首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 452 毫秒
1.
Research was undertaken to analyze and verify a model that can be applied to activated sludge, integrated fixed-film activated sludge (IFAS), and moving-bed biofilm reactor (MBBR) systems. The model embeds a biofilm model into a multicell activated sludge model. The advantage of such a model is that it eliminates the need to run separate computations for a plant being retrofitted from activated sludge to IFAS or MBBR. The biofilm flux rates for organics, nutrients, and biomass can be computed by two methods-a semi-empirical model of the biofilm that is relatively simpler, or a diffusional model of the biofilm that is computationally intensive. Biofilm support media can be incorporated to the anoxic and aerobic cells, but not the anaerobic cells. The model can be run for steady-state and dynamic simulations. The model was able to predict the changes in nitrification and denitrification at both pilot- and full-scale facilities. The semi-empirical and diffusional models of the biofilm were both used to evaluate the biofilm flux rates for media at different locations. The biofilm diffusional model was used to compute the biofilm thickness and growth, substrate concentrations, volatile suspended solids (VSS) concentration, and fraction of nitrifiers in each layer inside the biofilm. Following calibration, both models provided similar effluent results for reactor mixed liquor VSS and mixed liquor suspended solids and for the effluent organics, nitrogen forms, and phosphorus concentrations. While the semi-empirical model was quicker to run, the diffusional model provided additional information on biofilm thickness, quantity of growth in the biofilm, and substrate profiles inside the biofilm.  相似文献   

2.
Research was undertaken to develop a model for activated sludge, integrated fixed-film activated sludge (IFAS), and moving-bed biofilm reactor (MBBR) systems. The model can operate with up to 12 cells (reactors) in series, with biofilm media incorporated to one or more cells, except the anaerobic cells. The process configuration can be any combination of anaerobic, anoxic, aerobic, post-anoxic with or without supplemental carbon, and reaeration; it can also include any combination of step feed and recycles, including recycles for mixed liquor, return activated sludge, nitrates, and membrane bioreactors. This paper presents the structure of the model. The model embeds a biofilm model into a multicell activated sludge model. The biofilm flux rates for organics, nutrients, and biomass can be computed by two methods--a semi-empirical model of the biofilm that is relatively simpler, or a diffusional model that is computationally intensive. The values of the kinetic parameters for the model were measured using pilot-scale activated sludge, IFAS, and MBBR systems. For the semiempirical version, a series of Monod equations were developed for chemical oxygen demand, ammonium-nitrogen, and oxidized-nitrogen fluxes to the biofilm. Within the equations, a second Monod expression is used to simulate the effect of changes in biofilm thickness and fraction nitrifiers in the biofilm. The biofilm flux model is then linked to the activated sludge model. The diffusional model and the verification of the models are presented in subsequent papers (Sen and Randall, 2008a, 2008b). The model can be used to quantify the amount of media and surface area required to achieve nitrification, identify the best locations for the media, and optimize the dissolved oxygen levels and nitrate recycle rates. Some of the advanced features include the ability to apply different media types and fill fractions in cells; quantify nitrification, denitrification, and biomass production in the biofilm and mixed liquor suspended solids; and perform dynamic simulations.  相似文献   

3.
采用神经网络技术对松江污水厂污水处理活性污泥系统进行建模试验研究,在对实际运行数据按机理准则和范围准则剔除异常数据后,将样本数据随机分成训练样本、检验样本和测试样本。用试凑法确定合理的神经网络隐层节点数,以避免采用过大或过小的网络结构,在训练过程中用检验样本实时监控从而避免“过训练”现象的影响,较好地解决神经网络方法建模的两大难题,从而建立可靠、有效的活性污泥系统神经网络模型。并应用建立的网络模型对活性污泥系统的运行情况进行了仿真研究。建模研究表明,神经网络技术能较好地应用于活性污泥系统的建模,模型具有较好的泛化能力,有很好的实用价值。  相似文献   

4.
SBBR挂膜前活性污泥培养与驯化的研究   总被引:3,自引:2,他引:1  
在序批式生物膜反应器(SBBR)挂膜前驯化活性污泥对养猪场废水进行生物降解实验。结果表明,在驯化期结束时,COD和NH3-N的去除率分别达到85%和74%。对驯化过程中出现的污泥膨胀、上浮、泡沫等异常现象进行了分析,并提出了相应的解决措施。  相似文献   

5.
针对松江污水厂污水处理活性污泥系统,采用神经网络技术进行建模试验研究,在对实际运行数据剔除异常数据后,将样本数据随机分成训练样本、检验样本和测试样本.用试凑法确定合理的神经网络隐层节点数,用检验样本实时监控训练过程从而避免"过训练"现象,用多次改变网络初始连接权值求得全局极小点,从而建立了泛化能力较好的基于神经网络的活性污泥系统数学模型.利用建立的神经网络模型,对活性污泥系统运行情况的仿真与控制进行了分析研究.示例研究表明:神经网络技术能较好地应用于活性污泥系统的建模与控制,有很好的理论与实践意义.  相似文献   

6.
The aim of this research was to investigate hexavalent chromium, Cr(VI), reduction by activated sludge and to evaluate the use of continuous-flow activated sludge systems for the treatment of Cr(VI)-containing wastewater. Three series of experiments were conducted using two parallel lab-scale activated sludge systems. During the first experiment, one system was used as a control, while the other received Cr(VI) concentrations equal to 0.5, 1, 3 and 5mg l(-1). For all concentrations added, approximately 40% of the added Cr(VI) was removed during the activated sludge process. Determination of chromium species in the dissolved and particulate phase revealed that the removed Cr(VI) was sorbed by the activated sludge flocs mainly as trivalent chromium, Cr(III), while the residual chromium in the dissolved phase was mainly detected as Cr(VI). Activated sludge ability to reduce Cr(VI) was independent of the acclimatization of biomass to Cr(VI) and it was not affected by the toxic effect of Cr(VI) on autotrophic and heterotrophic microorganisms. During the second experiment, both systems were operated under two different hydraulic residence time (theta equal to 20 and 28h) and three different initial organic substrate concentration (COD equal to 300, 150 and 0mg l(-1)). Cr(VI) reduction was favored by an increase of theta, while it was limited by influent COD concentration. Finally, at the last experiment the effect of anoxic and anaerobic reactors on Cr(VI) reduction was investigated. It was observed that the use of an anoxic zone or an anaerobic-anoxic zone ahead of the aerobic reactor favored Cr(VI) reduction, increasing mean percentage Cr(VI) reduction to almost 80%.  相似文献   

7.
Biodegradability of biofilm extracellular polymeric substances   总被引:15,自引:0,他引:15  
Zhang X  Bishop PL 《Chemosphere》2003,50(1):63-69
This study discovered that biofilm extracellular polymeric substances (EPS) are biodegradable by their own producers and by other microorganisms when they are starved. The study was performed in a comparative fashion to examine the biodegradability of biofilm EPS by the microorganisms from the original biofilm (its own producers) and from activated sludge (other microorganisms). Four distinctive phases were observed during EPS biodegradation. In the first phase, instantaneous concentration increases of carbohydrate and protein in the test solutions were observed when EPS was added; in the second phase, easily biodegradable EPS from the added EPS was quickly utilized; in the third phase, microorganisms began to produce soluble EPS, using the minimally biodegradable EPS left from the previously added EPS; in the fourth phase, cells consumed the newly produced EPS and microbial activity gradually stopped. This study suggests that EPS can be used as a substrate, and that the EPS carbohydrate can be utilized faster than the EPS protein. The EPS utilization rates (including carbohydrate and protein) in the activated sludge suspension were greater than those in the biofilm suspension. It may take microorganisms longer to get acclimated to a new nutrient environment if they are in a starved state.  相似文献   

8.
Activated sludge systems are widely used in wastewater treatment. Organic carbon removal and nutrient removal are important for stringent water discharge standards. Therefore, activated sludge systems are widely used to remove carbon, nitrogen and phosphorus in new wastewater treatment systems or upgrades of existing systems. The determination of system compounds and kinetic parameters for modelling of these systems are important. For this purpose, respirometric measurements are used to reveal the electron consumption rate of biomass. In order to determine OUR (oxygen uptake rate) and NUR (nitrate uptake rate) parameters, a laboratory scale activated sludge system, including anaerobic, anoxic and aerobic zones, was developed. The performance of the system was continuously controlled from influent and effluent samples. OUR and NUR measurements indicated the kind of nitrogen-phosphorus removal systems required. Moreover, phosphorus uptake in the anoxic zone was investigated. It was found that phosphorus uptake in the anaerobic zone was related to substrate type consumed biologically. The OUR and NUR were found to be lower than in continuous activated sludge measurements. This may be because the mixed culture of the system affected the system performance, owing to competition between denitrification bacteria and poly-P bacteria.  相似文献   

9.
Multicomponent models containing both substrate and biomass have an advantage over conventional models in seeking better understanding of activated sludge systems. Such models are also useful in the characterisation of wastewater. Studies in recent years have shown that most of the soluble organic matter in the effluent of treatment systems consists of soluble microbial products that arise during biological treatment. In order to support experimental studies, mathematical models have also been developed to explain microbial product formation. In connection with the approaches in the literature, a mathematical model for estimating chemical oxygen demand in effluent in dispersed media has been developed in this study. The death–regeneration approach – an approach of multicomponent activated sludge models containing the formation of soluble inert organic matter with together carbon oxidation – was used. Because the differential equations developed for dispersed media have no analytical solutions, the system was represented with the in-series reactor approach, with the death–regeneration and hydrolysis concepts advised in the IAWPRC Task Group Model.  相似文献   

10.
The objectives of this study were to evaluate the performance of powdered activated carbon treatment (PACT) process based on the adsorption capacity of powdered activated carbon (PAC) in activated sludge and the effect of dissolved organic substances in activated sludge on the adsorption capacity of PAC. The DCP adsorption capacity of three PACs originated from different raw materials (coal, soft coal and sawdust) in activated sludge were 29%, 34% and 17% of that of new PAC, respectively. The performance of PACT process for shock loading of 3,5-dichlorophenol (3,5-DCP) was different among PACs in spite of the same adsorption capacity in new PAC. The performance of PACT process for removal of DCP is dependent not on the adsorption capacity of new PAC but on the adsorption capacity of PAC in the aeration tank. Dissolved organic matter (DOM) with molecular weight smaller than 50kDa did not affect the adsorption capacity of PAC for 3,5-DCP in the activated sludge reactor. DOM with molecular weight larger than 50kDa and biofilm developed on the surface of PAC seemed to be responsible for the decreased adsorption capacity of PAC for the DCP.  相似文献   

11.
This paper describes results from a pilot study of a novel wastewater treatment technology, which incorporates nutrient removal and solids separation to a single step. The pseudoliquified activated sludge process pilot system was tested on grit removal effluent at flowrates of 29.4 to 54.7 m3/d, three different solid residence times (SRT) (15, 37, and 57 days), and over a temperature range of 12 to 28 degrees C. Despite wide fluctuations in the influent characteristics, the system performed reliably and consistently with respect to organics and total suspended solids (TSS) removals, achieving biochemical oxygen demand (BOD) and TSS reductions of > 96% and approximately 90%, respectively, with BOD5 and TSS concentrations as low as 3 mg/L. Although the system achieved average effluent ammonia concentrations of 2.7 to 3.2 mg/L, nitrification efficiency appeared to be hampered at low temperatures (< 15 degrees C). The system achieved tertiary effluent quality with denitrification efficiencies of 90 and 91% total nitrogen removal efficiency at a total hydraulic retention time of 4.8 hours and an SRT of 12 to 17 days. With ferric chloride addition, effluent phosphorous concentrations of 0.5 to 0.8 mg/L were achieved. Furthermore, because of operation at high biomass concentrations and relatively long biological SRTs, sludge yields were over 50% below typical values for activated sludge plants. The process was modeled using activated sludge model No. 2, as a two-stage system comprised an aerobic activated sludge system followed by an anoxic system. Model predictions for soluble BOD, ammonia, nitrates, and orthophosphates agreed well with experimental data.  相似文献   

12.
Real-time control of aeration tank operation is key to high-efficiency pollutant removal and energy savings. One of the aims of this study was to examine the potential for using redox potential (oxidation-reduction potential [ORP]) to indicate wastewater quality online in aeration tanks treating medium (chemical oxygen demand [COD] of 70 to 150 mg/L) and low (COD of 15 to 30 mg/L) pollutant-concentration wastewaters. The field-scale data provide a good relationship between ORP values and nutrient removal along the length of the aeration tanks. The ORP values increased dramatically as organic matter was removed along the aeration tanks, indicating the improvement of the bulk liquor redox status. Dissolved oxygen higher than 1.0 mg/L was necessary for good biodegradation and improvement of the liquid redox status. Nitrification occurred at higher ORP values (380 to 420 mV) than was the case for organic substrate oxidation (250 to 300 mV). The microprofiles obtained from microelectrode measurements substantiate the heterogeneity of the microbial processes inside activated sludge flocs. Because of microbial oxygen utilization, the aerobic region in the activated sludge floc was limited to the top layer (0.1 to 0.2 mm) of the activated sludge aggregate present in medium-strength wastewater, with an anoxic zone dominating inside the flocs. When dissolved oxygen in the bulk water was higher than 4.0 mg/L, the anoxic zone inside the floc disappeared. At low wastewater pollutant concentrations, the ORP and dissolved oxygen inside the activated sludge aggregates were higher than those from medium-strength wastewater. The prospect of using ORP as an online control approach for aeration tank operation and the potential reasons for activated sludge floc size varying with pollutant strengths are also discussed.  相似文献   

13.
活性污泥1号模型废水特性的测定研究   总被引:7,自引:0,他引:7  
废水的水质特性是活性污泥数学模型研究和应用的重要方面。采用呼吸计量法及常规化学分析法对污水处理厂的废水特性进行了测定,通过研究发现,污水处理厂的曝气沉砂池出水中SS占总COD的比例平均为10.49%;Xs占总COD的比例平均为14.24%;S1占总COD的比例平均为5.52%。初沉池出水中Ss占总COD的平均比例为9.62%;Xs占总COD的比例平均为16.97%;S1占总COD的比例平均为11.38%。  相似文献   

14.
Chromium species behaviour in the activated sludge process   总被引:3,自引:0,他引:3  
The purpose of this research was to compare trivalent chromium (Cr(III)) and hexavalent chromium (Cr(VI)) removal by activated sludge and to investigate whether Cr(VI) reduction and/or Cr(III) oxidation occurs in a wastewater treatment system. Chromium removal by sludge harvested from sequencing batch reactors, determined by a series of batch experiments, generally followed a Freundlich isotherm model. Almost 90% of Cr(III) was adsorbed on the suspended solids while the rest was precipitated at pH 7.0. On the contrary, removal of Cr(VI) was minor and did not exceed 15% in all experiments under the same conditions. Increase of sludge age reduces Cr(III) removal, possibly because of Cr(III) sorption on slime polymers. Moreover, the decrease of suspended solids concentration and the acclimatization of biomass to Cr(VI) reduced the removal efficiency of Cr(III). Batch experiments showed that Cr(III) cannot be oxidized to Cr(VI) by activated sludge. On the contrary, Cr(VI) reduction is possible and is affected mainly by the initial concentration of organic substrate, which acts as electron donor for Cr(VI) reduction. Initial organic substrate concentration equal to or higher than 1000 mgl(-1) chemical oxygen demand permitted the nearly complete reduction of 5 mgl(-1) Cr(VI) in a 24-h batch experiment. Moreover, higher Cr(VI) reduction rates were obtained with higher Cr(VI) initial concentrations, expressed in mg Cr(VI) g(-1) VSS, while decrease of suspended solids concentration enhanced the specific Cr(VI) reduction rate.  相似文献   

15.
一体化间歇曝气完全混合活性污泥法处理装置采取特殊的沉淀区构造,改变了活性污泥的循环流动方式,通过间歇曝气,反应区交替处于好氧/缺氧状态,达到了有机物高效去除、高效硝化反硝化及控制污泥膨胀的效果.该方法具有出水水质好、运行稳定、能耗低、流程简洁和操作管理方便的特点,是一种很有发展潜力的一体化中小型生活污水、城市污水处理系统.  相似文献   

16.
一体化间歇曝气完全混合活性污泥法处理装置采取特殊的沉淀区构造,改变了活性污泥的循环流动方式,通过间歇曝气,反应区交替处于好氧/缺氧状态,达到了有机物高效去除、高效硝化反硝化及控制污泥膨胀的效果.该方法具有出水水质好、运行稳定、能耗低、流程简洁和操作管理方便的特点,是一种很有发展潜力的一体化中小型生活污水、城市污水处理系统.  相似文献   

17.
Diffusion of dissolved oxygen through activated sludge flocs was studied, as it represents a potential mechanism for simultaneous nitrification and denitrification in activated sludge systems. Dissolved oxygen profiles through six floc particles collected at different times from a full-scale activated sludge plant demonstrated that that the dissolved oxygen concentration declines through all floc particles. For larger floc particles (2-mm diameter and greater), the dissolved oxygen concentration reached near-zero values at depths depending on process operating conditions. A mathematical model based on diffusion of dissolved oxygen, organic substrate (methanol), ammonia, nitrite, and nitrate through a spherical floc and consumption of dissolved oxygen by heterotrophs and autotrophs accurately predicted the dissolved oxygen profile and required adjustment of only one model parameter--the concentration of heterotrophs. A different dissolved oxygen decline pattern was exhibited for the smaller floc particles characterized, with the dissolved oxygen reaching a non-zero plateau toward the center of the floc. This pattern was not reproduced with the mathematical model developed and suggests that additional mechanisms are responsible for the transport of dissolved oxygen into the center of these flocs. Implications of these results regarding the occurrence of simultaneous nitrification and denitrification include consideration of the factors that affect floc size and distribution (simultaneous nitrification and denitrification is maximized with larger floc particles), coupling of the International Water Association (London) activated models to predict activated sludge composition with diffusion models to consider intrafloc effects, and the effects of substrate diffusion on the apparent half-saturation constant for various substrates in activated sludge systems.  相似文献   

18.
Maximum nitrogen removal in the step-feed activated sludge process.   总被引:1,自引:0,他引:1  
This paper presents a mathematical framework that can be used to determine the flow distributions for a step-feed activated sludge process that result in maximum nitrogen removal. The model indicates that nitrogen removal efficiency in a step-feed activated sludge process is highly dependent on the ultimate biochemical oxygen demand (BOD(L))-to-total Kjeldahl nitrogen (TKN) ratio of the wastewater. For typical domestic wastewater, which has a relatively high BOD(L)-to-TKN ratio, the step-feed process will outperform the Modified Ludzack-Ettinger process for nitrogen removal, when the flow to each step is optimally distributed. Using plant-specific water quality data and operating conditions from a 1-year period, nitrogen removal performance for four step-feed activated sludge plants operated by the Sanitation Districts of Los Angeles County (California) was calculated using the developed model. The calculated nitrogen removal efficiencies match well with the actual plant performance data. These results validate the model as a useful tool for predicting nitrogen removal in a step-feed activated sludge process. Other analyses revealed that improvements in nitrogen removal at existing facilities are achievable by adjusting the split of primary effluent flow to each anoxic zone several times during the day. The timing of the adjustments and the optimal flow splits can be determined from data on diurnal fluctuations in BOD(L) and TKN concentrations. An example is provided to illustrate the application of such an operating strategy and the potential enhancement of nitrogen removal.  相似文献   

19.
The purpose of this research was to study the fate and toxicity of triclosan (TCS) in activated sludge systems and to investigate the role of biodegradation and sorption on its removal. Two continuous-flow activated sludge systems were used; one system was used as a control, while the other received TCS concentrations equal to 0.5 and 2mgl(-1). At the end of the experiment, 1mgl(-1) TCS was added in the control system to investigate TCS behaviour and effects on non-acclimatized biomass. For all concentrations tested, more than 90% of the added TCS was removed during the activated sludge process. Determination of TCS in the dissolved and particulate phase and calculation of its mass flux revealed that TCS was mainly biodegraded. Activated sludge ability to biodegrade TCS depended on biomass acclimatization and resulted in a mean biodegradation of 97%. Experiments with batch and continuous-flow systems revealed that TCS is rapidly sorbed on the suspended solids and afterwards, direct biodegradation of sorbed TCS is performed. Regarding TCS effects on activated sludge process, addition of 0.5mgl(-1) TCS on non-acclimatized biomass initially deteriorated ammonia removal and nitrification capacity. After acclimatization of biomass, nitrification was fully recovered and further increase of TCS to 2mgl(-1) did not affect the performance of activated sludge system. The effect of TCS on organic substrate removal was minor for concentrations up to 2mgl(-1), indicating that heterotrophic microorganisms are less sensitive to TCS than nitrifiers.  相似文献   

20.
The average sludge age (theta(c)) of the activated sludge process (ASP)-biofilm were developed and verified experimentally. In addition, the stability and safety factor were investigated against theta(c). through a series of curves. These curves are important to explain, in concept, the function of the hybrid system under different values of theta(c). The proposed curves of this study are simple and can be modified for any specified wastewater. The definition of theta(c) of ASP was found to be applicable to the hybrid system after including the biofilm. A ratio ranging from 70 to 80% of the total mass of biofilm may be used in the definition of theta(c). to give close results with the experimental values. Furthermore, the minimum sludge age (theta(c)(M)) does not exist in the hybrid reactor because of the presence of biofilm; however, theta(c) should come down to a critical value under some specific conditions of the reactor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号