首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Abstract

Fate of the fungicide chlorothalonil (TCIN) binding to dissolved organic acid fractions was quantified using gas‐purge desorption studies. Binding studies were conducted to measure the dissolved organic carbon partition constant (KDOC) with aquatic fulvic and humic acid fractions purified from cranberry bog water. Desorption studies at DOC concentrations up to 50 mg L‐1 resulted in mean log KDOC values of 4.63 (s.d.=0.5, n=8) and 4.81 (s.d.=0.7, n=7) for fulvic and humic acids, respectively. These values deviated from reported KOC (organic carbon) values by 0.5 to 1.5 orders of magnitude. The relationship between KOC and KDOC did not conform to accepted ratios of 10: 1 to 3: 1, although these studies were conducted with the strong hydrophobic fraction of DOC. Binding was rapid suggesting hydrophobic partitioning or weak Van Der Waals forces as binding mechanisms. The strong binding potential for TCIN to aquatic humic substances corresponds to increased solubility in the aqueous system. Sorption to DOC suggests a possible transport mechanism which may result in elevated concentrations of TCIN in cranberry bog systems.  相似文献   

2.
We studied the binding of Cu(II) to humic acids and fulvic acids extracted from two horizons of an ombrotrophic peat bog by metal titration experiments at pH 4.5, 5.0, 5.5, and 6.0 and 0.1 M KNO3 ionic strength. Free metal ion concentrations in solution were measured using an ion selective electrode. The amounts of base required to maintain constant pH conditions were recorded and used to calculate H+/Cu2+ exchange ratios. The amount of Cu(II) bound to the humic fractions was greater than the amount bound to the fulvic fractions and only at the highest concentrations of metal ion the amount of Cu(II) sorbed by both fractions became equal. The proton to metal ion exchange ratios are similar for all humic substances, with values ranging from 1.0 to 2.0, and decreasing with increased pH. The amount of Cu(II) bound is practically independent of the horizon from which the sample was extracted. The results indicate that the humic substances show similar cation binding behaviour, despite the differences in chemical composition. The copper binding data are quantitatively described with the NICA-Donnan model, which allows to characterize only the carboxylic type binding sites. The values of the binding constants are higher for the humic acids than for the fulvic acids.  相似文献   

3.
猪粪堆肥中铜锌与腐殖质组分的结合竞争   总被引:2,自引:0,他引:2  
为研究猪粪堆肥中铜锌与腐殖质组分的结合竞争,以猪粪和秸秆为堆腐原料,进行了为期36 d的好氧堆肥实验,研究猪粪堆肥过程中腐殖质组分(胡敏酸和富里酸)、胡敏酸结合态铜锌、富里酸结合态铜锌含量的变化。结果表明,堆肥结束后,腐殖化程度提高,胡敏酸碳含量增加394.4%,富里酸碳含量降低64.9%,腐殖化指数从0.24增加到3.33;随着堆肥的进行,胡敏酸结合态铜锌含量分别增加394.3%和56%,而富里酸结合态铜锌含量分别下降17.5%和28.4%;相关分析表明,胡敏酸结合态铜、富里酸结合态锌与胡敏酸、富里酸碳含量及腐殖化指数均成显著相关(P<0.01);堆肥过程中,胡敏酸结合态铜与富里酸结合态铜之比大于1,而胡敏酸结合态锌与富里酸结合态锌小于1,另外,胡敏酸中的Cu/Zn大于1,而富里酸中的Cu/Zn小于1,表明在腐殖质中铜主要与胡敏酸结合,而锌主要与富里酸结合。研究揭示了猪粪堆肥中重金属铜锌与不同腐殖质组分的结合竞争关系,为畜禽粪便堆肥土地利用的风险评估和风险控制提供科学依据。  相似文献   

4.
5.
Elemental analysis, Fourier transform infrared coupled to attenuated total reflectance (FTIR-ATR) and solid-state cross polarization with magic angle spinning-13C-nuclear magnetic resonance (CPMAS 13C NMR) spectroscopies were used to compare the chemical features of water-soluble organic compounds (WSOC) from atmospheric aerosols with those of aquatic humic and fulvic acids. The influence of different meteorological conditions on the structural composition of aerosol WSOC was also evaluated. Prior to the structural characterisation, the WSOC samples were separated into hydrophobic acids and hydrophilic acids fractions by using a XAD-8/XAD-4 isolation procedure. Results showed that WSOC hydrophobic acids are mostly aliphatic (40–62% of total NMR peak area), followed by oxygenated alkyls (15–21%) and carboxylic acid (5.4–13.4%) functional groups. Moreover, the aromatic content of aerosol WSOC samples collected between autumn and winter seasons is higher (∼18–19%) than that of samples collected during warmer periods (∼6–10%). The presence of aromatic signals typical of lignin-derived structures in samples collected during low-temperature conditions highlights the major contribution of wood burning processes in domestic fireplaces into the bulk chemical properties of WSOC from aerosols. According to our investigations, aerosol WSOC hydrophobic acids and aquatic fulvic and humic acids hold similar carbon functional groups; however, they differ in terms of the relative carbon distribution. Elemental analysis indicates that H and N contents of WSOC hydrophobic acids samples surpass those of aquatic fulvic and humic acids. In general, the obtained results suggest that WSOC hydrophobic acids have a higher aliphatic character and a lower degree of oxidation than those of standard fulvic and humic acids. The study here reported suggests that aquatic fulvic and humic acids may not be good models for WSOC from airborne particulate matter.  相似文献   

6.
The fate of 14C-labeled difloxacin (14C-DIF) was studied in time course experiments after application on soil (Ap horizon of silt loam) and amendment of authentic DIF containing pig manure (146 mL kg?1; 4.17 MBq kg?1; 0.85 mg kg?1) or water (124 mL kg?1; 0.42 MBq kg?1; 0.09 mg kg?1) for 56 and 120 days of incubation, respectively.

Mineralization of 14C-DIF was below 0.2% in both experiments after 56 days or 120 days. In the course of the experiments, portions of extractable radioactivity (Accelerated Solvent Extraction (ASE); acetonitrile-water) decreased to 19–21% depending only little on manure amendment. Non-extractable residues of 14C-DIF increased to 70–74% after 56 days and 120 days, respectively, and therefore were the main route of 14C-DIF in soil. According to radioanalytical HPLC and LC-MS/MS, only the parent compound was found in all extracts over the whole time of the experiment. According to fractionation of the non-extractable residues (NER) into particle size fractions, 14C portions were associated to the water used for fractionation, the silt and clay fractions, whereas no radioactivity was detected in the sand fraction. The majority of 14C was found within the clay fractions.

Fractionation of humic components showed that radioactivity derived from 14C-DIF was associated with humic acids, fulvic acids, humins and minerals and very little with soluble, non-humic HCl fraction. The highest portions of radioactivity were found in the fulvic acid fraction. Results obtained by size exclusion chromatography (SEC) of the purified fulvic acids were similar for every sample analyzed. One large portion of 14C co-eluted with fulvic acids of a molecular weight below 910 g mol?1. Both fractionation methods demonstrated that the parent compound DIF or initial metabolites were rapidly integrated into humic materials and, thus, were major components of NER.  相似文献   

7.
A study was conducted to determine a possible role of loosely bound humic substances (i.e., humic and fulvic acids) in bioavailability of aged phenanthrene with time. In this study, long-term residence of phenanthrene in soil is defined as aging or sequestration, and the effect was determined by the declined bioavailability to bacteria of the polycyclic aromatic hydrocarbon with increased residence time. After 1, 7, and 100 days of aging of phenanthrene in Lima loam, about 90-93% of initial phenanthrene was recovered from the humin-mineral fraction of Lima loam whereas less than 12% was found in humic and fulvic acids of the same soil. Mineralization rates of phenanthrene aged in the humin-mineral fraction significantly decreased with time by the test bacterium P5-2. In terms of extents of mineralization, the difference with time was not appreciable, but still significant at P<0.05. Additional decreases in the rates and extents of mineralization were observed with the whole soil (i.e. Lima loam) to which phenanthrene had been aged. Data suggest that major sequestration sites for phenanthrene may reside in the humin-mineral fraction, and probably humic and fulvic acids may act as a physico-chemical barrier to bacterial degradation so that the compound's bioavailability may be limited.  相似文献   

8.
Natural organic polyelectrolytes (humic and fulvic acids) and their metal complexes were removed by adsorption onto xonotlite. The removal percentages of humic and fulvic acids by xonotlite were approximately 80% and 30%, respectively. Humic acid removal from solution by adsorption onto xonotlite took place more readily than fulvic acid removal. The molecular weight distributions of the humic substances remaining in solution after adsorption with the xonotlite were measured with size exclusion chromatography. A comparison of molecular weight distributions demonstrated conclusively that large molecular weight components were adsorbed preferentially, indicating that adsorption efficiency depends on the number of functional groups of humic substances. Furthermore, the surface topography of the adsorbent was observed before and after adsorption by scanning electron microscopy. The calculated heat of adsorption was of 330 kJ mol(-1) which was evaluated from the Clapeyron-Clausius equation. Therefore, the adsorption type can be considered chemical. Since xonotlite can be easily synthesized and obtained at low cost, the adsorption method of humic and fulvic acids is superior to their precipitation.  相似文献   

9.
Spectral absorption coefficients and fluorescence quantum efficiencies were determined for humic substances from a variety of sources. Specific absorption coefficients kh, for humic substances at wavelengths λ from 300 to 500 nm can be closely described by the relation AeB(450-λ), where A and B are constants. When the kh values are in units of liter (mg organic carbon)?1meter?1 and wavelength λ is in nanometers, mean values of A and B for aquatic humus in the 12 water bodies studied were 0.6±0.3 and 0.014±0.001, respectively. Spectral absorption coefficients of dissolved organic matter in blackwater rivers, of the “yellow substance” in the sea, and of fulvic acids extracted from soils are very similar. Fluorescence quantum yields of humic substances were low and more variable than the absorption coefficients, ranging from 0.0005 to 0.012 with excitation at 350 nm (average of 0.0045±0.0038 for 6 waters). Fluorescence spectra for the humic substances were remarkably similar with maximum emission at 430 to 470 nm. Results of this study can be used to compute photolysis rates of pollutants as a function of depth in natural water bodies.  相似文献   

10.
In this review, special interest was devoted to provide information on the surrogate parameters expressing both quality and quantity of organic matter for the understanding of the photocatalytic oxidation of humic substances. Detailed investigation was directed to the application of photocatalysis with reference to source, origin and modeling of organic matter. Evaluation of the literature findings emphasizes that organic matter taken from natural waters are site specific and should be characterized in detail to be comparable to other studies. Taking into account the photocatalytic degradation studies of natural organic matter, humic substances, humic acids and fulvic acids in slurry systems, a procedure could be deduced that depends on the selection of a standard model sample with a representative concentration, selection of a standard photocatalyst and dose (e.g., TiO2 Degussa P-25, 0.25 mg mL−1), application of standardized reaction conditions such as light intensity, pH, and temperature. Furthermore, standardized filtration step avoiding organic leaching and selection of the most suitable analytical parameter are the crucial points to be considered. The use of such a protocol could form a basis for the determination of “relative degradation efficiency” of any sample containing natural organic matter, humic substances, humic acids and fulvic acids regardless of dependency on source and origin.  相似文献   

11.
The main objective of the present study was to assess the roles of various soil components in sorption of organic compounds differing in polarity. Removal of the whole soil organic matter decreased sorption by approximately 86% for nonpolar 1,3,5-trichlorobenzene (TCB), but only 34-54% for highly polar 1,3,5-trinitrobenzene (TNB); however, removal of the extractable humic/fulvic acids did not much affect sorption of the two sorbates. With normalization of solute hydrophobicity, TNB exhibits several orders of magnitude stronger sorption compared with TCB to maize burn residue (black carbon), extracted humic acid and Na+-saturated montmorillonite clay, suggesting specific sorptive interactions for TNB with the individual model soil components. It was proposed that sorption of TCB to the bulk soil was dominated by hydrophobic partition to the condensed, non-extractable fraction of organic matters (humin/kerogen and black carbon), while interactions with soil clay minerals were an important additional factor for sorption of TNB.  相似文献   

12.
The quantitative determination of pesticide binding to dissolved humic substances is relevant to both water treatment operation using activated carbon adsorption process and the application of transport models that predict the environmental distribution patterns of a given hydrophobic contaminant. In this study and in a first set of experiments, the extent of binding between (i) three pesticides of environmental concern, aldicarb, lindane and pentachlorophenol, and (ii) dissolved commercial humic acid and soil extracted fulvic acid, was determined using dialysis experiments and water solubility enhancement tests. In a second set of experiments, the influence of dissolved humic substances or pesticide on the retention of the other co-adsorbate onto activated carbon was investigated in binary systems. It was found that association was negligible for aldicarb and that the pesticide sorption onto activated carbon was not affected by humic acid (8.5 mg liter(-1) DOC). The association constants K for lindane and pentachlorophenol were identical in the presence of fulvic acid (logK=4.1) but lower than that observed with humic acid. In the presence of humic acid, binding affinity for pentachlorophenol (logK=4.6) was higher than the one observed for lindane (logK=4.4), despite its much higher water solubility. This observation suggests that the aromatic character of the pentachlorophenol molecule contributes to association interactions with humic acid. From co-adsorption experiments onto activated carbon it was found that fulvic acid (7.7 mg litre(-1) DOC) slightly enhances sorption kinetics of pentachlorophenol. Lindane (1 mg litre(-1)) does not affect sorption kinetics for fulvic acid but markedly enhances both the sorption kinetics and adsorptive capacity for humic acid. Activated carbon retention of dissolved humic substances or pesticide appears to be enhanced by the association potential that exists between these co-adsorbates in some binary systems.  相似文献   

13.
Sewage sludges are frequently used as soil amendments due to their high contents of organic matter and nutrients, particularly N and P. However, their effects upon the chemistry of soil humic acids, one of the main components of the soil organic matter, need to be more deeply studied in order to understand the relation between organic matter structure and beneficial soil properties. Two sewage sludges subjected to different types of pre-treatment (composted and thermally dried) with very different chemical compositions were applied for three consecutive years to an agricultural soil under long-term field study. Thermal analysis (TG–DTG–DTA) and solid-state 13C NMR spectroscopy were used to compare molecular and structural properties of humic acids isolated from sewage sludges, and to determine changes in amended soils. Thermally dried sewage sludge humic acids showed an important presence of alkyl and O/N-alkyl compounds (70%) while composted sludge humic acids comprised 50% aromatic and carbonyl carbon. In spite of important differences in the initial chemical and thermal properties of the two types of sewage sludges, the chemical and thermal properties of the soil humic acids were quite similar to one another after 3 years of amendment. Long-term application of both sewage sludges resulted in 80–90% enrichment in alkyl carbon and organic nitrogen contents of the soil humic acid fraction.  相似文献   

14.
Abstract

In conformity with Guideline 4.1 of the Federal German Biological Agency, degradation experiments with the fungicide active ingredient [benzene ring‐U‐14C]anilazine and its major metabolite [triazine ring‐U‐14C]dihydroxy‐anilazine were carried out in an orthic luvisol. Mineralization of the benzene ring carbon of anilazine amounted to less than 2 % in 110 days and that of the triazine ring carbon of dihydroxy‐anilazine to less than 8 %. Increasing the incubation temperature from 22 °C to 30 °C and adding organic substance influenced the mineralization slightly. In soils which received two or three applications in succeeding years with subsequent ageing in the open‐air lysimeter no stimulation of the mineralization was observed. Extractions after incubation showed that only 10.2 to 18.6 % of the 14C‐activity applied with anilazine was extractable with acetone/CaCl2. The major proportion was bound in the fractions of the soil organic matter, namely 45.0 to 59.6 % of the radiocarbon applied was accounted for by the humin fraction, 12.0 to 27.4 % by the fulvic acids, and 9.4 to 15.0 % by the humic acids. In the case of dihydroxy‐anilazine, 28.9 to 89.7 % of the applied 14C‐activity was extractable with acetone/CaCl2. Of tJhe radiocarbon bound in the soil, the greatest proportion, i.e. 18.5 to 35.5 % of the radiocarbon applied, was accounted for by the fulvic acids.  相似文献   

15.
The influence of dissolved humic substances on the transport of (4-chloro-2-methylphenoxy) acetic acid (MCPA) in a sandy soil with a low organic carbon content was studied in a column experiment. Soil columns were eluted with aqueous solutions containing different fractions of humic substances. More than 70% of the applied compound was found in the leachate in all sandy soil experiments, but distinct differences were obtained depending on the composition of the eluent. The addition of both humic and fulvic acids to the eluent affected the leaching behaviour of MCPA. While the presence of humic acids increased and accelerated the movement of MCPA in the investigated sandy soil, fulvic acids caused the opposite effect: increased retention was observed relative to the control. We concluded that a possible carrier transport or retention strongly depends on the composition of the dissolved organic matter. Thus, changes in the composition of dissolved organic matter may affect MCPA movement into deeper soil layers.  相似文献   

16.
The influence of different fractions of soil organic matter on the retention of the herbicide isoproturon (IPU) has been evaluated. Water and methanol extractable residues of 14C labeled isoproturon have been determined in two Moroccan soils by β -counting–liquid chromatography. The quantification of bound residues in soil and in different fractions of soil humic substances has been performed using pyrolysis/scintillation-detected gas-chromatography. Microbial mineralization of the herbicide and soil organic matter has been also monitored. Retention of isoproturon residues after 30-days incubation ranged from 22% to 32% (non-extractable fraction). The radioactivity extracted in an aqueous environment was from 20% to 33% of the amount used for the treatment; meanwhile, methanol was able to extract another 48%. Both soils showed quantities of bound residues into the humin fraction higher than humic and fulvic acids. The total amount of residues retained into the organic matter of the soils was about 65 % of non-extractable fraction, and this percentage did not change with incubation time; on the contrary, the sorption rate of the retention reaction is mostly influenced by the clay fraction and organic content of the soil. Only a little part of the herbicide was mineralized during the experimental time.  相似文献   

17.
Carvalho SI  Otero M  Duarte AC  Santos EB 《Chemosphere》2008,73(11):1845-1852
Large volumes of wastewater with a high organic load are generated by the pulp and paper industry that negatively affect the quality of receiving waters. The main waste products in the pulp mill effluents are lignin derived macromolecular compounds, which are similar to natural humic substances and very resistant to wastewater treatments. Fulvic acids (FA) represent the higher percentage of these humic substances and it was observed that solar irradiation modify their properties. Several analytic tools, namely, UV–Visible, molecular fluorescence and FTIR spectroscopies, were used to assess the effect of solar exposition on fulvic acids from a kraft pulp mill effluent. It may be concluded that sun irradiation may alter to a high extent the physicochemical properties of macromolecular organic matter, namely fulvic acids, released by kraft pulp mill effluents. After solar exposition, the aromaticity decreases, the aliphatic structures become more oxygenated, and the fulvic acids from the pulp mill effluent remaining in solution are more similar to aquatic fulvic acids from non polluted sites.  相似文献   

18.
Abstract

To assess effects of industrial and environmental pollution on analytical characteristics of humic substances, we isolated humic acids (HA's) and fulvic acids (FA's) from unpolluted and polluted soils and sediments. Following purification, the HA's and FA's were characterized by elemental (C, H, O, N, S) and functional group (CO2H, phenolic OH, total acidity) analyses, infrared (IR) spectrophotometry, differential thermal analysis (DTA) and by metal (Fe, Al, Cu, Mn, Pb, Ni, Co, Zn, Cr, Cd, Hg, Ca and Mg) analyses. Si was also determined in all samples.

Polluted HA's and FA's contained more N and S but less 0 and were richer in all metals and Si than were unpolluted ones. IR spectra showed that polluted humic materials were enriched in COO groups, secondary non‐cyclic amides and possible also in SO3H groups. DTA curves indicated that polluted HA's and FA's were more thermostable than unpolluted HA's and FA's. Unusually high N, S, Cu, Cr, Zn and Hg contents of humic materials appear to be useful indicators of soil and sediment pollution.  相似文献   

19.
Abstract

The adsorption of simazine on two fractions of hu‐mic acids of different molecular size was investigated at a pH range of 2.5 to 6.2. The amounts of the herbicide adsorbed decreased with increasing pH for both of the two humic acids fractions used and no adsorption was observed at pH 5.5. The adsorption capacity of fraction I (Mv >100,000) exceeded that of fraction IV (Mv < 4,000) over the entire pH region used. No appreciable changes in the adsorbed amounts were observed after 24 hours.

Continuous flow dialysis techniques were used to determine the extent of binding between simazine and dissolved humic acids. It was observed that 50% and 60% of simazine added were thus removed from the dialysis bags containing humic acids fractions I and IV,respectively. Higher amounts of simazine were adsorbed by the high molecular weight humic fraction. The adsorption processes involve ionic bonds between simazine and humic acids. In addition it is likely that hydrogen bonds and physical forces are also involved in the adsorption of simazine by humic acids.  相似文献   

20.
Surface marine sediments from Ría de Arousa estuary were analyzed for humic and fulvic acids by UV-visible spectrometry and have been characterized using elemental analysis (carbon, hydrogen and nitrogen elemental composition) and spectrometric data (A2/A4 ratio, absorbancies at 270 and 407 nm and E4/E6 ratio, absorbancies at 465 and 665 nm). These variables have been used as discriminating factors to distinguish of marine and terrestrial origin of humic and fulvic acids in Ría de Arousa surface marine sediments. Principal component analysis, PCA, and cluster analysis, CA, have been used as unsupervised pattern recognition procedures. The half-range central value transformation was used as data pre-treatment to homogenize data. After a Varimax rotation, PCA applied to humic acid data has reveled that spectrometric A2/A4 and E4/E6 ratios are the main dominating features in the first principal component (48.6% of total variance), the humic acid content is the feature with the highest weight in the second principal component (22.9% of the total variability) and the carbon elemental composition domain in the third principal component (13.3% of total variance). Results from PCA have revealed that surface sediments collected at inner-left part of the estuary and at the mouth of the river Ulla belong to the same group. Similarly, PCA has shown that surface sediments from the right mouth of the estuary form a compact group. Taking in account the water circulation in Ría de Arousa estuary, these findings mean that the organic matter in surface sediments from the inner-left part of the estuary derived mainly from terrestrial organic matter while the organic matter in surface sediments from the right mouth of the estuary is mainly derived from marine sources. Finally, it must be noticed that any classification of surface sediments was assessed when applying of PCA and CA from fulvic acids data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号