首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Lakshadweep is a group of 36 coral islands scattered in the Arabian Sea off the western coast of India. On such small tiny islands, groundwater is the only source of fresh water for the islanders. Due to the growing population on these islands, demand for fresh water is also increasing and on the other side the peculiar hydrologic, geologic and geomorphic features restrict the availability of groundwater. Therefore, a proper understanding of the groundwater condition is important in order to meet this increasing demand and also to formulate future development and management strategies. Detailed hydrogeological, geophysical and hydrochemical studies have been carried out to identify potential fresh groundwater resources and quantify vulnerable parts of Andrott Island, Union Territory of Lakshadweep. Systematic collection and analysis of hydrological, geophysical and hydrochemical data reveal that fresh groundwater is only available between 2.5 to 5.0 m depths and provide an early sign of deterioration in groundwater quality in the peripheral parts of eastern and western coasts of this island. It suggests immediate measures for arresting the deterioration in groundwater quality as well as augmentation for restoration of aquifer in some parts of the island.  相似文献   

2.
In this paper, the pattern of groundwater level fluctuations is investigated by statistical techniques for 24 monitoring wells located in an unconfined coastal aquifer in Sfax (Tunisia) for a time period from 1997 to 2006. Firstly, a geostatistical study is performed to characterize the temporal behaviors of data sets in terms of variograms and to make predictions about the value of the groundwater level at unsampled times. Secondly, multivariate statistical methods, i.e., principal component analysis (PCA) and cluster analysis (CA) of time series of groundwater levels are used to classify groundwater hydrographs regard to identical fluctuation pattern. Three groundwater groups (A, B, and C) were identified. In group “A,” water level decreases continuously throughout the study periods with rapid annual cyclic variation, whereas in group “B,” the water level contains much less high-frequency variation. The wells of group “C” represents a steady and gradual increase of groundwater levels caused by the aquifer artificial recharge. Furthermore, a cross-correlation analysis is used to investigate the aquifer response to local rainfall and temperature records. The result revealed that the temperature is more affecting the variation of the groundwater level of group A wells than the rainfall. However, the second and the third groups are less affected by rainfall or temperature.  相似文献   

3.
As many arid and semi-arid regions in the Mediterranean Basin, the Grombalia coastal aquifer (NE Tunisia) is affected by severe groundwater exploitation and contamination. Therefore, quality assessments are becoming increasingly important as the long-term protection of water resources is at stake. Multidisciplinary investigations, like the one presented in this paper, are particularly effective in identifying the different origins of mineralization within an aquifer and investigating the impact of anthropogenic activities on groundwater quality. An integrated assessment, focused on the combined use of geostatistical, geochemical and isotopic (δ18O, δ2H and 3H) tools, was performed in the Grombalia aquifer between February and March 2014. The overall goal was to study the main processes controlling aquifer salinization, with special focus to nitrate contamination. Results indicate a persisting deterioration of water quality over the whole basin except the south-eastern zone juxtaposing the recharge area of the aquifer. Nitrate contents exceed the drinking water standard (50 mg/l) in 70% of groundwater samples, mainly due to the excessive use of fertilizers and urban activities. Stable isotope measurements showed the contribution of modern rainwater to aquifer recharge and proved the presence of evaporation contributing to the salinity increase. Tritium values of groundwater samples suggested two hypotheses: the existence of mixture between old and recent water or/and the existence of two recharge periods of the aquifer, pre- and post-nuclear weapons test. Principal component analysis confirmed the geochemical interpretation, highlighting that water-rock interaction evaporation effect and intensive anthropogenic activities constitute the main processes controlling the regional groundwater mineralization.  相似文献   

4.
Natural hazards cause great damage to humankind and the surrounding ecosystem. They can cast certain indelible changes on the natural system. One such tsunami event occurred on 26 December 2004 and caused serious damage to the environment, including deterioration of groundwater quality. This study addresses the groundwater quality variation before and after the tsunami from Pumpuhar to Portnova in Tamil Nadu coast using geochemical methods. As a part of a separate Ph.D. study on the salinity of groundwater from Pondicherry to Velankanni, water quality of this region was studied with the collection of samples during November 2004, which indicated that shallow aquifers were not contaminated by sea water in certain locations. These locations were targeted for post-tsunami sample collection during the months of January, March and August 2005 from shallow aquifers. Significant physical mixing (confirmed with mixing models) within the aquifer occurred during January 2005, followed by precipitation of salts in March and complete leaching and dissolution of these salts in the post-monsoon season of August. As a result, maximum impact of tsunami water was observed in August after the onset of monsoon. Tsunami water inundated inland water bodies and topographic lows where it remained stagnant, especially in the near-shore regions. Maximum tsunami inundation occurred along the fluvial distributary channels, and it was accelerated by topography to a certain extent where the southern part of the study area has a gentler bathymetry than the north.  相似文献   

5.
In this study, heavy metal contents of groundwater from the Mersin aquifer were determined with photometric methods and used to determine the main factors controlling the pollution of groundwater in the area. Using MapInfo GIS software, spatial analysis and integration were carried out for mapping drinking water quality in the basin. From the photometric heavy metal analysis, it is inferred that the excess concentration of Fe, Ni, Mn, Mo and Cu at some locations is the cause of undesirable quality for drinking purposes. Similarly, the EC thematic map shows that considerable areas in the basin are having high salinity hazards. The reason for excess concentration of various heavy metals is the industrial activities and petroleum pipelines and salinity levels show the sea water intrusion.  相似文献   

6.
以城市副中心北运河西岸湿地(甘棠大桥段)作为典型面状海绵体,利用2018年5月—9月采集的300组地表水和地下水监测数据,分析典型海绵体地下水水化学特征及形成机制,探讨不同含水层之间水力联系,并以Cl-为指示因子,结合其他水化学指标研究分析典型面状海绵体建设背景下地下水与地表水之间的交互作用及影响程度。结果显示,在垂向上,10 m、20 m含水层地下水之间联系密切,且受大气降水影响明显;在平面上,地表水对10 m、20 m含水层组地下水的影响距离为90 m~120 m,地表水对30 m含水层组地下水的影响距离为80 m~90 m。  相似文献   

7.
An understanding of the behavior of the groundwater body and its long-term trends are essential for making any management decision in a given watershed. Geostatistical methods can effectively be used to derive the long-term trends of the groundwater body. Here an attempt has been made to find out the long-term trends of the water table fluctuations of a river basin through a time series approach. The method was found to be useful for demarcating the zones of discharge and of recharge of an aquifer. The recharge of the aquifer is attributed to the return flow from applied irrigation. In the study area, farmers mainly depend on borewells for water and water is pumped from the deep aquifer indiscriminately. The recharge of the shallow aquifer implies excessive pumping of the deep aquifer. Necessary steps have to be taken immediately at appropriate levels to control the irrational pumping of deep aquifer groundwater, which is needed as a future water source. The study emphasizes the use of geostatistics for the better management of water resources and sustainable development of the area.  相似文献   

8.
Water supply is a major problem in the Adriatic islands, especially during the summer tourism season, and represents a limiting factor to the islands' further economic development. Much attention has been given to water supply solutions, primarily in terms of attempting to use the existing island water. Unfortunately, few islands have favourable hydrological conditions to accumulate significant quantities of surface water or groundwater. In the period from 2001 to 2004, investigations were conducted on many islands to define their own freshwater or partially brackish water resources since desalinisation technology could resolve a significant part of the water supply demand on small and distant islands. Due to the specificity and complexity of research in karst areas, the study was conducted in phases and included the geological and hydrogeological reconnaissance of the island, aimed at locating possible areas on the island where the necessary quantities of groundwater of adequate quality could be captured; a detailed hydrogeological mapping of the specified areas, geophysical investigation and test drilling; and, over several days, test pumping of the most promising borehole. One of the islands investigated was the island of Olib. The conducted surveys indicated that it is possible to pump about 3.5 L/s of groundwater from the karst aquifer of the island of Olib, which fully complies with the sanitary quality of drinking water.  相似文献   

9.
Geographic information system (GIS) has become one of the leading tools in the field of hydrogeological science that helps in assessing, monitoring, and conserving groundwater resources. Groundwater is a finite resource, which is being overexploited due to increase in demand over the years leading to decrease in its potentiality. In the present study, DRASTIC model has been used to prepare groundwater vulnerable zone in hard rock aquifer of granitic terrain. The main objective is to determine susceptible zone for groundwater pollution by integrating hydrogeological layers in GIS environment. The layers such as depth of aquifer, recharge, aquifer yield, soil type, topography, vadose zone, and transmissivity are incorporated in the DRASTIC model. The final output of the map shows that around 60% of the area falls under low to no risk of pollution zone. The high risk of pollution zones are mostly present towards the margin of southeastern periphery. The lower part of the basin as well as small area on northern side falls under moderate risk of pollution zone. For the assessment of groundwater pollution zone, 24 groundwater samples have been collected from different vulnerable zones. The chemical analysis of sample shows that the southeastern margin of basin has relatively high concentration of nitrate as compared to other parts of the basin. It is present in high pollution zone as well as moderate pollution zone. The present model can be used for assessment and management of groundwater.  相似文献   

10.
The occurrence of As was studied in groundwater used for human consumption and irrigation, in stream water and sediments and in water from thermal springs in the drainage basin of Kalloni Gulf, island of Lesvos, Greece, in order to investigate the potential influence of the geothermal field of Polichnitos-Lisvori on the ground and surface water systems of the area. Total dissolved As varied in the range <0.7-88.3 microg L(-1) in groundwater, 41.1-90.7 microg L(-1) in thermal spring water and 0.4-13.2 microg L(-1) in stream water, whereas As concentrations in stream sediments varied between 2.0-21.9 mg kg(-1). Four out of 31 groundwater samples exceeded the EC standard of 10 microg L(-1). The survey revealed an enrichment in both surface and groundwater hydrological systems in the northern part of the area (average concentrations of As in groundwater, stream water and stream sediment: 8.0 microg L(-1), 8.8 microg L(-1) and 15.0 mg kg(-1) respectively), in association with the volcanic bedrocks, while lower As concentrations were found in the eastern part (average concentrations in groundwater, stream water and stream sediment: 2.9 microg L(-1), 1.7 microg L(-1) and 5.9 mg kg(-1) respectively), which is dominated by ophiolitic ultramafic formations. The variation of As levels between the different parts of the study area suggests that local geology exerts a determinant influence on As geochemical behaviour. On the other hand, the geothermal activity manifested in the area of Polichnitos-Lisvori does not affect the presence of As in groundwater and streams.  相似文献   

11.
High-frequency, long-term monitoring of water quality has revolutionized the study of surface waters in recent years. However, application of these techniques to groundwater has been limited by the ability to remotely pump and analyze groundwater. This paper describes a novel autonomous groundwater quality monitoring system which samples multiple wells to evaluate temporal changes and identify trends in groundwater chemistry. The system, deployed near Fresno, California, USA, collects and transmits high-frequency data, including water temperature, specific conductance, pH, dissolved oxygen, and nitrate, from supply and monitoring wells, in real-time. The system consists of a water quality sonde and optical nitrate sensor, manifold, submersible three-phase pump, variable frequency drive, data collection platform, solar panels, and rechargeable battery bank. The manifold directs water from three wells to a single set of sensors, thereby reducing setup and operation costs associated with multi-sensor networks. Sampling multiple wells at high frequency for several years provided a means of monitoring the vertical distribution and transport of solutes in the aquifer. Initial results show short period variability of nitrate, specific conductivity, and dissolved oxygen in the shallow aquifer, while the deeper portion of the aquifer remains unchanged—observations that may be missed with traditional discrete sampling approaches. In this aquifer system, nitrate and specific conductance are increasing in the shallow aquifer, while invariant changes in deep groundwater chemistry likely reflect relatively slow groundwater flow. In contrast, systems with high groundwater velocity, such as karst aquifers, have been shown to exhibit higher-frequency groundwater chemistry changes. The stability of the deeper aquifer over the monitoring period was leveraged to develop estimates of measurement system uncertainty, which were typically lower than the manufacturer’s stated specifications, enabling the identification of subtle variability in water chemistry that may have otherwise been missed.  相似文献   

12.
A part of the Gangetic Alluvial Plain covering 2,228 km2, in the state of Bihar, is studied for demarcating groundwater development potential zones. The area is mainly agrarian and experiencing intensive groundwater draft to the tune of 0.12 million cubic metre per square kilometres per year from the Quaternary marginal alluvial deposits, unconformably overlain northerly sloping Precambrian bedrock. Multiparametric data on groundwater comprising water level, hydraulic gradient (pre- and post-monsoon), aquifer thickness, permeability, suitability of groundwater for drinking and irrigation and groundwater resources vs. draft are spatially analysed and integrated on a Geographical Information System platform to generate thematic layers. By integrating these layers, three zones have been delineated based on groundwater development potential. It is inferred that about 48% of the area covering northern part has high development potential, while medium and low development potential category covers 41% of the area. Further increase in groundwater extraction is not recommended for an area of 173 km2, affected by over-exploitation. The replenishable groundwater resource available for further extraction has been estimated. The development potential enhances towards north with increase in thickness of sediments. Local deviations are due to variation of—(1) cummulative thickness of aquifers, (2) deeper water level resulting from localised heavy groundwater extraction and (3) aquifer permeability.  相似文献   

13.
Zeuss?CKoutine aquifer, located in southeastern Tunisia, has been used intensively as a primary source to meet the growing needs of the various sectors. Detailed knowledge of the geochemical evolution of groundwater and water quality can enhance understanding of the hydrochemical system, promoting sustainable development and effective management of groundwater resources. To this end, a hydrochemical and statistical investigation was conducted. Groundwater samples have been collected from 13 wells from 1995 to 2005; to understand the sources of dissolved ions and assess the chemical quality of the groundwater. Results demonstrate that among the cations, only the mean concentrations of Na?+? exceed guideline values set by the World Health Organization (WHO). Regarding the analyzed anions, the concentration of SO $_{4}^{2-}$ and Cl??? are above the WHO allowable concentrations. Total dissolved solids in most groundwater samples are greater than 1,000 mg l???1, the limit set by the WHO, indicating slightly saline or moderately saline water. In general, a significant increase in the degree of water mineralization was observed in the direction of southwest to northeast following the regional flow direction. Calculated saturation indices show that all water samples were oversaturated with respect to aragonite, calcite, and dolomite, and undersaturated with respect to anhydrite, gypsum, and halite. Based on hydrochemical facies, two types of water predominate in the study area. The first is Ca?CNa?CSO4?CCl in type and located in the southwest which corresponds to the recharge part of the aquifer. The second type is Na?CCa?CCl?CSO4 and located in the east, which corresponds to the discharge part.  相似文献   

14.
In Tunisia, reclaimed water is increasingly used for irrigation in order to mitigate water shortage. However, few studies have addressed the effect of such practice on the environment. Thus, we attempted in this paper to assess the impact of irrigation with reclaimed water on the nitrate content and salinity in the Nabeul shallow aquifer on the basis of satellite images and data from 53 sampled wells. Ordinary and indicator kriging were used to map the spatial variability of these groundwater chemical parameters and to locate the areas where water is suitable for drinking and irrigation. The results of this study have shown that reclaimed water is not an influential factor on groundwater contamination by nitrate and salinity. Cropping density is the main factor contributing to nitrate groundwater pollution, whereas salinity pollution is affected by a conjunction of factors such as seawater interaction and lithology. The predictive maps show that nitrate content in the groundwater ranges from 9.2 to 206 mg/L while the electric conductivity ranges from 2.2 to 8.5 dS/m. The high-nitrate concentration areas underlie sites with high annual crop density, whereas salinity decreases gradually moving away from the coastline. The probability maps reveal that almost the entire study area is unsuitable for drinking with regard to nitrate and salinity levels. Appropriate measures, such as the elaboration of codes of good agricultural practices and action programs, should be undertaken in order to prevent and/or remediate the contamination of the Nabeul shallow aquifer.  相似文献   

15.
Hydrostratigraphy and hydrogeology of the Maira vicinity is important for the characterization of aquifer system and developing numerical groundwater flow models to predict the future availability of the water resource. Conventionally, the aquifer parameters are obtained by the analysis of pumping tests data which provide limited spatial information and turn out to be costly and time consuming. Vertical electrical soundings and pump testing of boreholes were conducted to delineate the aquifer system at the western part of the Maira area, Khyber Pakhtun Khwa, Pakistan. Aquifer lithology in the eastern part of the study area is dominated by coarse sand and gravel whereas the western part is characterized by fine sand. An attempt has been made to estimate the hydraulic conductivity of the aquifer system by establishing a relationship between the pumping test results and vertical electrical soundings by using regression technique. The relationship is applied to the area along the resistivity profiles where boreholes are not drilled. Our findings show a good match between pumped hydraulic conductivity and estimated hydraulic conductivity. In case of sparse borehole data, regression technique is useful in estimating hydraulic properties for aquifers with varying lithology.  相似文献   

16.
This paper presents the development of a regional flow simulation model of the stream–aquifer system of Ismarida plain, northeastern Greece. It quantifies the water budget for this aquifer system and describes the components of groundwater and the characteristics of this system on the basis of results of a 3-year field study. The semiconfined aquifer system of Ismarida Lake plain consists of unconsolidated deltaic clastic sediments, is hydraulically connected with Vosvozis River, and covers an area of 46.75 km2. The annual precipitation ranges in the study area from 270 to 876 mm. Eighty-seven irrigation wells are densely located and have been widely used for agricultural development. Groundwater flow in this aquifer was simulated with MODFLOW. Model calibration was done with observed water levels, and match was excellent. To evaluate the impacts of the current pumping schedule and propose solutions, four management scenarios were formulated and tested with the model. Based on model results, the simulated groundwater budget indicates that there must be approximately 33% decrease of withdrawals to stop the dramatic decline of groundwater levels. The application of these scenarios shows that aquifer discharge to the nearby river would be very low after a 20-year period.  相似文献   

17.
The increasing demand of water has brought tremendous pressure on groundwater resources in the regions were groundwater is prime source of water. The objective of this study was to explore groundwater potential zones in Maheshwaram watershed of Andhra Pradesh, India with semi-arid climatic condition and hard rock granitic terrain. GIS-based modelling was used to integrate remote sensing and geophysical data to delineate groundwater potential zones. In the present study, Indian Remote Sensing RESOURCESAT-1, Linear Imaging Self-Scanner (LISS-4) digital data, ASTER digital elevation model and vertical electrical sounding data along with other data sets were analysed to generate various thematic maps, viz., geomorphology, land use/land cover, geology, lineament density, soil, drainage density, slope, aquifer resistivity and aquifer thickness. Based on this integrated approach, the groundwater availability in the watershed was classified into four categories, viz. very good, good, moderate and poor. The results reveal that the modelling assessment method proposed in this study is an effective tool for deciphering groundwater potential zones for proper planning and management of groundwater resources in diverse hydrogeological terrains.  相似文献   

18.
Saltwater intrusion (SWI) represents a threat to coastal aquifers worldwide by rendering groundwater quality not viable for its intended purposes. Therefore, understanding SWI impacts is indispensable for informed decision-making on aquifer management. Despite advances in methods to assess the impact of SWI, it remains challenging to select appropriate methods that are effective, timely, and affordable under the influence of a range of factors including aquifer characteristics, hydro-geochemical dynamics, shoreline geomorphology, biochemical reactions, and data availability among others. This study examines commonly used methods that assess the impact of SWI towards the development of an assessment framework in coastal aquifers underlying densely populated urban areas. The methods were selected using complexity-functionality criteria and then tested at a pilot aquifer by coupling Strengths, Weaknesses, Opportunities and Threats (SWOT) and Multi-Attribute Decision Making (MADM) analyses to evaluate the effectiveness of the methods and identify elements of the framework. The framework proved functional in synthesizing parametric results, assessing the dynamics of SWI and quantifying its potential impact, as well as providing an effective platform for informed impact assessment and planning for sustainable exploitation of coastal aquifers.  相似文献   

19.
Deplorable quality of groundwater arising from saltwater intrusion, natural leaching and anthropogenic activities is one of the major concerns for the society. Assessment of groundwater quality is, therefore, a primary objective of scientific research. Here, we propose an artificial neural network-based method set in a Bayesian neural network (BNN) framework and employ it to assess groundwater quality. The approach is based on analyzing 36 water samples and inverting up to 85 Schlumberger vertical electrical sounding data. We constructed a priori model by suitably parameterizing geochemical and geophysical data collected from the western part of India. The posterior model (post-inversion) was estimated using the BNN learning procedure and global hybrid Monte Carlo/Markov Chain Monte Carlo optimization scheme. By suitable parameterization of geochemical and geophysical parameters, we simulated 1,500 training samples, out of which 50 % samples were used for training and remaining 50 % were used for validation and testing. We show that the trained model is able to classify validation and test samples with 85 % and 80 % accuracy respectively. Based on cross-correlation analysis and Gibb’s diagram of geochemical attributes, the groundwater qualities of the study area were classified into following three categories: “Very good”, “Good”, and “Unsuitable”. The BNN model-based results suggest that groundwater quality falls mostly in the range of “Good” to “Very good” except for some places near the Arabian Sea. The new modeling results powered by uncertainty and statistical analyses would provide useful constrain, which could be utilized in monitoring and assessment of the groundwater quality.  相似文献   

20.
Water level in aquifer plays the main role in groundwater modeling as one of the input data. In practice, due to aspects of time and cost, data monitoring of water levels is conducted at a limited number of sites, and interpolation technique such as kriging is widely used for estimation of this variable in unsampled sites. In this study, the efficiency of the ordinary kriging (OK) and adaptive network-based fuzzy inference system (ANFIS) was investigated in interpolation of groundwater level in an unconfined aquifer in the north of Iran. The results showed that ANFIS model is more efficient in estimating the groundwater level than OK.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号