首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A harmonized comparative performance evaluation of A Unified Regional Air-quality Modelling System (AURAMS) v1.3.1b and Community Multiscale Air Quality (CMAQ) v4.6 air-quality modelling systems was conducted on the same North American grid for July 2002 using the same emission inventories, emissions processor, and input meteorology.Comparison of AURAMS- and CMAQ-predicted O3 concentrations against hourly surface measurement data showed a lower normalized mean bias (NMB) of 20.7% for AURAMS versus 46.4% for CMAQ. However, AURAMS and CMAQ had more similar normalized mean errors (NMEs) of 46.9% and 54.2%, respectively. Both models did similarly well in predicting daily 1-h O3 maximums; however, AURAMS performed better in calculating daily minimums. CMAQ's poorer performance for O3 is partly due to its inability to correctly predict nighttime lows.Total PM2.5 hourly surface concentration was under-predicted by both AURAMS and CMAQ with NMBs of ?10.4% and ?65.2%, respectively. However, as with O3, both models had similar NMEs of 68.0% and 70.6%, respectively. In general, AURAMS performance was better than CMAQ for all major PM2.5 species except nitrate and elemental carbon. Both models significantly under-predicted total organic aerosols (TOAs), although the mean AURAMS concentration was over four times larger than CMAQ's. The under-prediction of TOA was partly due to the exclusion of forest-fire emissions. Sea-salt aerosol made up approximately 50.2% of the AURAMS total PM2.5 surface concentration versus only 6.2% in CMAQ when averaged over all grid cells. When averaged over land cells only, sea-salt still contributed 13.9% to the total PM2.5 mass in AURAMS versus 2.0% in CMAQ.  相似文献   

2.
Air pollution emission inventories are the basis for air quality assessment and management strategies. The quality of the inventories is of great importance since these data are essential for air pollution impact assessments using dispersion models. In this study, the quality of the emission inventory for fine particulates (PM2.5) is assessed: first, using the calculated source contributions from a receptor model; second, using source apportionment from a dispersion model; and third, by applying a simple inverse modelling technique which utilises multiple linear regression of the dispersion model source contributions together with the observed PM2.5 concentrations. For the receptor modelling the chemical composition of PM2.5 filter samples from a measurement campaign performed between January 2004 and April 2005 are analysed. Positive matrix factorisation is applied as the receptor model to detect and quantify the various source contributions. For the same observational period and site, dispersion model calculations using the Air Quality Management system, AirQUIS, are performed. The results identify significant differences between the dispersion and receptor model source apportionment, particularly for wood burning and traffic induced suspension. For wood burning the receptor model calculations are lower, by a factor of 0.54, but for the traffic induced suspension they are higher, by a factor of 7.1. Inverse modelling, based on regression of the dispersion model source contributions and the PM2.5 concentrations, indicates similar discrepancies in the emissions inventory. In order to assess if the differences found at the one site are generally applicable throughout Oslo, the individual source category emissions are rescaled according to the receptor modelling results. These adjusted PM2.5 concentrations are compared with measurements at four independent stations to evaluate the updated inventory. Statistical analysis shows improvement in the estimated concentrations for PM2.5 at all sites. Similarly, inverse modelling is applied at these independent sites and this confirms the validity of the receptor model results.  相似文献   

3.
An ozone abatement strategy for the South Coast Air Basin (SoCAB) has been proposed by the South Coast Air Quality Management District (SCAQMD) and the California Air Resources Board (ARB). The proposed emissions reduction strategy is focused on the reduction of nitrogen oxide (NOx) emissions by the year 2030. Two high PM2.5 concentration episodes with high ammonium nitrate compositions occurring during September and November 2008 were simulated with the Community Multi-scale Air Quality model (CMAQ). All simulations were made with same meteorological files provided by the SCAQMD to allow them to be more directly compared with their previous modeling studies. Although there was an overall under-prediction bias, the CMAQ simulations were within an overall normalized mean error of 50%; a range that is considered acceptable performance for PM modeling. A range of simulations of these episodes were made to evaluate sensitivity to NOx and ammonia emissions inputs for the future year 2030. It was found that the current ozone control strategy will reduce daily average PM2.5 concentrations. However, the targeted NOx reductions for ozone were not found to be optimal for reducing PM2.5 concentrations. Ammonia emission reductions reduced PM2.5 and this might be considered as part of a PM2.5 control strategy.

Implications: The SCAQMD and the ARB have proposed an ozone abatement strategy for the SoCAB that focuses on NOx emission reductions. Their strategy will affect both ozone and PM2.5. Two episodes that occurred during September and November 2008 with high PM2.5 concentrations and high ammonium nitrate composition were selected for simulation with different levels of nitrogen oxide and ammonia emissions for the future year 2030. It was found that the ozone control strategy will reduce maximum daily average PM2.5 concentrations but its effect on PM2.5 concentrations is not optimal.  相似文献   


4.
High winter-time PM10, sulfate, nitrate and ammonium levels in Istanbul were investigated using a high resolution WRF/CMAQ mesoscale model system. A model-ready anthropogenic emission inventory on 2 km spatial resolution was developed for the area and the present study is the first attempt to test these emissions. The results suggested that the system was capable of producing the magnitudes. PM10 levels calculated by the model underestimated the observations with an average of 10 per cent at Bogazici University sampling station, whereas an overestimation of 12 per cent is calculated for all stations. High uncertainties, particularly in traffic and coal combustion, led to over estimations around emission hot spots. Base case results together with the sensitivity studies pointed significant contribution of local sources, pointing to the need of control strategies focusing on primary particulate emissions.  相似文献   

5.
ABSTRACT

With the promulgation of a national PM2.5 ambient air quality standard, it is important that PM2.5 emissions inventories be developed as a tool for understanding the magnitude of potential PM2.5 violations. Current PM10 inventories include only emissions of primary particulate matter (1 ï PM), whereas, based on ambient measurements, both PM10 and PM2.5 emissions inventories will need to include sources of both 1ï PM and secondary particulate matter (2ï PM). Furthermore, the U. S. Environmental Protection Agency’s (EPA) current edition of AP-42 includes size distribution data for 1o PM that overestimate the PM2.5 fraction of fugitive dust sources by at least a factor of 2 based on recent studies.

This paper presents a PM2.5 emissions inventory developed for the South Coast Air Basin (SCAB) that for the first time includes both 1ï PM and 2ï PM. The former is calculated by multiplying PM10 emissions estimates by the PM2.5/PM10 ratios for different sources. The latter is calculated from estimated emission rates of gas-phase aerosol precursor and gas to aerosol conversion rates consistent with the measured chemical composition of ambient PM2.5 concentrations observed in the SCAB. The major finding of this PM2.5 emissions inventory is that the aerosol component is more than twice the aerosol component, which may result in widely different control strategies being required for fine PM and coarse PM.  相似文献   

6.
Abstract

The Models-3 Community Multiscale Air Quality (CMAQ) Modeling System and the Particulate Matter Comprehensive Air Quality Model with extensions (PMCAMx) were applied to simulate the period June 29–July 10, 1999, of the Southern Oxidants Study episode with two nested horizontal grid sizes: a coarse resolution of 32 km and a fine resolution of 8 km. The predicted spatial variations of ozone (O3), particulate matter with an aerodynamic diameter less than or equal to 2.5 μm (PM2.5), and particulate matter with an aerodynamic diameter less than or equal to 10 μm (PM10) by both models are similar in rural areas but differ from one another significantly over some urban/suburban areas in the eastern and southern United States, where PMCAMx tends to predict higher values of O3 and PM than CMAQ. Both models tend to predict O3 values that are higher than those observed. For observed O3 values above 60 ppb, O3 performance meets the U.S. Environmental Protection Agency's criteria for CMAQ with both grids and for PMCAMx with the fine grid only. It becomes unsatisfactory for PMCAMx and marginally satisfactory for CMAQ for observed O3 values above 40 ppb.

Both models predict similar amounts of sulfate (SO4 2?) and organic matter, and both predict SO4 2? to be the largest contributor to PM2.5. PMCAMx generally predicts higher amounts of ammonium (NH4 +), nitrate (NO3 ?), and black carbon (BC) than does CMAQ. PM performance for CMAQ is generally consistent with that of other PM models, whereas PMCAMx predicts higher concentrations of NO3 ?,NH4 +, and BC than observed, which degrades its performance. For PM10 and PM2.5 predictions over the southeastern U.S. domain, the ranges of mean normalized gross errors (MNGEs) and mean normalized bias are 37–43% and –33–4% for CMAQ and 50–59% and 7–30% for PMCAMx. Both models predict the largest MNGEs for NO3 ? (98–104% for CMAQ, 138–338% for PMCAMx). The inaccurate NO3 ? predictions by both models may be caused by the inaccuracies in the ammonia emission inventory and the uncertainties in the gas/particle partitioning under some conditions. In addition to these uncertainties, the significant PM overpredictions by PMCAMx may be attributed to the lack of wet removal for PM and a likely underprediction in the vertical mixing during the daytime.  相似文献   

7.
China is taking major steps to improve Beijing's air quality for the 2008 Olympic Games. However, concentrations of fine particulate matter and ozone in Beijing often exceed healthful levels in the summertime. Based on the US EPA's Models-3/CMAQ model simulation over the Beijing region, we estimate that about 34% of PM2.5 on average and 35–60% of ozone during high ozone episodes at the Olympic Stadium site can be attributed to sources outside Beijing. Neighboring Hebei and Shandong Provinces and the Tianjin Municipality all exert significant influence on Beijing's air quality. During sustained wind flow from the south, Hebei Province can contribute 50–70% of Beijing's PM2.5 concentrations and 20–30% of ozone. Controlling only local sources in Beijing will not be sufficient to attain the air quality goal set for the Beijing Olympics. There is an urgent need for regional air quality management studies and new emission control strategies to ensure that the air quality goals for 2008 are met.  相似文献   

8.
This paper is Part II in a pair of papers that examines the results of the Community Multiscale Air Quality (CMAQ) model version 4.5 (v4.5) and discusses the potential explanations for the model performance characteristics seen. The focus of this paper is on fine particulate matter (PM2.5) and its chemical composition. Improvements made to the dry deposition velocity and cloud treatment in CMAQ v4.5 addressing compensating errors in 36-km simulations improved particulate sulfate (SO42−) predictions. Large overpredictions of particulate nitrate (NO3) and ammonium (NH4+) in the fall are likely due to a gross overestimation of seasonal ammonia (NH3) emissions. Carbonaceous aerosol concentrations are substantially underpredicted during the late spring and summer months, most likely due, in part, to a lack of some secondary organic aerosol (SOA) formation pathways in the model. Comparisons of CMAQ PM2.5 predictions with observed PM2.5 mass show mixed seasonal performance. Spring and summer show the best overall performance, while performance in the winter and fall is relatively poor, with significant overpredictions of total PM2.5 mass in those seasons. The model biases in PM2.5 mass cannot be explained by summing the model biases for the major inorganic ions plus carbon. Errors in the prediction of other unspeciated PM2.5 (PMOther) are largely to blame for the errors in total PM2.5 mass predictions, and efforts are underway to identify the cause of these errors.  相似文献   

9.
In this paper, an integrated MM5–CMAQ modeling approach was employed to investigate the PM10 air pollution issue in Beijing, China, with a focus on assessing pollution contributions from surrounding provinces. A 2-level-nested grid domain with spatial resolutions of 36 and 12 km was designed for the study region. Seven monitoring stations across Beijing municipality were selected to provide hourly PM10 measurement data. The months of January, April, July and October in 2002 were taken as target periods for model performance evaluation. Five emission scenarios were designed and run in order to quantitatively assess the trans-boundary PM10 contributions. The results show that, while Beijing needs to take positive steps to reduce its own pollution emissions, much effort should also be placed on demanding more pollution reduction and better environmental performance from surrounding provinces.  相似文献   

10.
Emissions from fugitive dust due to erosion of “natural” wind-blown surfaces are an increasingly important part of PM10 (particulate matter with sizes of 10 μm aerodynamic diameter) emission inventories. These inventories are particularly important to State Implementation Plans (SIP), the plan required for each state to file with the Federal government indicating how they will comply with the Federal Clean Air Act (FCAA). However, techniques for determining the fugitive dust contribution to over all PM10 emissions are still in their developmental stages. In the past, the methods have included field monitoring stations, specialized field studies and field wind-tunnel studies. The measurements made in this paper allow for systematic determination of PM10 emission rates through the use of an environmental boundary layer wind tunnel in the laboratory. Near surface steady-state concentration profiles and velocity profiles are obtained in order to use a control volume approach to estimate emission rates. This methodology is applied to soils retrieved from the nation's single largest PM10 source, Owens (dry) Lake in California, to estimate emission rates during active storm periods. The estimated emission rates are comparable to those obtained from field studies and lend to the validity of this method for determining fugitive dust emission rates.  相似文献   

11.
Traffic congestion and air pollution were two major challenges for the planners of the 2008 Olympic Games in Beijing. The Beijing municipal government implemented a package of temporary transportation control measures during the event. In this paper, we report the results of a recent research project that investigated the effects of these measures on urban motor vehicle emissions in Beijing. Bottom–up methodology has been used to develop grid-based emission inventories with micro-scale vehicle activities and speed-dependent emission factors. The urban traffic emissions of volatile organic compounds (VOC), carbon monoxide (CO), nitrogen oxides (NOx) and particulate matter with an aerodynamic diameter of 10 μm or less (PM10) during the 2008 Olympics were reduced by 55.5%, 56.8%, 45.7% and 51.6%, respectively, as compared to the grid-based emission inventory before the Olympics. Emission intensity was derived from curbside air quality monitoring at the North 4th Ring Road site, located about 7 km from the National Stadium. Comparison between the emission intensity before and during the 2008 Olympics shows a reduction of 44.5% and 49.0% in daily CO and NOx emission from motor vehicles. The results suggest that reasonable traffic system improvement strategies along with vehicle technology improvements can contribute to controlling total motor vehicle emissions in Beijing after the Olympic Games.  相似文献   

12.
Air quality impacts of volatile organic compound (VOC) and nitrogen oxide (NOx) emissions from major sources over the northwestern United States are simulated. The comprehensive nested modeling system comprises three models: Community Multiscale Air Quality (CMAQ), Weather Research and Forecasting (WRF), and Sparse Matrix Operator Kernel Emissions (SMOKE). In addition, the decoupled direct method in three dimensions (DDM-3D) is used to determine the sensitivities of pollutant concentrations to changes in precursor emissions during a severe smog episode in July of 2006. The average simulated 8-hr daily maximum O3 concentration is 48.9 ppb, with 1-hr O3 maxima up to 106 ppb (40 km southeast of Seattle). The average simulated PM2.5 (particulate matter with an aerodynamic diameter <2.5 μm) concentration at the measurement sites is 9.06 μg m?3, which is in good agreement with the observed concentration (8.06 μg m?3). In urban areas (i.e., Seattle, Vancouver, etc.), the model predicts that, on average, a reduction of NOx emissions is simulated to lead to an increase in average 8-hr daily maximum O3 concentrations, and will be most prominent in Seattle (where the greatest sensitivity is??0.2 ppb per % change of mobile sources). On the other hand, decreasing NOx emissions is simulated to decrease the 8-hr maximum O3 concentrations in remote and forested areas. Decreased NOx emissions are simulated to slightly increase PM2.5 in major urban areas. In urban areas, a decrease in VOC emissions will result in a decrease of 8-hr maximum O3 concentrations. The impact of decreased VOC emissions from biogenic, mobile, nonroad, and area sources on average 8-hr daily maximum O3 concentrations is up to 0.05 ppb decrease per % of emission change, each. Decreased emissions of VOCs decrease average PM2.5 concentrations in the entire modeling domain. In major cities, PM2.5 concentrations are more sensitive to emissions of VOCs from biogenic sources than other sources of VOCs. These results can be used to interpret the effectiveness of VOC or NOx controls over pollutant concentrations, especially for localities that may exceed National Ambient Air Quality Standards (NAAQS).

Implications: The effect of NOx and VOC controls on ozone and PM2.5 concentrations in the northwestern United States is examined using the decoupled direct method in three dimensions (DDM-3D) in a state-of-the-art three-dimensional chemical transport model (CMAQ). NOx controls are predicted to increase PM2.5 and ozone in major urban areas and decrease ozone in more remote and forested areas. VOC reductions are helpful in reducing ozone and PM2.5 concentrations in urban areas. Biogenic VOC sources have the largest impact on O3 and PM2.5 concentrations.  相似文献   

13.
Abstract

In 1997, Maryland had no available ambient Federal Reference Method data on particulate matter less than 2.5 μm in aerodynamic diameter (PM2.5), but did have annual ambient data for PM smaller than 10 μm (PM10) at 24 sites. The PM10 data were analyzed in conjunction with local annual and seasonal zip-code-level emission inventories and with speciated PM2.5 data from four nearby monitors in the IMPROVE network (located in the national parks, wildlife refuges, and wilderness areas) in an effort to estimate annual average and seasonal high PM2.5 concentrations at the 24 PM10 monitor sites operating from 1992 to 1996. All seasonal high concentrations were estimated to be below the 24-hr PM2.5 National Ambient Air Quality Standards (NAAQS) at the sites operating in Maryland between 1992 and 1996. The estimates also indicated that 12 monitor sites might exceed the 3-year annual average PM2.5 NAAQS of 15 ug/m3, but Maryland’s air quality shows signs that it has been improving since 1992. The estimates also were compared with actual measurements after the PM2.5 monitor network was installed. The estimates were adequate for describing the chemical composition of the PM2.5, forecasting compliance status with the 24-hr and annual standards, and determining the spatial variations in PM2.5 across central Maryland.  相似文献   

14.
Abstract

There is a dearth of information on dust emissions from sources that are unique to the U.S. Department of Defense testing and training activities. However, accurate emissions factors are needed for these sources so that military installations can prepare accurate particulate matter (PM) emission inventories. One such source, coarse and fine PM (PM10 and PM2.5) emissions from artillery backblast testing on improved gun positions, was characterized at the Yuma Proving Ground near Yuma, AZ, in October 2005. Fugitive emissions are created by the shockwave from artillery pieces, which ejects dust from the surface on which the artillery is resting. Other contributions of PM can be attributed to the combustion of the propellants. For a 155–mm howitzer firing a range of propellant charges or zones, amounts of emitted PM10 ranged from ~19 g of PM10 per firing event for a zone 1 charge to 92 g of PM10 per firing event for a zone 5. The corresponding rates for PM2.5 were ~9 g of PM2.5 and 49 g of PM2.5 per firing. The average measured emission rates for PM10 and PM2.5 appear to scale with the zone charge value. The measurements show that the estimated annual contributions of PM10 (52.2 t) and PM2.5 (28.5 t) from artillery backblast are insignificant in the context of the 2002 U.S. Environment Protection Agency (EPA) PM emission inventory. Using national–level activity data for artillery fire, the most conservative estimate is that backblast would contribute the equivalent of 5 x 10–4% and 1.6 x 10–3% of the annual total PM10 and PM2.5 fugitive dust contributions, respectively, based on 2002 EPA inventory data.  相似文献   

15.
Representative profiles for particulate matter particles less than or equal to 2.5 µm (PM2.5) are developed from the Kansas City Light-Duty Vehicle Emissions Study for use in the U.S. Environmental Protection Agency (EPA) vehicle emission model, the Motor Vehicle Emission Simulator (MOVES), and for inclusion in the EPA SPECIATE database for speciation profiles. The profiles are compatible with the inputs of current photochemical air quality models, including the Community Multiscale Air Quality Aerosol Module Version 6 (AE6). The composition of light-duty gasoline PM2.5 emissions differs significantly between cold start and hot stabilized running emissions, and between older and newer vehicles, reflecting both impacts of aging/deterioration and changes in vehicle technology. Fleet-average PM2.5 profiles are estimated for cold start and hot stabilized running emission processes. Fleet-average profiles are calculated to include emissions from deteriorated high-emitting vehicles that are expected to continue to contribute disproportionately to the fleet-wide PM2.5 emissions into the future. The profiles are calculated using a weighted average of the PM2.5 composition according to the contribution of PM2.5 emissions from each class of vehicles in the on-road gasoline fleet in the Kansas City Metropolitan Statistical Area. The paper introduces methods to exclude insignificant measurements, correct for organic carbon positive artifact, and control for contamination from the testing infrastructure in developing speciation profiles. The uncertainty of the PM2.5 species fraction in each profile is quantified using sampling survey analysis methods. The primary use of the profiles is to develop PM2.5 emissions inventories for the United States, but the profiles may also be used in source apportionment, atmospheric modeling, and exposure assessment, and as a basis for light-duty gasoline emission profiles for countries with limited data.
Implications: PM2.5 speciation profiles were developed from a large sample of light-duty gasoline vehicles tested in the Kansas City area. Separate PM2.5 profiles represent cold start and hot stabilized running emission processes to distinguish important differences in chemical composition. Statistical analysis was used to construct profiles that represent PM2.5 emissions from the U.S. vehicle fleet based on vehicles tested from the 2005 calendar year Kansas City metropolitan area. The profiles have been incorporated into the EPA MOVES emissions model, as well as the EPA SPECIATE database, to improve emission inventories and provide the PM2.5 chemical characterization needed by CMAQv5.0 for atmospheric chemistry modeling.  相似文献   

16.
The prediction of future air quality and its responses to emission control strategies at national and state levels requires a reliable model that can replicate atmospheric observations. In this work, the Mesoscale Model (MM5) and the Community Multiscale Air Quality Modeling (CMAQ) system are applied at a 4-km horizontal grid resolution for four one-month periods, i.e., January, June, July, and August in 2002 to evaluate model performance and compare with that at 12-km. The evaluation shows skills of MM5/CMAQ that are overall consistent with current model performance. The large cold bias in temperature at 1.5 m is likely due to too cold soil initial temperatures and inappropriate snow treatments. The large overprediction in precipitation in July is due likely to too frequent afternoon convective rainfall and/or an overestimation in the rainfall intensity. The normalized mean biases and errors are ?1.6% to 9.1% and 15.3–18.5% in January and ?18.7% to ?5.7% and 13.9–20.6% in July for max 1-h and 8-h O3 mixing ratios, respectively, and those for 24-h average PM2.5 concentrations are 8.3–25.9% and 27.6–38.5% in January and ?57.8% to ?45.4% and 46.1–59.3% in July. The large underprediction in PM2.5 in summer is attributed mainly to overpredicted precipitation, inaccurate emissions, incomplete treatments for secondary organic aerosols, and model difficulties in resolving complex meteorology and geography. While O3 prediction shows relatively less sensitivity to horizontal grid resolutions, PM2.5 and its secondary components, visibility indices, and dry and wet deposition show a moderate to high sensitivity. These results have important implications for the regulatory applications of MM5/CMAQ for future air quality attainment.  相似文献   

17.
This paper introduces a methodology for estimating gridded fields of total and speciated fine particulate matter (PM2.5) concentrations for time periods and regions not covered by observational data. The methodology is based on performing long-term regional scale meteorological and air quality simulations and then integrating these simulations with available observational data. To illustrate this methodology, we present an application in which year-round simulations with a meteorological model (the National Center for Atmospheric Research/Penn State Mesoscale Model, hereafter referred to as MM5) and a photochemical air quality model (the Community Multiscale Air Quality Model, hereafter referred to as CMAQ) have been performed over the northeastern United States for 1988–2005. Model evaluation results for total PM2.5 mass and individual species for the time period from 2000 to 2005 show that model performance varies by species, season, and location. Therefore, an approach is developed to adjust CMAQ output with factors based on these three variables. The adjusted model values for total PM2.5 mass for 2000–2005 are compared against independent measurements not utilized for the adjustment approach. This comparison reveals that the adjusted model values have a lower root mean square error (RMSE) and higher correlation coefficients than the original model values. Furthermore, the PM2.5 estimates from these adjusted model values are compared against an alternate method for estimating historic PM2.5 values that is based on PM2.5/PM10 ratios calculated at co-located monitors. Results reveal that both methods yield estimates of historic PM2.5 mass that are broadly consistent; however, the adjusted CMAQ values provide greater spatial coverage and information for PM2.5 species in addition to total PM2.5 mass. Finally, strengths and limitations of the proposed approach are discussed in the context of potential uses of this method.  相似文献   

18.
Motivated by the question of whether and how a state-of-the-art regional chemical transport model (CTM) can facilitate characterization of CO2 spatiotemporal variability and verify CO2 fossil-fuel emissions, we for the first time applied the Community Multiscale Air Quality (CMAQ) model to simulate CO2. This paper presents methods, input data, and initial results for CO2 simulation using CMAQ over the contiguous United States in October 2007. Modeling experiments have been performed to understand the roles of fossil-fuel emissions, biosphere–atmosphere exchange, and meteorology in regulating the spatial distribution of CO2 near the surface over the contiguous United States. Three sets of net ecosystem exchange (NEE) fluxes were used as input to assess the impact of uncertainty of NEE on CO2 concentrations simulated by CMAQ. Observational data from six tall tower sites across the country were used to evaluate model performance. In particular, at the Boulder Atmospheric Observatory (BAO), a tall tower site that receives urban emissions from Denver, CO, the CMAQ model using hourly varying, high-resolution CO2 fossil-fuel emissions from the Vulcan inventory and CarbonTracker optimized NEE reproduced the observed diurnal profile of CO2 reasonably well but with a low bias in the early morning. The spatial distribution of CO2 was found to correlate with NOx, SO2, and CO, because of their similar fossil-fuel emission sources and common transport processes. These initial results from CMAQ demonstrate the potential of using a regional CTM to help interpret CO2 observations and understand CO2 variability in space and time. The ability to simulate a full suite of air pollutants in CMAQ will also facilitate investigations of their use as tracers for CO2 source attribution. This work serves as a proof of concept and the foundation for more comprehensive examinations of CO2 spatiotemporal variability and various uncertainties in the future.
Implications: Atmospheric CO2 has long been modeled and studied on continental to global scales to understand the global carbon cycle. This work demonstrates the potential of modeling and studying CO2 variability at fine spatiotemporal scales with CMAQ, which has been applied extensively, to study traditionally regulated air pollutants. The abundant observational records of these air pollutants and successful experience in studying and reducing their emissions may be useful for verifying CO2 emissions. Although there remains much more to further investigate, this work opens up a discussion on whether and how to study CO2 as an air pollutant.  相似文献   

19.
The influence of chemical boundary conditions (BC) on the response of the Community Multiscale Air Quality (CMAQ) model over the Iberian Peninsula was investigated in this study. Three strategies to supply boundary conditions in the context of the Integrated Assessment Modelling System for the Iberian Peninsula (SIMCA) were tested. Alternative methods consist in providing BC from (1) fixed, time-independent, concentration profiles, (2) concentrations predicted in a CMAQ mother domain (48 km, 1 h resolution) and (3) concentration values from the GEOS-Chem chemical-transport global model (2 × 2.5°, 3 h resolution). High resolution (3 km) simulated concentrations of the main pollutants (NO2, NO, SO2, O3, PM10 and PM2.5) were compared through a comprehensive statistical analysis including observational data from 165 monitoring stations all over the Iberian Peninsula. It was found that model sensitivity to BC for nitrogen and sulphur oxides was limited, being restricted to the vicinity of model boundaries. However, significant domain-wide differences were found when modelling ozone and PM depending on the BC provided to run the tests. Although model performance was affected by spatial and seasonal factors, the results indicate that model-derived, dynamic BC improved CMAQ predictions when compared to those based on static concentrations prescribed in the boundaries. Aggregated statistics suggest that the GEOS-Chem produced the best results for O3 and PM2.5 while NO2 and PM10 were slightly better predicted under the CMAQ nesting approach. Besides the statistical evaluation some other relevant issues in the context of Integrated Assessment Modelling (IAM) are discussed to gain a better insight into the suitability of the methods analyzed and limitations of downscaling methods. Despite being useful to get a better understanding of the role of BC in SIMCA, this study contributed to highlight model deficiencies and therefore to point out future research needs to improve IAM activities in the Iberian Peninsula.  相似文献   

20.
Region-to-grid source–receptor (S/R) relationships are established for sulfur and reactive nitrogen deposition in East Asia, using the Eulerian-type Community Multiscale Air Quality (CMAQ) model with emission and meteorology data for 2001. We proposed a source region attribution methodology by analyzing the non-linear responses of the CMAQ model to emission changes. Sensitivity simulations were conducted where emissions of SO2, NOx, and primary particles from a source region were reduced by 25%. The difference between the base and sensitivity simulations was multiplied by a factor of four, and then defined as the contribution from that source region. The transboundary influence exhibits strong seasonal variation and generally peaks during the dry seasons. Long-range transport from eastern China contributes a significant percentage (>20%) of anthropogenic reactive nitrogen as well as sulfur deposition in East Asia. At the same time, northwestern China receives approximately 35% of its sulfur load and 45% of its nitrogen load from foreign emissions. Sulfur emissions from Miyakejima and other volcanoes contribute approximately 50% of the sulfur load in Japan in 2001. Sulfur inflows from regions outside the study domain, which is attributed by using boundary conditions derived from the MOZART global atmospheric chemistry model, are pronounced (10–40%) over most parts of Asia. Compared with previous studies using simple Lagrangian models, our results indicate higher influence from long-range transport. The estimated S/R relationships are believed to be more realistic since they include global influence as well as internal interactions among different parts of China.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号