~(3+)浓度、温度和pH值,研究了毛霉菌吸附Au~(3+)的动力学和热力学特性.结果表明,随着初始Au~(3+)浓度升高,毛霉菌的吸附率降低,吸附容量增高;吸附率随着温度的升高而增加;pH对毛霉菌吸附Au~(3+)的效果影响明显,pH为3时吸附效果最佳.毛霉菌对Au~(3+)的等温吸附过程更符合Langmuir方程(R2=0.985),最大吸附量为325.418 mg·g~(-1).拟二级动力学方程更适合描述Au~(3+)在毛霉菌上的吸附动力学(R2=0.910~0.922).通过热力学分析得出,毛霉菌吸附Au~(3+)是自发的吸热过程.傅里叶红外光谱、X射线光电子能谱、X射线衍射和透射电镜分析表明,回收产物为金纳米颗粒,羰基和羟基是起主要作用的官能团.  相似文献   

10.
太湖蓝藻对Sb(Ⅴ)的生物吸附作用   总被引:1,自引:0,他引:1       下载免费PDF全文
利用富营养化湖泊的藻类——太湖蓝藻,对Sb(Ⅴ)的生物吸附特征进行了研究. 结果表明:藻类经0.1 mol/L盐酸处理后,对Sb(Ⅴ)的生物吸附效率大大提高. 原藻和经盐酸处理的蓝藻在1 h左右对Sb(Ⅴ)的吸附量达到平衡;Sb(Ⅴ)在原藻和经盐酸处理的蓝藻表面的吸附能力均随着pH升高逐渐减弱;原藻与经盐酸处理的蓝藻对Sb(Ⅴ)的吸附等温线符合Freundlich方程;不同离子强度的Cl-、NO3-、SO42-、PO43-对Sb(Ⅴ)在原藻表面的吸附影响较弱,而对Sb(Ⅴ)在经盐酸处理的蓝藻表面的吸附影响显著.   相似文献   

11.
12.
毛木耳(Auricularia polytricha)对水中铬的去除特性研究   总被引:1,自引:0,他引:1       下载免费PDF全文
以毛木耳子实体(Auricularia polytricha)为生物吸附材料,通过批量实验研究起始pH值、反应时间、生物量、Cr浓度等因素对毛木耳子实体吸附去除水中铬的影响及吸附特性。结果表明:铬的生物吸附过程明显受溶液pH影响,其中总Cr和Cr(Ⅵ)的最佳去除pH分别为2.0和1.0;48 h后生物吸附达到平衡,生物吸附剂的最佳浓度为4 g/L;A.polytricha对Cr的最大吸附容量为113.8 mg/g;在整个吸附过程中伴随着Cr(Ⅵ)转化为Cr(Ⅲ)。生物吸附剂的X射线光电能谱显示:吸附在生物吸附剂表层的Cr大都呈+3价。在等温实验中Freundlich模型能较好地模拟毛木耳子实体对Cr的等温吸附过程,同时准二级模型很好地拟合了生物吸附Cr的过程。毛木耳(A.polytricha)子实体在去除水体中的Cr方面具有很强的潜力。  相似文献   

13.
以毛木耳(Auriculariapol ytricha)子实体为生物吸附材料,研究起始pH值、反应时间、重金属浓度这3个因素对毛木耳子实体吸附Cd2+、Cu2+、Pb2+、Zn2+的影响及其吸附特性.结果表明,pH是影响毛木耳子实体吸附重金属离子的主要因素,最适起始pH值为5;在10mg·L-1重金属浓度下,毛木耳子实体对Cd2+、Cu2+、Pb2+、Zn2+的最大吸附率分别为94.12%、96.22%、99.94%、99.19%;准二阶动力学模型比准一阶动力学模型能更好地描述毛木耳子实体对4种重金属的吸附过程;Langmuir等温模型能较好地拟合毛木耳子实体对4种重金属的等温吸附过程;毛木耳子实体对Cd2+、Cu2+、Pb2+、Zn2+的最大吸附量分别为10.09、8.36、23.57和3.64mg.g-1;毛木耳子实体吸附Cd2+、Cu2+、Zn2+的化学反应机理可能为离子交换反应.  相似文献   

14.
轮叶黑藻对铅的吸附特征及生物吸附机理研究   总被引:4,自引:0,他引:4       下载免费PDF全文
研究了轮叶黑藻对重金属铅的吸附特征,同时对吸附机理进行探讨.动力学研究结果表明,轮叶黑藻对铅有较快的吸附能力,10min后铅的去除率达到74.54%;20min后,吸附达到平衡.整个吸附过程符合伪二级动力学方程(R2=0.9910).Sips和Langmuir模型相比Freundlich而言,有着较好的拟合效果,表明轮叶黑藻对重金属铅的吸附属于单层吸附,相邻铅离子间的相互干扰可以忽略不计.红外光谱分析表明:轮叶黑藻叶片富含多种活性基团,羟基、羰基和羧基、C–O及C–N为主要作用基团.吸附铅后,轮叶黑藻叶片内K、Na、Ca、Mg含量明显下降,表明铅离子因产生离子交换而被吸附,且铅离子更易与二价的Ca和Mg产生离子交换.  相似文献   

15.
芽孢杆菌生物吸附处理含铜废水研究   总被引:1,自引:0,他引:1  
用芽孢杆菌干菌体生物吸附去除废水中的铜离子,试验了pH、接触时间、初始铜离子浓度对该芽孢杆菌生物吸附铜的影响,结果表明:在温度为25℃、pH值5.0、初始铜离子浓度200mg/L、吸附时间不超过30min有最大吸附量16.27mg/g;此时去除率为16.27%,且25℃吸附平衡符合Langmuir等温模型与Freundlich等温模型;因此用芽孢杆菌生物吸附处理低浓度含铜废水可行、经济。  相似文献   

16.
以黑曲霉菌丝体作为吸附剂,通过静态吸附实验研究了各种因素对其吸附去除废水中Pb2+的影响。结果表明:当Pb2+初始浓度为50 mg/L,吸附剂用量为1.0 g/L,吸附时间为45 min,pH为5.0时,吸附效果最佳。此时吸附量为44.1 mg/g,去除率为90.86%。使用准二阶动力学方程可较好的拟合黑曲霉对Pb2+的吸附,表明该吸附过程以化学吸附为主。等温吸附过程可用Freundlich方程描述,说明该吸附为多分子层吸附。傅立叶红外光谱分析表明,黑曲霉吸附剂表面的酯羰基(-COO-)、羧基(-COOH )和羟基(-OH )在吸附Pb2+的过程中发挥主要作用。  相似文献   

17.
黄孢原毛平革菌吸附铅离子机理的研究   总被引:35,自引:2,他引:35       下载免费PDF全文
通过电子显微镜观察和X-射线光电子能谱测定等分析手段研究了黄孢原毛平革菌(Phanerochaete chrysosporium)对Pb^2 生物吸附的机理。实验结果表明,该菌种对Pb^2 的吸附过程是一个以表面络合反应为主要机理的物理化学吸附过程,同时也存在着离子交换机理,但它并非主要机理。  相似文献   

18.
缺氧生物吸附活性污泥法生物脱氮工艺中试研究   总被引:2,自引:0,他引:2       下载免费PDF全文
结合生物作用机理,提出缺氧生物吸附活性污泥法生物脱氮(ABSAS工艺)工艺,在小试的基础上,进行了中试研究。结果表明,通过强化缺氧吸附作用可提高反硝化作用速率,在仅有污泥回流而无硝化混合液回流的前提下,TN去除仍可达60%~80%。在冬季(8~13℃)进水NH4-N60mg/L左右、HRT10小时时,NH4-N去除率达88%以上,出水小于15mg/L。此工艺具有很好的工业应用前景,可在设备投资增加不大的情况下,实现将传统活性污泥法工艺改造为具有生物脱氮功能的工艺  相似文献   

19.
生物吸附法去除重金属离子的研究进展   总被引:29,自引:13,他引:29  
本文对生物吸附去除重金属污染的研究和应用现状进行了综合评述.首先,介绍了细菌、真菌、藻类这3类研究较多的生物吸附剂,比较了它们对重金属离子的吸附容量,并简要介绍了一些新型的吸附剂.然后,讨论了生物吸附的影响因素、吸附机理、吸附剂的预处理和固定化、吸附等温式和吸附动力学模型等.最后,介绍了生物吸附法的应用情况.本文还展望了生物吸附法研究和应用的两个可能发展方向,一是利用包括生物吸附在内的多种工艺的综合技术,特别是利用活细胞来处理实际废水.二是开发出类似于离子交换树脂的商业化生物吸附剂,并努力开拓商业市场.  相似文献   

20.
The biosorption characteristics of Cs(I) ions from aqueous solution using exopolymers (PFC02) produced from Pseudomonas fluorescens C-2 were investigated as a function of pH, biosorbent dosage, contact time and initial concentration. pH played a major role in the adsorption process, and the optimum pH for the removal of Cs(I) was 8.0. Langmuir, Freundlich and Dubinin-Radushkevich (D-R) models were applied to describe the biosorption isotherm of the Cs(I) ions by PFC02. The Lagergren first-order, pseudo second-order kinetic and intraparticle diffusion models were used to test the kinetic data. Langmuir model and D-R model fitted the equilibrium data better than the Freundlich isotherm. The monolayer adsorption capacities of PFC02 as obtained from Langmuir isotherm at 25°C was found to be 32.63 mg/g. From the D-R isotherm model, the mean free energy was calculated as 26.73 kJ/mol, indicating that the biosorption of cesium was chemisorption. The biosorption process was rapid, and the kinetic rates were best fitted to the pseudo second-order model, which indicated the biosorption process operated through chemisorption mechanism. FT-IR analysis of PFC02 showed the possible functional groups responsible for cesium adsorption were hydroxyl, carboxyl, carbonyl and sulphonate groups. SEM analysis showed the porous structure of the material while EDX analysis confirmed the adsorption of Cs(I) on PFC02. Cesium adsorbed onto the PFC02 could be desorbed efficiently using 1 mol/L HNO3, and the enrichment factor was 50.0. Furthermore, PFC02 could be reused five times with only about 8.25% regeneration loss. The developed method was successfully utilized for the removal of Cs(I) ions from aqueous solution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号