首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
High time-resolved (HTR) measurements can provide significant insight into sources and exposures of air pollution. In this study, an automated instrument was developed and deployed to measure hourly concentrations of 18 gas-phase organic air toxics and 6 volatile organic compounds (VOCs) at three sites in and around Pittsburgh, Pennsylvania. The sites represent different source regimes: a site with substantial mobile-source emissions; a residential site adjacent to a heavily industrialized zone; and an urban background site. Despite the close proximity of the sites (less than 13 km apart), the temporal characteristic of outdoor concentrations varied widely. Most of the compounds measured were characterized by short periods of elevated concentrations or plume events, but the duration, magnitude and composition of these events varied from site to site. The HTR data underscored the strong role of emissions from local sources on exposure to most air toxics. Plume events contributed more than 50% of the study average concentrations for all pollutants except chloroform, 1,2-dichloroethane, and carbon tetrachloride. Wind directional dependence of air toxic concentrations revealed that emissions from large industrial facilities affected concentrations at all of the sites. Diurnal patterns and weekend/weekday variations indicated the effects of the mixing layer, point source emissions patterns, and mobile source air toxics (MSATs) on concentrations. Concentrations of many air toxics were temporally correlated, especially MSATs, indicating that they are likely co-emitted. It was also shown that correlations of the HTR data were greater than lower time resolution data (24-h measurements). This difference was most pronounced for the chlorinated pollutants. The stronger correlations in HTR measurements underscore their value for source apportionment studies.  相似文献   

2.
The regulatory agencies and the industries have the responsibility for assessing the environmental impact from the release of air pollutants, and for protecting environment and public health. The simple exemption formula is often used as a criterion for the purpose of screening air pollutants. That is, the exemption formula is used for air quality review and to determine whether a facility applying for and described in a new, modified, or revised air quality plan is exempted from further air quality review. The Bureau of Ocean Energy Management’s (BOEM) air quality regulations are used to regulate air emissions and air pollutants released from the oil and gas facilities in the Gulf of Mexico. If a facility is not exempt after completing the air quality review, a refined air quality modeling will be required to regulate the air pollutants. However, at present, the scientific basis for BOEM’s exemption formula is not available to the author. Therefore, the purpose of this paper is to provide the theoretical framework and justification for the use of BOEM’s exemption formula. In this paper, several exemption formulas have been derived from the Gaussian and non-Gaussian dispersion models; the Gaussian dispersion model is a special case of non-Gaussian dispersion model. The dispersion parameters obtained from the tracer experiments in the Gulf of Mexico are used in the dispersion models. In this paper, the dispersion parameters used in the dispersion models are also derived from the Monin-Obukhov similarity theory. In particular, it has been shown that the total amount of emissions from the facility for each air pollutant calculated using BOEM’s exemption formula is conservative.

Implications:?The operation of offshore oil and gas facilities under BOEM’s jurisdiction is required to comply with the BOEM’s regulations. BOEM’s air quality regulations are used to regulate air emissions and air pollutants released from the oil and gas facilities in the Gulf of Mexico. The exemption formulas have been used by BOEM and other regulatory agencies as a screening tool to regulate air emissions emitted from the oil and gas and other industries. Because of the BOEM’s regulatory responsibility, it is important to establish the scientific basis and provide the justification for the exemption formulas. The methodology developed here could also be adopted and used by other regulatory agencies.  相似文献   

3.
Nonlinear programming techniques are frequently used to design optimum monitoring networks. These mathematically rigorous techniques are difficult to implement or cumbersome when considering other design criteria. This paper presents a more pragmatic approach to the design of an optimal monitoring network to estimate human exposure to hazardous air pollutants. In this approach, an air quality simulation model is used to produce representative air quality patterns, which are then combined with population patterns to obtain typical exposure patterns. These combined patterns are used to determine ‘figures of merit’ for each potential monitoring site, which are used to identify and rank the most favorable sites. The spatial covariance structure of the air quality patterns is used to draw a ‘sphere of influence’ around each site to identify and eliminate redundant monitoring sites. This procedure determines the minimum number of sites required to achieve the desired spatial coverage. This methodology was used to design an optimal ambient air monitoring network for assessing population exposure to hazardous pollutants in the southeastern Ohio River valley.  相似文献   

4.
The Pearl River Delta (PRD) is one of the most industrialized and urbanized regions in China. With rapid growth of the economy, it is suffering from deteriorating air quality. Non-methane hydrocarbons (NMHCs) were investigated at urban and suburban sites in Guangzhou (GZ), a rural site in PRD and a clean remote site in South China, in April 2005. Additional roadside samples in GZ and Qingxi (QX, a small industrial town in PRD), ambient air samples at the rooftop of a printing factory in QX and exhaust samples from liquefied petroleum gas (LPG)—fueled taxis in GZ were collected to help identify the source signatures of NMHCs. A large fraction of propane (47%) was found in exhaust samples from LPG-fueled taxis in GZ and extremely high levels of toluene (2.0–3.1 ppmv) were found at the rooftop of the printing factory in QX. Vehicular and industrial emissions were the main sources of NMHCs. The effect of vehicular emission on the ambient air varied among the three PRD sites. The impact of industrial emissions was widespread and they contributed greatly to the high levels of aromatic hydrocarbons, especially toluene, at the three PRD sites investigated. Leakage from vehicles fueled by LPG contributed mainly to the high levels of propane and n-butane at the urban GZ site. Ethane and ethyne from long-range transport and isoprene from local biogenic emission were the main contributors to the total hydrocarbons at the remote site. Diurnal variations of NMHCs showed that the contribution from vehicular emissions varied with traffic conditions and were more influenced by fresh emissions at the urban site and by aged air at the suburban and rural sites. Isoprene from biogenic emission contributed largely to the ozone formation potential (OFP) at the remote site. Ethene, toluene and m/p-xylene were the main contributors to the OFP at the three PRD sites.  相似文献   

5.
Select volatile organic compounds (VOCs) were measured in the vicinity of a petroleum refinery and related operations in South Philadelphia, Pennsylvania, USA, using passive air sampling and laboratory analysis methods. Two-week, time-integrated samplers were deployed at 17 sites, which were aggregated into five site groups of varying distances from the refinery. Benzene, toluene, ethylbenzene, and xylene isomers (BTEX) and styrene concentrations were higher near the refinery’s fenceline than for groups at the refinery’s south edge, mid-distance, and farther removed locations. The near fenceline group was significantly higher than the refinery’s north edge group for benzene and toluene but not for ethylbenzene or xylene isomers; styrene was lower at the near fenceline group versus the north edge group. For BTEX and styrene, the magnitude of estimated differences generally increased when proceeding through groups ever farther away from the petroleum refining. Perchloroethylene results were not suggestive of an influence from refining. These results suggest that emissions from the refinery complex contribute to higher concentrations of BTEX species and styrene in the vicinity of the plant, with this influence declining as distance from the petroleum refining increases.

Implications: Passive sampling methodology for VOCs as discussed here is employed in recently enacted U.S. Environmental Protection Agency Methods 325A/B for determination of benzene concentrations at refinery fenceline locations. Spatial gradients of VOC concentration near the refinery fenceline were discerned in an area containing traffic and other VOC-related sources. Though limited, these findings can be useful in application of the method at such facilities to ascertain source influence.  相似文献   


6.
A numerical model, Mesoscale Model version 5 (MM5), is used in conjunction with a three-dimensional Eulerian/Lagrangian dispersion model (CAMx4) to model PM10 dispersion for a period of 48 h for the city of Christchurch, New Zealand. In a typical winter, Christchurch usually experiences severe degradation in air quality. The formation of a nocturnal temperature inversion layer during stagnant synoptic conditions, and the emissions of particulate matter (PM10) mainly from solid fuel home heating appliances (the ‘Domestic’ factor) leads to severe smog episodes on about 30 nights each winter. The modelling results from the highest resolution computational grid are compared with observed meteorology and air pollution dispersion for winter 2000, when the Christchurch Air Pollution Study (CAPS2000) was underway. The numerical modelling system is able to simulate surface-layer meteorology and PM10 spatial distribution with a good level of skill, with the Index of Agreement and Pearson's correlation coefficient greater than 0.8 for PM10.  相似文献   

7.
Abstract

The two primary factors influencing ambient air pollutant concentrations are emission rate and dispersion rate. Gaussian dispersion modeling studies for odors, and often other air pollutants, vary dispersion rates using hourly meteorological data. However, emission rates are typically held constant, based on one measured value. Using constant emission rates can be especially inaccurate for open liquid area sources, like wastewater treatment plant units, which have greater emissions during warmer weather, when volatilization and biological activity increase. If emission rates for a wastewater odor study are measured on a cooler day and input directly into a dispersion model as constant values, odor impact will likely be underestimated. Unfortunately, because of project schedules, not all emissions sampling from open liquid area sources can be conducted under worst-case summertime conditions. To address this problem, this paper presents a method of varying emission rates based on temperature and time of the day to predict worst-case emissions. Emissions are varied as a linear function of temperature, according to Henry’s law, and a tenth order polynomial function of time. Equation coefficients are developed for a specific area source using concentration and temperature measurements, captured over a multiday period using a data-logging monitor. As a test case, time/temperature concentration correlation coefficients were estimated from field measurements of hydrogen sulfide (H2S) at the Rowlett Creek Wastewater Treatment Plant in Garland, TX. The correlations were then used to scale a flux chamber emission rate measurement according to hourly readings of time and temperature, to create an hourly emission rate file for input to the dispersion model ISCST3. ISCST3 was then used to predict hourly atmospheric concentrations of H2S. With emission rates varying hourly, ISCST3 predicted 384 acres of odor impact, compared with 103 acres for constant emissions. Because field sampling had been conducted on relatively cool days (85–90 °F), the constant emission rate underestimated odor impact significantly (by 73%).  相似文献   

8.
The spatial variations of volatile organic compounds (VOCs) were characterized in the Village of Waterfront South neighborhood (WFS), a "hot spot" for air toxics in Camden, NJ. This was accomplished by conducting "spatial saturation sampling" for 11 VOCs using 3500 OVM passive samplers at 22 sites in WFS and 16 sites in Copewood/Davis Streets (CDS) neighborhood, an urban reference area located ~1000 m east of the WFS. Sampling durations were 24 and 48 h. For all 3 sampling campaigns (2 in summer and 1 in winter), the spatial variations and median concentrations of toluene, ethylbenzene, and xylenes (TEX) were found significantly higher (p < 0.05) in WFS than in CDS, where the spatial distributions of these compounds were relatively uniform. The highest concentrations of methyl tert-butyl ether (MTBE) (maximum of 159 μg m(-3)) were always found at one site close to a car scrapping facility in WFS during each sampling campaign. The spatial variation of benzene in WFS was found to be marginally higher (p = 0.057) than in CDS during one sampling campaign, but similar in the other two sampling periods. The results obtained from the analyses of correlation among all species and the proximity of sampling site to source indicated that local stationary sources in WFS have significant impact on MTBE and BTEX air pollution in WFS, and both mobile sources and some of the stationary sources in WFS contributed to the ambient levels of these species measured in CDS. The homogenous spatial distributions (%RSD < 24%) and low concentrations of chloroform (0.02-0.23 μg m(-3)) and carbon tetrachloride (0.45-0.51 μg m(-3)) indicated no significant local sources in the study areas. Further, results showed that the sampling at the fixed monitoring site may under- or over-estimate air pollutant levels in a "hot spot" area, suggesting that the "spatial saturation sampling" is necessary for conducting accurate assessment of air pollution and personal exposure in a community with a high density of sources.  相似文献   

9.
The ambient air quality monitoring data of 2006 and 2007 from a recently established Pearl River Delta (PRD) regional air quality monitoring network are analyzed to investigate the characteristics of ground-level ozone in the region. Four sites covering urban, suburban, rural and coastal areas are selected as representatives for detailed analysis in this paper. The results show that there are distinct seasonal and diurnal cycles in ground-level ozone across the PRD region. Low ozone concentrations are generally observed in summer, while high O3 levels are typically found in autumn. The O3 diurnal variations in the urban areas are larger than those at the rural sites. The O3 concentrations showed no statistically significant difference between weekend and weekdays in contrast to the findings in many other urban areas in the world. The average ozone concentrations are lower in urban areas compared to the sites outside urban centers. Back trajectories are used to show the major air-mass transport patterns and to examine the changes in ozone from the respective upwind sites to a site in the center of the PRD (Wanqingsha). The results show higher average ozone concentrations at the upwind sites in the continental and coastal air masses, but higher 1 h-max O3 concentrations (by 8–16 ppbv) at the center PRD site under each of air-mass category, suggesting that the ozone pollution in the PRD region exhibits both regional and super-regional characteristics.  相似文献   

10.
Receptor-oriented source apportionment models are often used to identify sources of ambient air pollutants and to estimate source contributions to air pollutant concentrations. In this study, a PCA/APCS model was applied to the data on non-methane hydrocarbons (NMHCs) measured from January to December 2001 at two sampling sites: Tsuen Wan (TW) and Central & Western (CW) Toxic Air Pollutants Monitoring Stations in Hong Kong. This multivariate method enables the identification of major air pollution sources along with the quantitative apportionment of each source to pollutant species. The PCA analysis identified four major pollution sources at TW site and five major sources at CW site. The extracted pollution sources included vehicular internal engine combustion with unburned fuel emissions, use of solvent particularly paints, liquefied petroleum gas (LPG) or natural gas leakage, and industrial, commercial and domestic sources such as solvents, decoration, fuel combustion, chemical factories and power plants. The results of APCS receptor model indicated that 39% and 48% of the total NMHCs mass concentrations measured at CW and TW were originated from vehicle emissions, respectively. 32% and 36.4% of the total NMHCs were emitted from the use of solvent and 11% and 19.4% were apportioned to the LPG or natural gas leakage, respectively. 5.2% and 9% of the total NMHCs mass concentrations were attributed to other industrial, commercial and domestic sources, respectively. It was also found that vehicle emissions and LPG or natural gas leakage were the main sources of C(3)-C(5) alkanes and C(3)-C(5) alkenes while aromatics were predominantly released from paints. Comparison of source contributions to ambient NMHCs at the two sites indicated that the contribution of LPG or natural gas at CW site was almost twice that at TW site. High correlation coefficients (R(2) > 0.8) between the measured and predicted values suggested that the PCA/APCS model was applicable for estimation of sources of NMHCs in ambient air.  相似文献   

11.
Extensive aerosol optical properties, particle size distributions, and Aerodyne quadrupole aerosol mass spectrometer measurements collected during TRAMP/TexAQS 2006 were examined in light of collocated meteorological and chemical measurements. Much of the evident variability in the observed aerosol-related air quality is due to changing synoptic meteorological situations that direct emissions from various sources to the TRAMP site near the center of the Houston-Galveston-Brazoria (HGB) metropolitan area. In this study, five distinct long-term periods have been identified. During each of these periods, observed aerosol properties have implications that are of interest to environmental quality management agencies. During three of the periods, long range transport (LRT), both intra-continental and intercontinental, appears to have played an important role in producing the observed aerosol. During late August 2006, southerly winds brought super-micron Saharan dust and sea salt to the HGB area, adding mass to fine particulate matter (PM2.5) measurements, but apparently not affecting secondary particle growth or gas-phase air pollution. A second type of LRT was associated with northerly winds in early September 2006 and with increased ozone and sub-micron particulate matter in the HGB area. Later in the study, LRT of emissions from wildfires appeared to increase the abundance of absorbing aerosols (and carbon monoxide and other chemical tracers) in the HGB area. However, the greatest impacts on Houston PM2.5 air quality are caused by periods with low-wind-speed sea breeze circulation or winds that directly transport pollutants from major industrial areas, i.e., the Houston Ship Channel, into the city center.  相似文献   

12.
Passive samplers have been shown to be an inexpensive alternative to direct sampling. Diffusion denuders have been developed to measure the concentration of species such as ammonia (NH3), which is in equilibrium with particulate ammonium nitrate. Conventional denuder sampling has required active sampling that inherently requires air pumps and, therefore, electrical power. To estimate emissions of NH3 from a fugitive source would require an array of active samplers and meteorological measurements to estimate the flux. A recently developed fabric denuder was configured in an open tube to passively sample NH3 flux. Passive and active samplers were collocated at a dairy farm at the California State University, Fresno, Agricultural Research Facility. During this comparison study, NH3 flux measurements were made at the dairy farm lagoon before and after the lagoon underwent acidification. Comparisons were made of the flux measurements obtained directly from the passive flux denuder and those calculated from an active filter pack sampler and wind velocity. The results show significant correlation between the two methods, although a correction factor needed to be applied to directly compare the two techniques. This passive sampling approach significantly reduces the cost and complexity of sampling and has the potential to economically develop a larger inventory base for ambient NH3 emissions.  相似文献   

13.
Air pollution emission inventories are the basis for air quality assessment and management strategies. The quality of the inventories is of great importance since these data are essential for air pollution impact assessments using dispersion models. In this study, the quality of the emission inventory for fine particulates (PM2.5) is assessed: first, using the calculated source contributions from a receptor model; second, using source apportionment from a dispersion model; and third, by applying a simple inverse modelling technique which utilises multiple linear regression of the dispersion model source contributions together with the observed PM2.5 concentrations. For the receptor modelling the chemical composition of PM2.5 filter samples from a measurement campaign performed between January 2004 and April 2005 are analysed. Positive matrix factorisation is applied as the receptor model to detect and quantify the various source contributions. For the same observational period and site, dispersion model calculations using the Air Quality Management system, AirQUIS, are performed. The results identify significant differences between the dispersion and receptor model source apportionment, particularly for wood burning and traffic induced suspension. For wood burning the receptor model calculations are lower, by a factor of 0.54, but for the traffic induced suspension they are higher, by a factor of 7.1. Inverse modelling, based on regression of the dispersion model source contributions and the PM2.5 concentrations, indicates similar discrepancies in the emissions inventory. In order to assess if the differences found at the one site are generally applicable throughout Oslo, the individual source category emissions are rescaled according to the receptor modelling results. These adjusted PM2.5 concentrations are compared with measurements at four independent stations to evaluate the updated inventory. Statistical analysis shows improvement in the estimated concentrations for PM2.5 at all sites. Similarly, inverse modelling is applied at these independent sites and this confirms the validity of the receptor model results.  相似文献   

14.
Abstract

Passive samplers have been shown to be an inexpensive alternative to direct sampling. Diffusion denuders have been developed to measure the concentration of species such as ammonia (NH3), which is in equilibrium with particulate ammonium nitrate. Conventional denuder sampling that inherently requires air pumps and, therefore, electrical power. To estimate emissions of NH3 from a fugitive source would require an array of active samplers and meteorological measurements to estimate the flux. A recently developed fabric denuder was configured in an open tube to passively sample NH3 flux. Passive and active samplers were collocated at a dairy farm at the California State University, Fresno, Agricultural Research Facility. During this comparison study, NH3 flux measurements were made at the dairy farm lagoon before and after the lagoon underwent acidification. Comparisons were made of the flux measurements obtained directly from the passive flux denuder and those calculated from an active filter pack sampler and wind velocity. The results show significant correlation between the two methods, although a correction factor needed to be applied to directly compare the two techniques. This passive sampling approach significantly reduces the cost and complexity of sampling and has the potential to economically develop a larger inventory base for ambient NH3 emissions.  相似文献   

15.
The present research proposes the local urban air quality management plan which combines two different modelling approaches (hybrid model) and possesses an improved predictive ability including the ‘probabilistic exceedances over norms’ and their ‘frequency of occurrences’ and so termed, herein, as episodic-urban air quality management plan (e-UAQMP). The e-UAQMP deals with the consequences of ‘extreme’ concentrations of pollutant, mainly occurring at urban ‘hotspots’ e.g. traffic junctions, intersections and signalized roadways and are also influenced by complexities of traffic generated ‘wake’ effects. The e-UAQMP (based on probabilistic approach), also acts as an efficient preventive measure to predict the ‘probability of exceedances’ so as to prepare a successful policy responses in relation to the protection of urban environment as well as disseminating information to its sensitive ‘receptors’. The e-UAQMP may be tailored to the requirements of the local area for the policy implementation programmes. The importance of such policy-making framework in the context of current air pollution ‘episodes’ in urban environments is discussed. The hybrid model that is based on both deterministic and stochastic based approaches predicting the ‘average’ as well as ‘extreme’ concentration distribution of air pollutants together in form of probability has been used at two air quality control regions (AQCRs) in the Delhi city, India, in formulating and executing the e-UAQMP—first, the income tax office (ITO), one of the busiest signalized traffic intersection and second, the Sirifort, one of the busiest signalized roadways.  相似文献   

16.
A model which quantifies the relationship between the monthly time series for CO emissions, the monthly time series in ambient CO concentration, and meteorologically driven dispersion was developed. Fifteen cities representing a wide range of geographical and climatic conditions were selected. An eight-year time series (1984–1991 inclusive) of monthly averaged data were examined in each city. A new method of handling missing ambient concentration values which is designed to calculate city-wide average concentrations that follow the trend seen at individual monitor sites is presented. This method is general and can be used in other applications involving missing data. The model uses emissions estimates along with two meteorological variables (wind speed and mixing height) to estimate monthly averages of ambient air pollution concentrations. The model is shown to have a wide range of applicability; it works equally well for a wide range of cities that have very different temporal CO distributions. The model is suited for assessing long-term trends in ambient air pollutants and can also be used for estimating seasonal variations in concentration, estimation of trends in emissions, and for filling in gaps in the ambient concentration record.  相似文献   

17.
The concentrations of polychlorinated dibenzo-p-dioxins and furans (PCDD/Fs), polychlorinated biphenyls (PCBs) and polychlorinated naphthalenes (PCNs) were determined in air samples collected at four sampling sites located in two zones of Barcelona (Spain): near a municipal solid waste incinerator (MSWI) and a combined cycle power plant (3 sites), and at a background/control site. Samples were collected using high-volume active samplers. Moreover, 4 PUF passive samplers were deployed at the same sampling points during three months. For PCDD/Fs, total WHO-TEQ values were 27.3 and 10.9 fg WHO-TEQm(-3) at the urban/industrial and the background sites, respectively. The sum of 7 PCB congeners and the Sigma PCN levels were also higher at the industrial site than at the background site. In order to compare active and passive sampling, the accumulated amounts of PCDD/Fs, PCBs and PCNs in the four passive air samplers, as well as the total toxic equivalents in each sampling site were also determined. To assess the use of PUF passive samplers as a complementary tool for PCDD/F, PCB and PCN monitoring, sampling rates were calculated in accordance with the theory of passive air samplers. PUF disks allowed establishing differences among zones for the POP levels, showing that they can be a suitable method to determine POP concentrations in air in areas with various potential emission sources. Although both particle and gas phase were sorbed by the PUFs, data of gas phase congeners are more reproducible.  相似文献   

18.
Abstract

Interest in regulations to control solvent emissions from automotive painting systems is increasing, especially in ozone nonattainment areas. Therefore, an accurate measurement method for VOC emissions from paint spray booths used in the automotive industry is needed to ascertain the efficiency of the spray booth capture and the total emissions. This paper presents the results of a laboratory study evaluating potential VOC sampling and analytical methods used in estimating paint spray booth emissions, and discusses these results relative to other published data. Eight test methods were selected for evaluation. The accuracy of each sampling and analytical method was determined using test atmospheres of known concentration and composition that closely matched the actual exhaust air from paint spray booths. The solvent mixture to generate the test atmospheres contained a large proportion of polar, oxygenated hydrocarbons such as ketones and alcohols. A series of identical tests was performed for each sampling/analytical method with each test atmosphere to assess the precision of the methods. The study identified significant differences among the test methods in terms of accuracy, precision, cost, and complexity.  相似文献   

19.
We use ensemble-mean Lagrangian sampling of a 3-D Eulerian air quality model, CMAQ, together with ground-based ambient monitors data from several air monitoring networks and satellite (MODIS) observations to provide source apportionment and regional transport vs. local contributions to sulfate aerosol and PM2.5 concentrations at Baltimore, MD, for summer 2004. The Lagrangian method provides estimates of the chemical and physical evolution of air arriving in the daytime boundary layer at Baltimore. Study results indicate a dominant role for regional transport contributions on those days when sulfate air pollution is highest in Baltimore, with a principal transport pathway from the Ohio River Valley (ORV) through southern Pennsylvania and Maryland, consistent with earlier studies. Thus, reductions in sulfur emissions from the ORV under the EPA's Clean Air Interstate Rule may be expected to improve particulate air quality in Baltimore during summer. The Lagrangian sampling of CMAQ offers an inexpensive and complimentary approach to traditional methods of source apportionment based on multivariate observational data analysis, and air quality model emissions separation. This study serves as a prototype for the method applied to Baltimore. EPA is establishing a system to allow air quality planners to readily produce and access equivalent results for locations of their choice.  相似文献   

20.
During the last decades, a significant deterioration of ambient air quality has been observed in Argentina. However, the availability of air pollution monitoring stations is still limited to only few cities. In this study, we investigated the genotoxicity of ambient levels of air pollution in Córdoba using the Tradescantia micronucleus assay. The experiment was performed from October, 2004 to April 2005. Pots with Tradescantia pallida were placed in three sites: Córdoba city center, characterized by important avenues with high traffic activity (cars, taxis, and public transport vehicles); the university campus, along a side road with heavy traffic of gasoline and diesel powered vehicles, buses and trucks; and a residential area, with no significant local sources of air pollution. Twenty young T. pallida inflorescences were collected from each sampling site in November, February and April. Micronuclei frequencies were determined in early tetrads of pollen mother cells and expressed as MCN/100 tetrads. Simultaneously, the environmental levels of total suspended particles (24 h mean) were determined for each site. A significant difference in micronuclei frequency was observed among sites (p=0.036). Post-hoc analysis revealed that the residential area exhibited a lower micronuclei frequency than the university and city center areas. In conclusion, we found that the gradients of ambient air pollution of Córdoba are associated with changes in the spontaneous micronuclei frequency of Tradescantia pollen mother cells. These results indicate that in situ biomonitoring with higher plants may be useful for characterizing air pollution in areas without instrumental monitoring techniques, or for exploring the distribution of air contaminants at a microscale.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号