共查询到20条相似文献,搜索用时 15 毫秒
1.
After reductions of fugitive and diffuse emissions by an industrial complex, a follow-up study was performed to determine the time variability of volatile organic compounds (VOCs) and the lifetime cancer risk (LCR). Passive samplers (3 M monitors) were placed outdoors ( n?=?179) and indoors ( n?=?75) in industrial, urban, and control areas for 4 weeks. Twenty-five compounds including n-alkanes, cycloalkanes, aromatics, chlorinated hydrocarbons, and terpenes were determined by GC/MS. The results show a significant decrease of all VOCs, especially in the industrial area and to a lesser extent in the urban area. The median outdoor concentration of benzene in the industrial area declined compared to the former study, around 85 % and about 50 % in the urban area, which in the past was strongly influenced by industrial emissions. Other carcinogenic compounds like styrene and tetrachloroethylene were reduced to approximately 60 %. VOC concentrations in control areas remained nearly unchanged. According to the determined BTEX ratios and interspecies correlations, in contrast to the previous study, traffic was identified as the main emission source in the urban and control areas and showed an increased influence in the industrial area. The LCR, calculated for benzene, styrene, and tetrachloroethylene, shows a decrease of one order of magnitude in accordance to the decreased total VOC concentrations and is now acceptable according to values proposed by the World Health Organization. 相似文献
2.
The greater the use of energy in the transportation sectors, the higher the emission of carbon monoxide (CO), and hence inevitable harm to environment and human health. In this concern, measuring and predicting of CO emission from transportation sector—especially large cities—is important as it constitute 90 % of all CO emission. Many urban cities in developing world have not properly experienced such measurements or predictions. In this paper, for the first time, field measurements of traffic characteristics data and corresponding CO concentration have been performed for developing a model for predicting CO emissions from transportation sector for New Borg El Arab (NBC), Egypt. The performance of Swiss-German Handbook Emission Factors for Road Transport (HBEFA v3.1) model has been assessed for predicting the CO concentration at roadside in the study area. Results indicated that HBEFA v3.1 underestimate emission figures. The developed CO dynamic emission model involves the traffic flow characteristics with roadside CO concentrations. Acceptable representation of measured CO concentration has been shown by the developed dynamic CO emission model which introduces R 2?=?0.77, mean biases and frictional biases of ?0.27 mg m ?3 and 0.09, respectively. A comparison between predicted CO concentrations using HBEFA v3.1 and the promoted dynamic model indicate that HBEFA v3.1 estimates CO emission concentrations in the study area with a mean error and frictional biases 159.26 and 233.33 %, respectively, higher than those of the developed model. 相似文献
3.
This study compares speciated model-predicted concentrations (i.e., mixing ratios) of volatile organic compounds (VOCs) with measurements from the Photochemical Assessment Monitoring Stations (PAMS) network at sites within the northeastern US during June–August of 2006. Measurements of total non-methane organic compounds (NMOC), ozone (O 3), oxides of nitrogen (NO x) and reactive nitrogen species (NO y) are used for supporting analysis. The measured VOC species were grouped into the surrogate classes used by the Carbon Bond IV (CB4) chemical mechanism. It was found that the model typically over-predicted all the CB4 VOC species, except isoprene, which might be linked to overestimated emissions. Even with over-predictions in the CB4 VOC species, model performance for daily maximum O 3 was typically within ±15%. Analysis at an urban site in NY, where both NMOC and NO x data were available, suggested that the reasonable ozone performance may be possibly due to compensating overestimated NO x concentrations, thus modulating the NMOC/NO x ratio to be in similar ranges as that of observations. 相似文献
4.
To study the impact of emissions at an airport on local air quality, a measurement campaign at the Zurich airport was performed from 30 June 2004 to 15 July 2004. Measurements of NO, NO 2, CO and CO 2 were conducted with open path devices to determine real in-use emission indices of aircraft during idling. Additionally, air samples were taken to analyse the mixing ratios of volatile organic compounds (VOC). Temporal variations of VOC mixing ratios on the airport were investigated, while other air samples were taken in the plume of an aircraft during engine ignition. CO concentrations in the vicinity of the terminals were found to be highly dependent on aircraft movement, whereas NO concentrations were dominated by emissions from ground support vehicles. The measured emission indices for aircraft showed a strong dependence upon engine type. Our work also revealed differences from emission indices published in the emission data base of the International Civil Aviation Organisation. Among the VOC, reactive C 2–C 3 alkenes were found in significant amounts in the exhaust of an engine compared to ambient levels. Also, isoprene, a VOC commonly associated with biogenic emissions, was found in the exhaust, however it was not detected in refuelling emissions. The benzene to toluene ratio was used to discriminate exhaust from refuelling emission. In refuelling emissions, a ratio well below 1 was found, while for exhaust this ratio was usually about 1.7. 相似文献
5.
We investigated variations in the relative sensitivity of surface ozone formation in summer to precursor species concentrations of volatile organic compounds (VOCs) and nitrogen oxides (NO x) as inferred from the ratio of the tropospheric columns of formaldehyde to nitrogen dioxide (the “Ratio”) from the Aura Ozone Monitoring Instrument (OMI). Our modeling study suggests that ozone formation decreases with reductions in VOCs at Ratios <1 and NO x at Ratios >2; both NO x and VOC reductions may decrease ozone formation for Ratios between 1 and 2. Using this criteria, the OMI data indicate that ozone formation became: 1. more sensitive to NO x over most of the United States from 2005 to 2007 because of the substantial decrease in NO x emissions, primarily from stationary sources, and the concomitant decrease in the tropospheric column of NO 2, and 2. more sensitive to NO x with increasing temperature, in part because emissions of highly reactive, biogenic isoprene increase with temperature, thus increasing the total VOC reactivity. In cities with relatively low isoprene emissions (e.g., Chicago), the data clearly indicate that ozone formation became more sensitive to NO x from 2005 to 2007. In cities with relatively high isoprene emissions (e.g., Atlanta), we found that the increase in the Ratio due to decreasing NO x emissions was not obvious as this signal was convolved with variations in the Ratio associated with the temperature dependence of isoprene emissions and, consequently, the formaldehyde concentration. 相似文献
6.
Ground-level ozone (O3) time series are characterized by the sum of several distinct temporal scales: long-term, seasonal, synoptic, diurnal (daily), and intraday variation. In this study, the authors use a Kolmorogov-Zurbenko filter to separate the 1981-2001 O3 time-series from many sites in and around Georgia into these various components. The authors compare the temporal components to examine differences between small and large metropolitan areas and between urban and rural areas. They then focus on the synoptic component to define a predominant transport region or airshed for each site. 相似文献
7.
Purpose The concentrations of PM 10 mass, PM 2.5 mass and particle number were continuously measured for 18 months in urban background locations across Europe to determine the spatial and temporal variability of particulate matter. Methods Daily PM 10 and PM 2.5 samples were continuously collected from October 2002 to April 2004 in background areas in Helsinki, Athens, Amsterdam and Birmingham. Particle mass was determined using analytical microbalances with precision of 1 ??g. Pre- and post-reflectance measurements were taken using smoke-stain reflectometers. One-minute measurements of particle number were obtained using condensation particle counters. Results The 18-month mean PM 10 and PM 2.5 mass concentrations ranged from 15.4 ??g/m 3 in Helsinki to 56.7 ??g/m 3 in Athens and from 9.0 ??g/m 3 in Helsinki to 25.0 ??g/m 3 in Athens, respectively. Particle number concentrations ranged from 10,091 part/cm 3 in Helsinki to 24,180 part/cm 3 in Athens with highest levels being measured in winter. Fine particles accounted for more than 60% of PM 10 with the exception of Athens where PM 2.5 comprised 43% of PM 10. Higher PM mass and number concentrations were measured in winter as compared to summer in all urban areas at a significance level p?0.05. Conclusions Significant quantitative and qualitative differences for particle mass across the four urban areas in Europe were observed. These were due to strong local and regional characteristics of particulate pollution sources which contribute to the heterogeneity of health responses. In addition, these findings also bear on the ability of different countries to comply with existing directives and the effectiveness of mitigation policies. 相似文献
8.
Introduction This study presents bihourly, seasonal, and yearly concentration changes in volatile organic compounds (VOCs) in the inlet
and effluent water of the wastewater treatment plant (WWTP) of a high-technology science park (HTIP) in Taiwan, with the VOC
amounts at different sites correlated geologically. 相似文献
9.
Two measurement campaigns of volatile organic compounds (VOC) were carried out in the industrial city of Dunkerque, using Radiello passive samplers during winter (16–23 January) and summer (6–13 June) 2007. 174 compounds were identified belonging to six chemical families. Classifying sampling sites with similar chemical profiles by hierarchical ascending classification resulted in 4 groups that reflected the influence of the main industrial and urban sources of pollution. Also, the BTEX (Benzene, Toluene, Ethylbenzene and Xylenes) quantification allowed us to map their levels of concentration. Benzene and toluene (BT) showed high concentrations in Northern Dunkerque reflecting the influence of two industrial plants. Differences among spatial distributions of the BT concentrations over contrasted meteorological conditions were also observed. An atypical ratio of T/B in the summer samples led us to investigate the BTEX origins shedding light on the contribution of pollutants transported across various zones of VOC emissions situated in Europe. 相似文献
10.
Industry is one of the main activities in the city and in many cities of the world, and the dominant industrial zones are the most significant morphological forms of concentration of industrial facilities in the city and are concentrated industrial and business activity. Industrial parks combine activities related to energy and resource consumption, emissions, waste generation, economic benefits, and regional development. The focus of this work is the path of transformation between the present and the vision of a sustainable city in the future. The problem and the subject of research related to two related objects of research: the city and sustainable development. In this paper, the co-author’s industrial symbiosis parks, modern tendencies of the spatial distribution of productive activities, circular economy, to attract leading corporations and open the way for new ventures while preserving the living environment in an urban area. 相似文献
11.
We present estimated emission source strengths of seven polychlorinated biphenyl (PCB) congeners for Banja Luka, a city that was affected by the civil war in Bosnia and Hercegovina (former Yugoslavia) in the 1990s. These emission estimates are compared to PCB emission rates estimated for the cities of Zurich, Switzerland, and Chicago, USA using an approach that combines multimedia mass balance modeling and measurement data. Our modeled per-capita emission estimates for Banja Luka are lower by a factor of ten than those for Zurich and Chicago, which are similar. This indicates that the sources of PCB emissions in Banja Luka are likely to be weaker than in the Western European and North American cities which show relatively high PCB emissions. Our emission rates from the three cities agree within a factor of ten with emission estimates from a global PCB emission inventory derived from production and usage estimates and emission factors. 相似文献
12.
The recent reduction in the lead content of petrol in the United Kingdom, following government legislation, has been used to investigate the relationship between lead in petrol and in outside air in urban environments. In parts of London and Manchester, the airborne lead concentration closely followed the petrol lead concentration, within a time resolution of about 1 month. These results indicate that, in these areas, the petrol lead content has a fairly direct and prompt effect on the urban air lead concentration, i.e. any environmental lead reservoirs in the pathway from petrol to air (and hence to man by inhalation) are not significant on this timescale. A small component of the airborne lead, apparently independent of the petrol lead, was also observed. 相似文献
13.
Isocyanatocyclohexane and isothiocyanatocyclohexane are becoming relevant compounds in urban and industrial air, as they are used in important amounts in automobile industry and building insulation, as well as in the manufacture of foams, rubber, paints and varnishes. Glass multi-sorbent tubes (Carbotrap, Carbopack, Carboxen) were connected to LCMA-UPC pump samplers for the retention of iso- and isothiocyanatocyclohexanes. The analysis was performed by automatic thermal desorption (ATD) coupled with capillary gas chromatography (GC)/mass spectrometry detector (MSD). TD-GC/MS was chosen as analytical method due to its versatility and the possibility of analysis of a wide range of volatility and polarity VOC in air samples. The method was satisfactory sensitive, selective and reproducible for the studied compounds. The concentrations of iso- and isothioisocyanatocyclohexanes were evaluated in different urban, residential and industrial locations from extensive VOC air quality and odour episode studies in several cities in the Northeastern edge of Spain. Around 200–300 VOC were determined qualitatively in each sample. Higher values of iso- and isothiocyanatocyclohexane were found in industrial areas than in urban or residential locations. The concentrations ranged between n.d.−246 and n.d.−29 μg m −3 for isocyanatocyclohexane and isothiocyanatocyclohexane, respectively, for industrial areas. On the other hand, urban and residential locations showed concentrations ranging between n.d.−164 and n.d.−29 μg m −3 for isocyanatocyclohexane and isothiocyanatocyclohexane, respectively. The site location (urban or industrial), the kind and nearness of possible iso- and isothiocyanatocyclohexane emission activities (industrial or building construction) and the changes of wind regimes throughout the year have been found the most important factors influencing the concentrations of these compounds in the different places. 相似文献
14.
Tropospheric ozone concentrations regarded as harmful for human health are frequently encountered in Central Europe in summertime. Although ozone formation generally results from precursors transported over long distances, in urban areas local effects, such as reactions due to nearby emission sources, play a major role in determining ozone concentrations. Europe-wide mapping and modeling of population exposure to high ozone concentrations is subject to many uncertainties, because small-scale phenomena in urban areas can significantly change ozone levels from those of the surroundings. Currently the integrated assessment modeling of European ozone control strategies is done utilizing the results of large-scale models intended for estimating the rural background ozone levels. This paper presents an initial study on how much local nitrogen oxide (NOx) concentrations can explain variations between large-scale ozone model results and urban ozone measurements, on one hand, and between urban and nearby rural measurements, on the other. The impact of urban NOx concentrations on ozone levels was derived from chemical equations describing the ozone balance. The study investigated the applicability of the method for improving the accuracy of modeled population exposure, which is needed for efficient control strategy development. The method was tested with NOx and ozone measurements from both urban and rural areas in Switzerland and with the ozone predictions of the large-scale photochemical model currently used in designing Europe-wide control strategies for ground-level ozone. The results suggest that urban NOx levels are a significant explanatory factor in differences between urban and nearby rural ozone concentrations and that the phenomenon could be satisfactorily represented with this kind of method. Further research efforts should comprise testing of the method in more locations and analyzing the performance of more widely applicable ways of deriving the initial parameters. 相似文献
15.
Data from the U.S. Environmental Protection Agency's Aerometric Information Retrieval System (now known as the Air Quality System) database for 1999 and 2000 have been used to characterize the spatial variability of concentrations of particulate matter with aerodynamic diameter < or = 2.5 microg (PM2.5) in 27 urban areas across the United States. Different measures were used to quantify the degree of uniformity of PM2.5 concentrations in the urban areas characterized. It was observed that PM2.5 concentrations varied to differing degrees in the urban areas examined. Analyses of several urban areas in the Southeast indicated high correlations between site pairs and spatial uniformity in concentration fields. Considerable spatial variation was found in other regions, especially in the West. Even within urban areas in which all site pairs were highly correlated, a variable degree of heterogeneity in PM2.5 concentrations was found. Thus, even though concentrations at pairs of sites were highly correlated, their concentrations were not necessarily the same. These findings indicate that the potential for exposure misclassification errors in time-series epidemiologic studies exists. 相似文献
16.
In China, the areas that are undergoing rapid urban growth are faced with increasingly more complicated air pollution problems. Sources of air pollution need to be identified and their contributions quantified. In this study, PM2.5 (particulate matter with aerodynamic diameters < or =2.5 microm), PM2.5-10 (particulate matter with aerodynamic diameters 2.5-10 microm), organic carbon (OC), and elemental carbon (EC) concentrations were measured from April to July 2009 at four selected areas in Xiamen (the downtown area, an industrial park, a suburb, and one remote site). The contributions of carbonaceous aerosols to PM2.5 and PM2.5-10 were 20-30% and 10-20%, respectively, indicating that finer particles contained more carbonaceous aerosols. The EC concentrations in PM2.5 at the downtown, industrial, suburb, and remote sites were 2.16 +/- 0.61, 2.05 +/- 0.45, 1.69 +/- 0.54, and 0.65 +/- 0.43 microg m-3, respectively, showing a decrease from the urban and industrial hotspots to the surrounding areas. These data show that carbonaceous aerosols emitted from the combustion of fossil fuels in urban and industrial hotspots influence air quality at the regional scale. Higher levels of PM2.5 and PM2.5-10 were observed at the suburb site compared to the urban and industrial sites. Peak EC concentrations in PM2.5 were observed during the morning and evening rush hours. However, peak PM2.5 levels at the suburb site were observed around noon, which coincides with construction work hours, instead of the morning and evening rush hours when emissions from combustion dominated. These findings indicate that both fuel combustion and construction have exacerbated air pollution in coastal and urban areas in China. 相似文献
17.
More than half of the world's population lives in cities, and their populations are rapidly increasing. Information on vertical and diurnal characterizations of volatile organic compounds (VOCs) in urban areas with heavy ambient air pollution can help further understand the impact of ambient VOCs on the local urban environment. This study characterized vertical and diurnal variations in VOCs at 2, 13, 32, 58, and 111 m during four daily time periods (7:00 to 9:00 a.m., 12:00 to 2:00 p.m., 5:00 to 7:00 p.m., and 11:00 p.m. to 1:00 a.m.) at the upwind of a high-rise building in downtown, Kaohsiung City, Taiwan. The study used gas chromatography-mass spectrometry to analyze air samples collected by silica-coated canisters. The vertical distributions of ambient VOC profiles showed that VOCs tended to decrease at greater heights. However, VOC levels were found to be higher at 13 m than at ground level at midnight from 11:00 p.m. to 1:00 a.m. and higher at 32 than 13 m between 7:00 and 9:00 a.m. These observations suggest that vertical dispersion and dilution of airborne pollutants could be jointly affected by local meteorological conditions and the proximity of pollution sources. The maximum concentration of VOCs was recorded during the morning rush hours from 7:00 to 9:00 a.m., followed by rush hours from 5:00 to 7:00 p.m., hours from 12:00 to 2:00 p.m., and hours from 11:00 p.m. to 1:00 a.m., indicating that the most VOC compounds in urban air originate from traffic and transportation emissions. The benzene-toluene-ethyl benzene-xylene (BTEX) source analysis shows that BTEX at all heights were mostly associated with vehicle transportation activities on the ground. 相似文献
18.
This paper describes a method of estimating emission fluxes of biogenic volatile organic compounds (BVOCs) based on the approach proposed by Guenther et al. (1995) and the high-resolution Corine land-cover 2000 database (1 × 1 km resolution). The computed emission fluxes for the Czech Republic (selected for analysis as being representative of a heavily cultivated, central European country) are compared with anthropogenic emissions, both for the entire country and for individual administrative regions. In some regions, BVOC emissions are as high as anthropogenic emissions; however, in most regions the BVOC emissions are approximately 50% of the anthropogenic emissions. The yearly course of BVOC emissions (represented by monoterpenes and isoprene) is presented, along with the spatial distribution of annual mean values. Differences in emission distributions during winter (January) and summer (June) are also considered. 相似文献
20.
Recent research has shown the Phoenix, AZ metropolitan region to be characterized by a CO2 dome that peaks near the urban center. The CO2 levels, 50% greater than the surrounding non-urban areas, have been attributed to anthropogenic sources and the physical geography of the area. We quantified sources of CO2 emissions across the metropolitan region. Anthropogenic CO2 emission data were obtained from a variety of government and NGO sources. Soil CO2 efflux from the dominant land-use types was measured over the year. Humans and automobile activity produced more than 80% input of CO2 into the urban environment. Soil CO2 efflux from the natural desert ecosystems showed minimal emissions during hot and dry periods, but responded rapidly to moisture. Conversely, human maintained vegetation types (e.g. golf courses, lawns, irrigated agriculture) have greater efflux and are both temperature and soil moisture dependent. Landfills exhibited the most consistent rates, but were temperature and moisture independent. We estimate the annual CO2 released from the predominant land-use types in the Phoenix region and present a graphical portrayal of soil CO2 emissions and the total natural and anthropogenic CO2 emissions in the metropolitan region using a GIS-based approach. The results presented here do not mimic the spatial pattern shown in previous studies. Only, with sophisticated mixing models will we be able to address the total effect of urbanization on CO2 levels and the contribution to regional patterns. 相似文献
|