首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A modification of the Shechter-Lucas Wilderness Use Simulation Model (WUSM) for peak season boating on the Colorado River through Grand Canyon National Park, USA, is evaluated as a tool for making management decisions. A new microcomputer program to select trip itineraries for inclusion in the WUSM that was developed as part of this study is presented. This program simplifies user input and expands the WUSM's usefulness as a tool for management decisions by randomizing itinerary schedules based on probabilities developed from actual use of sites by canyon visitors. Model usefulness is demonstrated by simulating various management changes and comparing use levels of attraction sites and campgrounds as well as numbers of encounters between parties. The WUSM is being used as part of an ongoing study, to reflect the impact of fluctuating flow regimes through the turbines at Glen Canyon Dam on river trips.  相似文献   

2.
Recreational impact was measured on eight beaches in Glen Canyon National Recreation Area and 15 beaches in Grand Canyon National Park using permanently located transects and plots. Recreational impact indices included densities of human trash and charcoal and a measure of sand discoloration due to charcoal. Significant increases in the indices occurred on several Glen Canyon beaches over a seven-month period. Sand discoloration became significantly higher over all Glen Canyon beaches during the same time period. All indices were significantly higher in Glen Canyon than on similar Grand Canyon beaches. These differences are probably due to differences in: (a) level of impacts tolerated by the respective management regimes and, (b) in the number of user days among the two National Park Service administrative units. Management alternatives are presented for reversing the present trends of recreational impact on Glen Canyon beaches.  相似文献   

3.
ABSTRACT: The effect of unsteadiness of dam releases on velocity and longitudinal dispersion of flow was evaluated by injecting a fluorescent dye into the Colorado River below Glen Canyon Dam and sampling for dye concentration at selected sites downstream. Measurements of a 26-kilometer reach of Glen Canyon, just below Glen Canyon Dam, were made at nearly steady dam releases of 139, 425, and 651 cubic meters per second. Measurements of a 380-kilometer reach of Grand Canyon were made at steady releases of 425 cubic meters per second and at unsteady releases with a daily mean of about 425 cubic meters per second. In Glen Canyon, average flow velocity through the study reach increased directly with discharge, but dispersion was greatest at the lowest of the three flows measured. In Grand Canyon, average flow velocity varied slightly from subreach to subreach at both steady and unsteady flow but was not significantly different at steady and unsteady flow over the entire study reach. Also, longitudinal dispersion was not significantly different during steady and unsteady flow. Long tails on the time-concentration curves at a site, characteristic of most rivers but not predicted by the one-dimensional theory, were not found in this study. Absence of tails on the curves shows that, at the measured flows, the eddies that are characteristic of the Grand Canyon reach do not trap water for a significant length of time. Data from the measurements were used to calibrate a one-dimensional flow model and a solute-transport model. The combined set of calibrated flow and solute-transport models was then used to predict velocity and dispersion at potential dam-release patterns.  相似文献   

4.
Irreversible environmental changes are occurring along the Colorado River in the Grand Canyon as a result of regulation of the river flow by the Glen Canyon Dam. The questions of primary importance in managing this great natural resource are 1) in what manner and how rapidly are the physical and ecological adjustments taking place, and 2) is the increased use of the river for recreational boating contributing to the degradation? Human use along the Colorado River is limited, for the most part, to the relic, pre-dam fluvial deposits colloquially called “beaches.” With the new river regime these deposits are positioned well above the present high-water stage, 27,000 cubic feet/second (cfs), or 765 cubic meters/second (cms), so they are not replenished periodically as they were prior to construction of the dam in 1963. The dominant natural processes now are aeolian sand transport and mass wasting. The float-trip passengers use the river beaches for hiking, camping, and. lunch stops. At the most desirable sites thirty to forty people camp on the beaches each night over a four to five month season. Human impact includes incorporation of campsite litter, burial of chemically treated waste, and the direct stress associated with people walking on the vegetation and unstable sedimentary deposits. Results of our investigations indicate that the rate of degradation at the most heavily used sites exceeds the capacity of aeolian processes to reestablish natural landscapes. Therefore, careful management of float trjps is needed if these environments are to be maintained in a natural state rather than a “sand-box” state.  相似文献   

5.
The Glen Canyon Dam has severely altered the riparian zone of the Colorado River in the Grand Canyon. One result of the controlled river discharge is more efficient prediction of water stages at the major rapids, leading to higher visitor use. Increased visitation results in heavy foot traffic, trampling along the river banks, erosion of the campsite soils, and the destruction of vegetation. Erosion occurs when the surfaces are roughened, exposing them to wind transport and runoff. In addition, each footstep physically displaces sand downhill.The results of a field experiment designed to measure the amount of sand displaced by footsteps show that each year trampling alone displaces 230 m3 of sand downslope and into the river. With the controlled river flow, no natural processes exist to replace the lost sediment.  相似文献   

6.
The United States Congress established Grand Canyon National Park in 1919 to preserve for posterity the outstanding natural attributes of the canyon cut by the Colorado River. In some cases National Park Service attempts to maintain Grand Canyon's natural environment have been thwarted by activities outside the park. One of the most obvious external threats is Glen Canyon Dam, only 26 km upstream from the park boundary. Constructed in 1963, this gigantic dam has greatly altered the physicochemical and biological characteristics of 446 km of the Colorado River in Grand Canyon National Park. The river's aquatic ecosystem has been greatly modified through the loss of indigenous species and the addition of numerous exotics. We consider this anexotic ecosystem. The riparian ecosystem has been less modified, with addition of a few exotics and no loss of natives—this we consider anaturalized ecosystem.The great dilemma now faced by park managers is that, after 20 years of managing resources along a river controlled by Glen Canyon Dam, the Bureau of Reclamation has proposed major changes in operational procedures for the dam. Scientists and managers from the National Park Service, Bureau of Reclamation, and cooperating federal and state resource management agencies are using a systems analysis approach to examine the impacts of various Colorado River flow regimes on aquatic, riparian, and recreational parameters in the park. This approach will help in the development of management alternatives designed to permit the most efficient use of that river's natural resources without their destruction.  相似文献   

7.
ABSTRACT: Historical inventories of sand bar number and area are sufficient to detect large-scale differences in geomorphic adjustment among regulated rivers that flow through canyons with abundant debris fans. In these canyons, bedrock and large boulders create constrictions and expansions, and alluvial bars occur in associated eddies at predictable sites. Although these bars may fluctuate considerably in size, the locations of these bars rarely change, and their characteristics can be compared through time and among rivers. The area of sand bars exposed at low discharge in Hells Canyon has decreased 50 percent since dam closure, and most of the erosion occurred in the first nine years after dam closure. The number and size of sand bars in Grand Canyon downstream from Glen Canyon Dam have decreased much less; the number of sand bars decreased by 40 percent in some 8.3-km reaches, but by less than 20 percent elsewhere. These differences are in part related to the fact that flood regulation is much greater in Grand Canyon than in Hells Canyon, and that downstream tributaries resupply sediment to Grand Canyon but not to most of Hells Canyon.  相似文献   

8.
Hydropower,adaptive management,and Biodiversity   总被引:2,自引:0,他引:2  
Adaptive management is a policy framework within which an iterative process of decision making is followed based on the observed responses to and effectiveness of previous decisions. The use of adaptive management allows science-based research and monitoring of natural resource and ecological community responses, in conjunction with societal values and goals, to guide decisions concerning man's activities. The adaptive management process has been proposed for application to hydropower operations at Glen Canyon Dam on the Colorado River, a situation that requires complex balancing of natural resources requirements and competing human uses. This example is representative of the general increase in public interest in the operation of hydropower facilities and possible effects on downstream natural resources and of the growing conflicts between uses and users of river-based resources. This paper describes the adaptive management process, using the Glen Canyon Dam example, and discusses ways to make the process work effectively in managing downstream natural resources and biodiversity.  相似文献   

9.
Release flow decisions are increasingly being influenced by an array of social values, including those related to river-based recreation. A substantial portion of past recreation research on downstream impacts of dams has focused on variability of instream flows. This study complements past research by assessing user preferences for beach characteristics affected by long-term impacts of flow regimes. Based upon a study of three recreational user groups (private trip leaders, commercial passengers, and river guides) of the Colorado River in Grand Canyon, preferences for beach size, presence of shade on beach, and presence of vegetation on beach are examined. Results indicate that large size beaches with shade from trees are setting characteristics with highly reliable and strong user preferences. The multinomial regression models developed for each user group indicate that 80% of all respondents would choose beach campsites 800 m(2); results were the same regardless of respondents' past boating experience, boat type (i.e. oar or motorized), or group size. In addition, size of beach was consistently reported to be a trip feature of moderate importance to respondents' river trip. Implications of this research are related to future prospects for controlled floods (i.e. spike flows) released from Glen Canyon Dam.  相似文献   

10.
Economic impact analysis (EIA) of outdoor recreation can provide critical social information concerning the utilization of natural resources. Outdoor recreation and other non-consumptive uses of resources are viewed as environmentally friendly alternatives to extractive-type industries. While outdoor recreation can be an appropriate use of resources, it generates both beneficial and adverse socioeconomic impacts on rural communities. The authors used EIA to assess the regional economic impacts of rafting in Grand Canyon National Park. The Grand Canyon region of northern Arizona represents a rural US economy that is highly dependent upon tourism and recreational expenditures. The purpose of this research is twofold. The first is to ascertain the previously unknown regional economic impacts of Grand Canyon river runners. The second purpose is to examine attributes of these economic impacts in terms of regional multipliers, leakage, and types of employment created. Most of the literature on economic impacts of outdoor recreation has focused strictly on the positive economic impacts, failing to illuminate the coinciding adverse and constraining economic impacts. Examining the attributes of economic impacts can highlight deficiencies and constraints that limit the economic benefits of recreation and tourism. Regional expenditure information was obtained by surveying non-commercial boaters and commercial outfitters. The authors used IMPLAN input-output modeling to assess direct, indirect, and induced effects of Grand Canyon river runners. Multipliers were calculated for output, employment, and income. Over 22,000 people rafted on the Colorado River through Grand Canyon National Park in 2001, resulting in an estimated $21,100,000 of regional expenditures to the greater Grand Canyon economy. However, over 50% of all rafting-related expenditures were not captured by the regional economy and many of the jobs created by the rafting industry are lower-wage and seasonal. Policy recommendations are given for increasing the regional retention of rafting expenditures and for understanding both the beneficial and adverse impacts that accompany outdoor recreation in rural areas.  相似文献   

11.
The Colorado River system exhibits the characteristics of a heavily over-allocated or 'closing water system'. In such systems, development of mechanisms to allow resource users to acknowledge interdependence and to engage in negotiations and agreements becomes necessary. Recently, after a decade of deliberations and environmental assessments, the Glen Canyon Dam Adaptive Management Program (GCDAMP) was established to monitor and analyze the effects of dam operations on the Grand Canyon ecosystem and recommend adjustments intended to preserve and enhance downstream physical, cultural and environmental values. The Glen Canyon Dam effectively separates the Colorado into its lower and upper basins. Dam operations and adaptive management decisions are strongly influenced by variations in regional climate. This paper focuses on the management of extreme climatic events within the Glen and Grand Canyon Region of the Colorado River. It illustrates how past events (both societal and physical) condition management flexibility and receptivity to new information. The types of climatic information and their appropriate entry points in the annual cycle of information gathering and decision-making (the 'hydro-climatic decision calendar') for dam operations and the adaptive management program are identified. The study then describes how the recently implemented program, lessons from past events, and new climate information on the Colorado River Basin, facilitated responses during the major El Ni?o-Southern Oscillation (ENSO) event of 1997-1998. Recommendations are made for engaging researchers and practitioners in the effective use of climatic information in similar settings where the decision stakes are complex and the system uncertainty is large.  相似文献   

12.
Backcountry campsites were studied in three desert vegetation types (pinyon-juniper, catclaw, and desert scrub) in Grand Canyon National Park, Arizona. Relationships between amount of use and amount of impact were examined within each vegetation type. The area disturbed was small, but impacts were generally severe. Important impacts were increased soil compaction and associated decreases in infiltration rates and soil moisture content; these were substantially more pronounced on high than low use sites. The only impact parameter that differed significantly between vegetation types was core area. The types of impact identified are similar to those found in the coniferous forests studied elsewhere, as is the logarithmic relationship between amount of use and amount of impact. However, Grand Canyon sites can support more visitor use before reaching near-maximum levels of impact for important impact parameters.  相似文献   

13.
We directly compare trip willingness to pay (WTP) values between dichotomous choice contingent valuation (DCCV) and discrete choice experiment (DCE) stated preference surveys of private party Grand Canyon whitewater boaters. The consistency of DCCV and DCE estimates is debated in the literature, and this study contributes to the body of work comparing the methods. Comparisons were made of mean WTP estimates for four hypothetical Colorado River flow-level scenarios. Boaters were found to most highly value mid-range flows, with very low and very high flows eliciting lower WTP estimates across both DCE and DCCV surveys. Mean WTP precision was estimated through simulation. No statistically significant differences were detected between the two methods at three of the four hypothetical flow levels.  相似文献   

14.
The Hsintien Stream is one of the major branches of the Danshuei River system, which runs through the metropolitan capital city of Taipei, Taiwan and receives a large amount of wastewater. The dissolved oxygen concentration is generally low in the tidal portion of the Hsintien Stream. Hypoxia/anoxia occurs often, particularly during the low-flow period when the Feitsui Reservoir, Chingtan Dam and Chihtan Dam impound the freshwater for municipal water supply. Fish kills happen from time to time. This paper describes the application of a numerical hydrodynamic and water quality model to the Danshuei River system, with special attention to the tidal portion of the Hsintien Stream. The model is recalibrated with the prototype conditions of the year 2000. The hydrodynamic portion of the model is recalibrated with measured surface elevation and velocity at various stations in the river system. The water quality portion of the model is recalibrated with respect to the field data provided by Taiwan EPA. The input data of point and nonpoint sources are also estimated. The model simulates the concentrations of various forms of nutrients, CBOD and dissolved oxygen. A series of sensitivity runs was conducted to investigate the effects of point source loadings and river flow on the DO level in the river. It is demonstrated that the augmentation of river flow has as much effect on raising DO level as the reduction of point source loadings. The completion of the Taipei sewer project is expected to reduce the point source loadings by at least 75%. Under these reduced loadings, if the daily instream flow is maintained above the monthly Q75 flow throughout the year, the minimum DO concentration in the river would not fall below 1mg/L, which is the suffocation level for most fish species in the Hsintien Stream. (Q75 is the flow which is equaled or exceeded 75% of the days in the month.) The Feitsui Reservoir, Chingtan Dam and Chihtan Dam may impound water during the high flow periods and release freshwater to maintain the flow at the Q75 value in the Hsintien Stream during the drought periods.  相似文献   

15.
River damming provides a dominant human impact on river environments worldwide, and while local impacts of reservoir flooding are immediate, subsequent ecological impacts downstream can be extensive. In this article, we assess seven research strategies for analyzing the impacts of dams and river flow regulation on riparian ecosystems. These include spatial comparisons of (1) upstream versus downstream reaches, (2) progressive downstream patterns, or (3) the dammed river versus an adjacent free-flowing or differently regulated river(s). Temporal comparisons consider (4) pre- versus post-dam, or (5) sequential post-dam conditions. However, spatial comparisons are complicated by the fact that dams are not randomly located, and temporal comparisons are commonly limited by sparse historic information. As a result, comparative approaches are often correlative and vulnerable to confounding factors. To complement these analyses, (6) flow or sediment modifications can be implemented to test causal associations. Finally, (7) process-based modeling represents a predictive approach incorporating hydrogeomorphic processes and their biological consequences. In a case study of Hells Canyon, the upstream versus downstream comparison is confounded by a dramatic geomorphic transition. Comparison of the multiple reaches below the dams should be useful, and the comparison of Snake River with the adjacent free-flowing Salmon River may provide the strongest spatial comparison. A pre- versus post-dam comparison would provide the most direct study approach, but pre-dam information is limited to historic reports and archival photographs. We conclude that multiple study approaches are essential to provide confident interpretations of ecological impacts downstream from dams, and propose a comprehensive study for Hells Canyon that integrates multiple research strategies.  相似文献   

16.
The Gunnison River in the Black Canyon of the Gunnison National Park (BCNP) near Montrose, Colorado is a mixed gravel and bedrock river with ephemeral side tributaries. Flow rates are controlled immediately upstream by a diversion tunnel and three reservoirs. The management of the hydraulic control structures has decreased low-frequency, high-stage flows, which are the dominant geomorphic force in bedrock channel systems. We developed a simple model to estimate the extent of sediment mobilization at a given flow in the BCNP and to evaluate changes in the extent and frequency of sediment mobilization for flow regimes before and after flow regulation in 1966. Our methodology provides a screening process for identifying and prioritizing areas in terms of sediment mobility criteria when more precise systematic field data are unavailable. The model uses the ratio between reach-averaged bed shear stress and critical shear stress to estimate when a particular grain size is mobilized for a given reach. We used aerial photography from 1992, digital elevation models, and field surveys to identify individual reaches and estimate reach-averaged hydraulic geometry. Pebble counts of talus and debris fan deposits were used to estimate regional colluvial grain-size distributions. Our results show that the frequency of flows mobilizing river bank sediment along a majority of the Gunnison River in the BCNP has significantly declined since 1966. The model results correspond well to those obtained from more detailed, site-specific field studies carried out by other investigators. Decreases in the frequency of significant sediment-mobilizing flows were more pronounced for regions within the BCNP where the channel gradient is lower. Implications of these results for management include increased risk of encroachment of vegetation on the active channel and long-term channel narrowing by colluvial deposits. It must be recognized that our methodology represents a screening of regional differences in sediment mobility. More precise estimates of hydraulic and sediment parameters would likely be required for dictating quantitative management objectives within the context of sediment mobility and sensitivity to changes in the flow regime.  相似文献   

17.
/ Adaptive ecosystem management seeks to sustain ecosystems while extracting or using natural resources. The goal of endangered species management under the Endangered Species Act is limited to the protection and recovery of designated species, and the act takes precedence over other policies and regulations guiding ecosystem management. We present an example of conflict between endangered species and ecosystem management during the first planned flood on the Colorado River in Grand Canyon in 1996. We discuss the resolution of the conflict and the circumstances that allowed a solution to be reached. We recommend that adaptive management be implemented extensively and early in ecosystem management so that information and working relationships will be available to address conflicts as they arise. Though adaptive management is not a panacea, it offers the best opportunity for balanced solutions to competing management goals.  相似文献   

18.
Whitewater river kayaking and river rafting require adequate instream flows that are often adversely affected by upstream water diversions. However, there are very few studies in the USA of the economic value of instream flow to inform environmental managers. This study estimates the economic value of instream flow to non-commercial kayakers derived using a Travel Cost Method recreation demand model and Contingent Valuation Method (CVM), a type of Contingent Behavior Method (CBM). Data were obtained from a visitor survey administered along the Poudre River in Colorado. In the dichotomous choice CVM willingness to pay (WTP) question, visitors were asked if they would still visit the river if the cost of their trip was $Y higher, and the level of $Y was varied across the sample. The CVM yielded an estimate of WTP that was sensitive to flows ranging from $55 per person per day at 300 Cubic Feet per Second (CFS) to a maximum $97 per person per day at flows of 1900 CFS. The recreation demand model estimated a boater’s number of trips per season. We found the number of trips taken was also sensitive to flow, ranging from as little as 1.63 trips at 300 CFS to a maximum number of 14 trips over the season at 1900 CFS. Thus, there is consistency between peak benefits per trip and number of trips, respectively. With an average of about 100 non-commercial boaters per day, the maximum marginal values per acre foot averages about $220. This value exceeds irrigation water values in this area of Colorado.  相似文献   

19.
Book reviews     
Book reviewed in this article:
A Natural History of the Sonoran Desert : Steven J. Phillips and Patricia Wentworth Comus, Editors
Vision for Water and Nature: A World Strategy for Conservation and Sustainable Management of Water Resources in the 21st Century IUCN
Renewable Resources for Electric Power: Prospects and Challenges : Raphael Edinger and Sanjay Kaul
Against the Grain: The Genetic Transformation of Global Agriculture : Marc Lappé and Britt Bailey.
Glen Canyon Dammed: Inventing Lake Powell and the Canyon Country : Jared Farmer
Life out of Bounds: Bioinvasion in a Borderless World : Chris Bright  相似文献   

20.
River systems have been altered worldwide by dams and diversions, resulting in a broad array of environmental impacts. The use of a process-based, hierarchical framework for assessing environmental impacts of dams is explored here in terms of a case study of the Kootenai River, western North America. The goal of the case study is to isolate and quantify the relative effects of multiple dams and other river management activities within the study area and to inform potential restoration strategies. In our analysis, first-order impacts describe broad changes in hydrology (determined from local stream gages), second-order impacts quantify resultant changes in channel hydraulics and bed mobility (predicted from a 1D flow model), and third-order impacts describe consequences for recruitment of riparian trees (recruitment box analysis). The study area is a 233km reach bounded by two dams (Libby and Corra Linn). Different times of dam emplacement (1974 and 1938, respectively) allow separation of their relative impacts. Results show significant changes in 1) the timing, magnitude, frequency, duration and rate of change of flows, 2) the spatial and temporal patterns of daily stage fluctuation, unit stream power, shear stress, and bed mobility, and 3) the potential for cottonwood recruitment (Populus spp.). We find that Libby Dam is responsible for the majority of first and second-order impacts, but that both dams diminish cottonwood recruitment; operation of Corra Linn adversely affects recruitment in the lower portion of the study reach by increasing stage recession rates during the seedling establishment period, while operation of Libby Dam affects recruitment in the middle and upper portions of the study reach by changing the timing, magnitude, and duration of flow. We also find that recent experimental flow releases initiated in the 1990s to stimulate recovery of endangered native fish may have fortuitous positive effects on cottonwood recruitment potential in the lower portion of the river. This case study demonstrates how a process-based, hierarchical framework can be used for quantifying environmental impacts of dam operation over space and time, and provides an approach for evaluating alternative management strategies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号