共查询到20条相似文献,搜索用时 15 毫秒
1.
由电镀含铬废水合成吡啶酸铬(Ⅲ)的研究 总被引:2,自引:0,他引:2
本文对电镀含铬废水进行了处理,采用电镀含铬废水合成了有机铬饲料添加剂-吡啶酸铬(Ⅲ),同时采用电导、紫外、红外光谱对吡啶酸铬的性质进行了研究。 相似文献
2.
铁(Ⅲ)-丙酮酸盐配合物光解引发水中铬(Ⅵ)还原 总被引:2,自引:0,他引:2
初步研究了含有Fe(Ⅲ)及丙酮酸盐的溶液在高压汞灯照射下对铬(Ⅵ)的光还原反应.考察了溶液pH值、Fe(Ⅲ)浓度、丙酮酸钠浓度、Cr(Ⅵ)浓度对反应的影响.分析了光还原反应的动力学及反应机制.结果表明:铁-丙酮酸盐体系能光还原Cr(Ⅵ);最佳pH为3.0;Cr(Ⅵ)光还原的初始速率随着加入的铁(Ⅲ)、丙酮酸盐、Cr(Ⅵ)初始浓度的增加而增加;实验条件下的表观动力学方程为:-dGCr(Ⅵ)/dt=0.021[Cr(Ⅵ)]0.39[Fe(Ⅲ)r1.05[CH3COCOONa]0.39;Fe(Ⅲ)-丙酮酸盐配合物光解产生的Fe(Ⅱ)是Cr(Ⅵ)的主要还原剂. 相似文献
3.
Al(Ⅲ)与Fe(Ⅲ)溶液共聚合研究 总被引:7,自引:0,他引:7
以AlCl_3·6H_2O和FeCl_3·6H_2O混合溶液通过滴加NaOH溶液的方法制备了不同Al/Fe(摩尔比,下同)和不同[OH]_b/[Al+Fe]值的共聚物.测定了聚合过程和熟化过程中的pH值变化,并对不同碱化度和熟化时间下的聚合物进行了混凝效能实验.结果表明,在共聚过程中,Fe(Ⅲ)与 OH~-的络合速度比Ai(Ⅲ)快,即 Fe(Ⅲ)具有较强的共聚合活性.Al/Fe,[OH」_b/[Al+Fe]值对铝铁共聚物形态分布有明显影响.不同条件下共聚物混凝对比实验表明,在Al/Fe为5:5,[OH]_b/[Al+Fe]为 1.6,熟化时间为24h时,显示出了较优异的混凝效能. 相似文献
4.
环境样品中微量铬的分光光度测定法 总被引:3,自引:0,他引:3
在pH6.4的KH_2PO_4-NaOH缓冲溶液中,经60℃水浴加热10min,Cr(Ⅵ)-o-Cl-PFCTMAB-SDBS形成一紫红色胶(?)配合物,其λ_(max)在586nm处。(?)(Ⅵ)浓度在0—10μg/25ml范围内遵守比耳定律,ε_(586)=1.81×10~(?)L·mol~(-1)·cm~(-1)。用于环境样品的(?),结果比较满意。 相似文献
5.
6.
7.
8.
铬(Ⅲ)和铬(Ⅵ)的离子色谱分析 总被引:7,自引:0,他引:7
本文对水样中Cdr和Cr的离子色谱分析结果表明:Cr经柱前衍生,与CCrtO^2-4状态存在的Cr在阴离子交换柱上分离,用光度法检测。Cr和Cr以最低检出限分别为30μg.l^-1和1μg.l^-1,常见阴,阳离子不干扰。 相似文献
9.
吸附伏安法测定微量铬(Ⅵ) 总被引:2,自引:0,他引:2
在0.08M NH_4Cl-NH_4OH(pH=9.5)-4.0×10~(-4)M铜铁试剂(Cup)中,用快速扫描吸附伏安法可获得铬(Ⅵ)-Cup配合物的吸附还原峰,其峰电位为-1.55V(vs、SCE),导数峰的高度与铬(Ⅵ)的浓度在1×10~(-9)—9×10~(-8)M范围内呈现良好的线性关系,最低检出限为6×10~(-10)M。本文对测定铬(Ⅵ)的最佳条件进行了讨论,并对配合物的极谱性质作了初步探讨,确定铬(Ⅵ)-Cup为1∶1配合物。用此方法测定了天然水及人体尿液中的铬(Ⅵ)。 相似文献
11.
比较了弱酸性条件下Cu(Ⅱ)、Fe(Ⅲ)和Cr(Ⅲ)单独或加入抗坏血酸(L-AscA)对大肠杆菌(E.coli)的毒性,深入分析了Cu(Ⅱ)/L-AscA体系的特性;通过电子自旋共振(ESR)定量分析羟基自由基(.OH)浓度以分析其毒性机理.结果表明,pH 4.0下L-AscA促进了Cu(Ⅱ)、Fe(Ⅲ)而非Cr(Ⅲ)的毒性,三者毒性Cu(Ⅱ)>Cr(Ⅲ)>Fe(Ⅲ).通常被认为无毒的Cr(Ⅲ)却在0.2 mmol.L-1,pH 4.0时表现出了很高的杀菌率.与0.01%L-AscA共存时,Cu(Ⅱ)为200、20μmol.L-1和2、0.2μmol.L-1下,E.coli的存活率分别在30 min和2 h内迅速降至零,且该体系对自然水体中分离所得的其它7种菌株同样具有明显的制御作用.ESR结果表明L-AscA的加入使200μmol.L-1Cu(Ⅱ)反应体系的.OH浓度约提高两倍,.OH浓度呈Cu(Ⅱ)浓度依赖.但在Fe(Ⅲ)、Cr(Ⅲ)/L-AscA体系中未检测到.OH,表明三者对细胞的致毒机制存在明显差异. 相似文献
12.
13.
14.
氢化物-无色散原子荧光法测定河水和废水中砷(Ⅲ)、砷(Ⅴ)、锑(Ⅲ)、锑(Ⅴ)、硒(Ⅳ)和硒(Ⅵ) 总被引:2,自引:0,他引:2
基于As (Ⅲ)、As(Ⅴ)、Sb(Ⅲ)、Sb(Ⅴ)、Sc(Ⅳ)、和Sc(Ⅵ)立不同酸度下,与硼氢化钾反应形成氢化物的行为,提出了测定水样中不同价态As、Sb和Se的原子荧光法:用HAC—NaAC缓冲液控制水样pH=5.5和PH=5.0分别测定As(Ⅲ)和Sb(Ⅲ)含量,水样加HCl至2N直接测定Se(Ⅳ);另取相同量的水样,经KI和抗坏血酸还原后分别测定总As和总Sb量,水样加HCl至6N煮沸后可测总Se量。用差减法求得相应的As(Ⅴ),Sb(Ⅴ)和Se (Ⅵ)含量,方法用于实际样品测定均得到满意结果。 相似文献
15.
铬(Ⅵ)污染高岭土电动修复实验研究 总被引:14,自引:0,他引:14
用电动方法对铬(Ⅵ)污染高岭土的修复进行了实验室研究。选用重铬酸钾作为污染物,配制的高岭土的重铬酸钾质量分数为100mg·kg-1。实验研究了铬(Ⅵ)污染高岭土电动修复的可行性,施加电压和处理时间对去除效率的影响,阴极电解产生的OH-对去除效率的影响及其控制方法,以及铬的迁移和分布规律。实验结果表明,电动修复可以有效去除高岭土中存在的铬(Ⅵ),最高去除效率可达97.8%;高岭中六价铬[Cr(Ⅵ)]以含氧阴离子形式存在,在电动修复过程中向阳极区域迁移;用蒸馏水冲洗和醋酸中和阴极电解产生的OH-,可以提高铬的去除效率。 相似文献
17.
《生态与农村环境学报》2014,(4)
为考察Fe(Ⅲ)改性对生物质炭吸附水相中Cr(Ⅵ)的影响,采用吸附平衡试验结合Zeta电位、傅里叶变换红外光谱(FTIR)、X射线衍射法(XRD)等方法研究了Fe(Ⅲ)改性秸秆生物质炭对Cr(Ⅵ)的吸附作用及机制。结果表明,Fe(Ⅲ)通过与生物质炭表面官能团形成络合物及氢氧化铁表面沉淀的物理覆盖作用降低生物质炭表面负电荷,增加表面正电荷,从而促进生物质炭对Cr(Ⅵ)的吸附。Fe(Ⅲ)改性对花生秸秆炭吸附Cr(Ⅵ)的促进作用大于稻草炭,pH值为5.0时Fe(Ⅲ)改性分别使花生秸秆炭和稻草炭对Cr(Ⅵ)的最大吸附量提高79%和26%。在pH值为4.0~6.5范围内,生物质炭和改性生物质炭对Cr(Ⅵ)的吸附量均随悬液pH值升高而降低,Fe(Ⅲ)改性对生物质炭吸附Cr(Ⅵ)的促进作用也呈相似的变化趋势。改性生物质炭的表面负电荷随pH值升高而增加是Cr(Ⅵ)吸附量减小的主要原因。Cr(Ⅵ)可在改性生物质炭表面的同时发生静电吸附和专性吸附,Cr(Ⅵ)的专性吸附量也随pH值升高而减小。因此,改性秸秆生物质炭在酸性条件下对Cr(Ⅵ)有较高的吸附容量,可用于酸性废水中Cr(Ⅵ)的吸附和去除。 相似文献
18.
19.
《环境化学》2018,(12)
以城市污水厂脱水污泥为原料,分别经物理活化、物理与化学活化相结合的方法制备污泥基吸附剂样品,通过BET表面积分析、扫描电镜(SEM)、傅里叶红外光谱分析等对污泥吸附剂性质进行了表征,对比研究了不同改性方法制备的污泥基吸附剂对Cr(Ⅵ)的去除性能.结果表明,经过NaOH联合改性的污泥吸附剂W6对Cr(Ⅵ)吸附性能最好,其次为HNO_3联合改性的污泥吸附剂样品W4,污泥吸附剂去除Cr(Ⅵ)的最佳pH值为2.5.对于样品W4、W6来说,室温下(25℃)其吸附行为更符合Langmuir等温吸附模型,说明这两种吸附剂对Cr(Ⅵ)吸附都主要以单分子层形式吸附为主.改性污泥吸附剂样品均较适合准二级动力学模型,其相关系数均达到了0.99以上.因此,物理与化学联合改性方法可以显著改善污泥吸附剂对Cr(Ⅵ)的吸附性能. 相似文献
20.
初步研究了含有Fe(III)及丙酮酸盐的溶液在高压汞灯照射下对铬(VI)的光还原反应.考察了溶液pH值、Fe(III)浓度、丙酮酸钠浓度、Cr(VI)浓度对反应的影响.分析了光还原反应的动力学及反应机制.结果表明:铁丙酮酸盐体系能光还原Cr(VI);最佳pH为3.0;Cr(VI)光还原的初始速率随着加入的铁(III)、丙酮酸盐、Cr(VI)初始浓度的增加而增加;实验条件下的表观动力学方程为:-dCCr(VI)/dt=0.021[Cr(VI)]0.39[Fe(III)]1.05[CH3COCOONa]0.39;Fe(III)-丙酮酸盐配合物光解产生的Fe(II)是Cr(VI)的主要还原剂. 相似文献