首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The objective of this study was to investigate the organic composition of wood smoke emissions and ambient air samples in order to determine the wood smoke contribution to the ambient air pollution in the residential areas. From November 2005 to March 2006 particle-phase PM10 samples were collected in the residential town Dettenhausen surrounded by forests near Stuttgart in southern Germany. Samples collected on pre-baked glass fibre filters were extracted using toluene with ultrasonic bath and analysed by gas chromatography mass spectrometry (GC-MS). 21 polycyclic aromatic hydrocarbons (PAH) including 16 USEPA priority pollutants, different organic wood smoke tracers, primarily 21 species of syringol and guaiacol derivatives, levoglucosan and its isomers mannosan, galactosan and dehydroabietic acid were detected and quantified in this study. The concentrations of these compounds were compared with the fingerprints of emissions from hardwood and softwood combustion carried out in test facilities at Universitaet Stuttgart and field investigations at a wood stove during real operation in Dettenhausen. It was observed that the combustion derived PAH was detected in higher concentrations than other PAH in the ambient air PM10 samples. Syringol and its derivatives were found in large amounts in hardwood burning but were not detected in softwood burning emissions. On the other hand, guaiacol and its derivatives were found in both softwood and hardwood burning emissions, but the concentrations were higher in the softwood smoke compared to hardwood smoke. So, these compounds can be used as typical tracer compounds for the different types of wood burning emissions. In ambient air samples both syringol and guaiacol derivatives were found which indicates the wood combustion contribution to the PM load in such residential areas. Levoglucosan was detected in high concentrations in all ambient PM10 samples. A source apportionment modelling, Positive Matrix Factorization (PMF) was implemented to quantify the wood smoke contribution to the ambient PM10 bound organic compounds in the residential area.  相似文献   

2.
Emissions from a small residential wood stove and a newly developed residential stove burning charcoal have been characterized by chemical analysis and mutagenicity testing (Ames Salmonella test). For wood burning the samples were taken under normal and starved air conditions burning birch and spruce separately. The burning conditions in the stove seemed to influence the emissions to a larger extent than the type of wood.The emissions of aldehydes, benzene and polycyclic aromatic hydrocarbons from the charcoal-burning stove are lower by a factor of 25–1000 as compared to the wood stove. The mutagenicity of the emissions showed a similar trend.  相似文献   

3.
Ethanol fuel production is growing rapidly in the rural Midwest, and this growth presents potential environmental impacts. In 2002, the U.S. Environmental Protection Agency (EPA) and the Minnesota Pollution Control Agency (MPCA) entered into enforcement actions with 12 fuel ethanol plants in Minnesota. The enforcement actions uncovered underreported emissions and resulted in consent decrees that required pollution control equipment be installed. A key component of the consent decrees was a requirement to conduct emissions tests for volatile organic compounds (VOCs) with the goal of improving the characterization and control of emissions. The conventional VOC stack test method was thought to underquantify total VOC emissions from ethanol plants. A hybrid test method was also developed that involved quantification of individual VOC species. The resulting database of total and speciated VOC emissions from 10 fuel ethanol plants is relatively small, but it is the most extensive to date and has been used to develop and gauge compliance with permit limits and to estimate health risks in Minnesota. Emissions were highly variable among facilities and emissions units. In addition to the variability, the small number of samples and the presence of many values below detection limits complicate the analysis of the data. To account for these issues, a nested bootstrap procedure on the Kaplan-Meier method was used to calculate means and upper confidence limits. In general, the fermentation scrubbers and fluid bed coolers emitted the largest mass of VOC emissions. Across most facilities and emissions units ethanol was the pollutant emitted at the highest rate. Acetaldehyde, acetic acid, and ethyl acetate were also important emissions from some units. Emissions of total VOCs, ethanol, and some other species appeared to be a function of the beer feed rate, although the relationship was not reliable enough to develop a production rate-based emissions factor.  相似文献   

4.
The emissions of VOC from freshly cut and shredded Grevillea robusta (Australian Silky Oak) leaves and wood have been measured. The VOC emissions from fresh leaf mulch and wood chips lasted typically for 30 and 20 h respectively, and consisted primarily of ethanol, (E)-2-hexenal, (Z)-3-hexen-1-ol and acetaldehyde. The integrated emissions of the VOCs were 0.38±0.04 g kg−1 from leaf mulch, and 0.022±0.003 g kg−1 from wood chips. These emissions represent a source of VOCs in urban and rural air that has previously been unquantified and is currently unaccounted for. These VOCs from leaf mulch and wood chips will contribute to both urban photochemistry and secondary organic aerosol formation. Any CH4 emissions from leaf mulch and wood chips were <1×10−11 g g dry mass−1 s−1.  相似文献   

5.
Padhy PK  Varshney CK 《Chemosphere》2005,59(11):1643-1653
Foliar emission of volatile organic compounds (VOC) from common Indian plant species was measured. Dynamic flow enclosure technique was used and the gas samples were collected onto Tenax-GC/Carboseive cartridges. The Tenax-GC/Carboseive cartridges were attached to the thermal disorber sample injection system and the gas sample was analysed using gas chromatography (GC) with flame ionisation detection (FID). Fifty-one local plant species were screened, out of which 36 species were found to emit VOC (4 high emitter; 28 moderate emitter; and 4 low-emitter), while in the remaining 15 species no VOC emission was detected or the levels of emission were below detection limit (BDL). VOC emission was found to vary from one species to another. There was a marked seasonal and diurnal variation in VOC emission. The minimum and maximum VOC emission values were < 0.1 and 87 microgg(-1) dry leaf h(-1) in Ficus infectoria and Lantana camara respectively. Out of the 51 plant species studied, 13 species are reported here for the first time. Among the nine tree species (which were selected for detailed study), the highest average hourly emission (9.69+/-8.39 microgg(-1) dry leaf) was observed in Eucalyptus species and the minimum in Syzygium jambolanum (1.89+/-2.48 microgg(-1) dry leaf). An attempt has been made to compare VOC emission from different plant species between present study and the literature (tropical and other regions).  相似文献   

6.
With the rapid urbanization, the southeast coastal cities of China are facing increasing air pollution in the past decades. Large emissions of VOCs from vehicles and petrochemical factories have contributed greatly to the local air quality deterioration. Investigating the pollution characteristics of VOCs is of great significance to the environmental risk assessment and air quality improvement. Ambient VOC samples were collected simultaneously from nine coastal cities of southeast China using the Tedlar bags, and were subsequently preprocessed and analyzed using a cryogenic preconcentrator and a gas chromatography–mass spectrometry system, respectively. VOC compositions, spatial distributions, seasonal variations and ozone formation potentials (OPFs) were discussed. Results showed that methylene chloride, toluene, isopropyl alcohol and n-hexane were most abundant species, and oxygenated compounds, aromatics and halogenated hydrocarbons were most abundant chemical classes (62.5–95.6 % of TVOCs). Both industrial and vehicular exhausts might contribute greatly to the VOC emissions. The VOC levels in the southeast coastal cities of China were sufficiently high (e.g., 6.5 μg?m?3 for benzene) to pose a health risk to local people. A more serious pollution state was found in the southern cities of the study region, while higher VOC levels were usually observed in winter. The B/T ratio (0.26?±?0.09) was lower than the typical ratio (ca. 0.6) for roadside samples, while the B/E (1.6–7.6) and T/E (7.2–26.8) ratios were higher than other cities around the world, which indicated a unique emission profile in the study region. Besides, analysis on ozone formation potentials (OFPs) indicated that toluene was the most important species in ozone production with the accountabilities for total OFPs of 22.6 to 59.6 %.  相似文献   

7.
Cheng TW  Chen YS 《Chemosphere》2003,51(9):817-824
CaO-Al(2)O(3)-SiO(2) system glass ceramics of incinerator fly ash have been prepared by vitrification and then heat-treated in different conditions. The thermal molten process (TMP) was applied to heat treat vitrified samples at high temperatures whereas in the powder sintering process water-quenched vitrified samples were ground into powder and then sintered at high temperatures. Gehlenite was found present as the major phase in all treated samples. Treated samples in general exhibited good leachability characteristics as well as chemical durability, except in the HCl solution. Microstructure and physical properties varied with the treatment condition. Fine and relatively high dense structures with desirable properties were obtained for samples treated by the TMP. For both processes, higher temperature treatments caused crystal growth and thus poor properties were attained. Good physical and mechanical properties achieved at 900-950 degrees C in this study imply the treated samples have attractive potential for engineering applications.  相似文献   

8.
ABSTRACT

Alkyd paint continues to be used indoors for application to wood trim, cabinet surfaces, and some kitchen and bathroom walls. Alkyd paint may represent a significant source of volatile organic compounds (VOCs) indoors because of the frequency of use and amount of surface painted. The U.S. Environmental Protection Agency (EPA) is conducting research to characterize VOC emissions from paint and to develop source emission models that can be used for exposure assessment and risk management. The technical approach for this research involves both analysis of the liquid paint to identify and quantify the VOC contents and dynamic small chamber emissions tests to characterize the VOC emissions after application. The predominant constituents of the primer and two alkyd paints selected for testing were straight-chain alkanes (C9–C12); C8–C9 aromatics were minor constituents. Branched chain alkanes were the predominant VOCs in a third paint. A series of tests were performed to evaluate factors that may affect emissions following application of the coatings. The type of substrate (glass, wallboard, or pine board) did not have a substantial impact on the emissions with respect to peak concentrations, the emissions profile, or the amount of VOC mass emitted from the paint. Peak concentrations of total volatile organic compounds (TVOCs) as high as 10,000 mg/m3 were measured during small chamber emissions tests at 0.5 air exchanges per hour (ACH). Over 90% of the VOCs were emitted from the primer and paints during the first 10 hr following application. Emissions were similar from paint applied to bare pine board, a primed board, or a board previously painted with the same paint. The impact of other variables, including film thickness, air velocity at the surface, and air-exchange rate (AER) were consistent with theoretical predictions for gas-phase, mass transfer-controlled emissions. In addition to the alkanes and aromatics, aldehydes were detected in the emissions during paint drying. Hexanal, the predominant aldehyde in the emissions, was not detected in the liquid paint and was apparently an oxidation product formed during drying. This paper summarizes the results of the product analyses and a series of small chamber emissions tests. It also describes the use of a mass balance approach to evaluate the impact of test variables and to assess the quality of the emissions data.  相似文献   

9.
If organic matter is burnt, the combustion of wood produces the highest amounts of polycyclic aromatic hydrocarbons (PAHs) compared with other fossil energy sources such as oil, coal, or gas. Emissions from wood combustion are increasingly of special interest due to the rising use of wood as a renewable energy source in residential heating in Europe. To the authors' knowledge, reproducible wood-specific PAH patterns in soot were identified for the first time by use of a sampling interval of only 5 min in this study. The short sampling interval was enabled by the very sensitive analytical method of gas chromatography–atmospheric pressure laser ionization–mass spectrometry (GC-APLI-MS) applied. The analysis of 40 PAH of soot from wood logs of spruce, pine, larch (softwood) and beech, birch, oak (hardwood), and wood pellets, as well as wood briquettes, showed 13.46–250.62 mg/kg for ∑40 PAH and 10.75–177.94 mg/kg for the U.S. Environmental Protection Agency PAH standard (without acenaphthylene and anthracene). Highest concentrations occurred in the samples from birch with bark, beech, and wood briquettes. Indeno[1,2,3-cd]pyrene, naphthalene, and alkylated naphthalenes were also detected. Significant concentrations of the very toxic dibenzopyrenes (up to 11.30 mg/kg) are reported. Softwood soot contained highest amounts of 2–4-ring PAH, followed by hardwood which is in accordance with the presence of highest amounts of abietic acid in softwood, a known precursor of retene and phenanthrene. PAH in soot from five spruce samples from different locations show a mean ∑40 PAH concentration of 13.46 mg/kg (n = 5, minimum 8.03, maximum 23.32 mg/kg, SD = 5.65) and exhibited a typical pattern that differed from all other wood soot samples. The distributions of alkylated naphthalenes of the spruce samples show a bell-shape distribution in contrast to the alkylated phenanthrenes/anthracenes of all samples (except the wood pellets), showing a slope distribution. The data indicate that wood-specific PAH patterns exist and under the applied conditions, spruce logs produced the least toxic soot.  相似文献   

10.
Principal component analyses (varimax rotation) were used to identify common sources of 30 target volatile organic compounds (VOCs) in residential outdoor, residential indoor and workplace microenvironment and personal 48-h exposure samples, as a component of the EXPOLIS-Helsinki study. Variability in VOC concentrations in residential outdoor microenvironments was dominated by compounds associated with long-range transport of pollutants, followed by traffic emissions, emissions from trees and product emissions. Variability in VOC concentrations in environmental tobacco smoke (ETS) free residential indoor environments was dominated by compounds associated with indoor cleaning products, followed by compounds associated with traffic emissions, long-range transport of pollutants and product emissions. Median indoor/outdoor ratios for compounds typically associated with traffic emissions and long-range transport of pollutants exceeded 1, in some cases quite considerably, indicating substantial indoor source contributions. Changes in the median indoor/outdoor ratios during different seasons reflected different seasonal ventilation patterns as increased ventilation led to dilution of those VOC compounds in the indoor environment that had indoor sources. Variability in workplace VOC concentrations was dominated by compounds associated with traffic emissions followed by product emissions, long-range transport and air fresheners. Variability in VOC concentrations in ETS free personal exposure samples was dominated by compounds associated with traffic emissions, followed by long-range transport, cleaning products and product emissions. VOC sources in personal exposure samples reflected the times spent in different microenvironments, and personal exposure samples were not adequately represented by any one microenvironment, demonstrating the need for personal exposure sampling.  相似文献   

11.
Volatile organic compounds (VOCs) in urban atmosphere of Hong Kong   总被引:21,自引:0,他引:21  
Lee SC  Chiu MY  Ho KF  Zou SC  Wang X 《Chemosphere》2002,48(3):375-382
The assessment of volatile organic compounds (VOCs) has become a major issue of air quality network monitoring in Hong Kong. This study is aimed to identify, quantify and characterize volatile organic compounds (VOCs) in different urban areas in Hong Kong. The spatial distribution, temporal variation as well as correlations of VOCs at five roadside sampling sites were discussed. Twelve VOCs were routinely detected in urban areas (Mong Kok, Kwai Chung, Yuen Long and Causeway Bay). The concentrations of VOCs ranged from undetectable to 1396 microg/m3. Among all of the VOC species, toluene has the highest concentration. Benzene, toluene, ethylbenzene and xylenes (BTEX) were the major constituents (more than 60% in composition of total VOC detected), mainly contributed from mobile sources. Similar to other Asian cities, the VOC levels measured in urban areas in Hong Kong were affected both by automobile exhaust and industrial emissions. High toluene to benzene ratios (average T/B ratio = 5) was also found in Hong Kong as in other Asian cities. In general, VOC concentrations in the winter were higher than those measured in the summer (winter to summer ratio > 1). As toluene and benzene were the major pollutants from vehicle exhausts, there is a necessity to tighten automobile emission standards in Hong Kong.  相似文献   

12.
In 1997, Homeswest in western Australia and Murdoch University developed a project to construct low-allergen houses (LAHs) in a newly developed suburb. Before the construction of LAHs, all potential volatile organic compound (VOC) emission materials used in LAHs are required to be measured to ensure that they are low total VOC (TVOC) emission materials. This program was developed based on this purpose. In recent times, the number of complaints about indoor air pollution caused by VOCs has increased. A number of surveys of indoor VOCs have indicated that many indoor materials contribute to indoor air pollution. Although some studies have been conducted on the characteristics of VOC emissions from adhesives, most of them were focused on VOC emissions from floor adhesives. Few measurements of VOC emissions from adhesives used for wood, fabrics, and leather are available. Furthermore, most research on VOC emissions from adhesives has been done in countries with cool climates, where ventilation rates in the indoor environment are lower than those in Mediterranean climates, due to energy conservation. VOCs emitted from adhesives have not been sufficiently researched to prepare an emission inventory to predict indoor air quality and to determine both exposure levels for the Australian population and the most appropriate strategies to reduce exposure. An environmental test chamber with controlled temperature, relative humidity, and airflow rate was used to evaluate emissions of TVOCs from three adhesives used frequently in Australia. The quantity of TVOC emissions was measured by a gas chromatography/flame ionization detector. The primary VOCs emitted from each adhesive were detected by gas chromatography/mass spectrometry. The temporal change of TVOC concentrations emitted from each adhesive was tested. A double-exponential equation was then developed to evaluate the characteristics of TVOC emissions from these three adhesives. With this double-exponential model, the physical processes of TVOC emissions can be explained, and a variety of emission parameters can be calculated. These emission parameters could be used to estimate real indoor TVOC concentrations in Mediterranean climates.  相似文献   

13.
To study the impact of emissions at an airport on local air quality, a measurement campaign at the Zurich airport was performed from 30 June 2004 to 15 July 2004. Measurements of NO, NO2, CO and CO2 were conducted with open path devices to determine real in-use emission indices of aircraft during idling. Additionally, air samples were taken to analyse the mixing ratios of volatile organic compounds (VOC). Temporal variations of VOC mixing ratios on the airport were investigated, while other air samples were taken in the plume of an aircraft during engine ignition. CO concentrations in the vicinity of the terminals were found to be highly dependent on aircraft movement, whereas NO concentrations were dominated by emissions from ground support vehicles. The measured emission indices for aircraft showed a strong dependence upon engine type. Our work also revealed differences from emission indices published in the emission data base of the International Civil Aviation Organisation. Among the VOC, reactive C2–C3 alkenes were found in significant amounts in the exhaust of an engine compared to ambient levels. Also, isoprene, a VOC commonly associated with biogenic emissions, was found in the exhaust, however it was not detected in refuelling emissions. The benzene to toluene ratio was used to discriminate exhaust from refuelling emission. In refuelling emissions, a ratio well below 1 was found, while for exhaust this ratio was usually about 1.7.  相似文献   

14.
Dairies are believed to be a major source of volatile organic compounds (VOC) in Central California, but few studies have characterized VOC emissions from these facilities. In this work, samples were collected from six sources of VOCs (Silage, Total Mixed Rations, Lagoons, Flushing Lanes, Open Lots and Bedding) at six dairies in Central California during 2006–2007 using emission isolation flux chambers and polished stainless steel canisters. Samples were analyzed by gas chromatography/mass spectrometry and gas chromatography/flame ionization detection. Forty-eight VOCs were identified and quantified in the samples, including alcohols, carbonyls, alkanes and aromatics. Silage and Total Mixed Rations are the dominant sources of VOCs tested, with ethanol as the major VOC present. Emissions from the remaining sources are two to three orders of magnitude smaller, with carbonyls and aromatics as the main components. The data suggest that animal feed rather than animal waste are the main source of non-enteric VOC emissions from dairies.  相似文献   

15.
Because volatile organic compounds (VOCs) are one of the main concerns during municipal solid waste (MSW) treatment, the release patterns and the environmental effects of VOCs were investigated during laboratory-scale aerobic biotreatments of MSW with continuous and intermittent negative ventilation. When the same airflow amounts were used, intermittent ventilation was found to reduce the total VOC emissions from continuous ventilation process by 28%. In this study, 23 types of volatile organic compounds were analyzed, of which butyraldehyde, ethanol, and butanone were emitted in the highest concentrations of 748, 372, and 260 mg/m3, respectively. During the aerobic biotreatment process, ketones, aldehydes, and alcohols were primarily released during the first 4 days, accounting for 86-98% of the total VOC emissions during this period. The emission concentrations of malodorous sulfide compounds displayed two peaks on day 4 and day 9, with the contribution to the total VOC emissions being enhanced from less than 10% to 76-83%. The release of terpenes and aromatics lasted for more than 10 days with no significant emission peaks and the proportions of those compounds in the total VOCs increased gradually, but no more than 50% even at the end of the process. Considering the strength of the odors, aldehydes were the predominant contributors at the beginning of the experiment, whereas malodorous sulfide compounds became the most odorous compound as the biological process continued. Most of the VOCs emitted at the concentrations beneath the level causing health threat to the workers.  相似文献   

16.
The emission profile of volatile organic compounds (VOC) and the ozone-forming potential (OP) of the exhaust gas of six in-use motorcycles (four 4-stroke- and two 2-stroke-engines) were determined. The motorcycles were tested on a chassis dynamometer in a real-world driving cycle. The analysis involved the C2–C12-hydrocarbons as well as the aldehydes and ketones. Additionally, the regulated THC and NOx emissions were measured according to the test procedure for type approval (ECE 40). Two vehicles did not fulfil the THC emission standard, whereas all vehicles met the requirements for NOx emission. The aromatic fuel components toluene and xylene, and the combustion products ethene and propene contributed most to the OP of the VOC emission. The highest OP was found with the 2-stroke engines. The VOC profile of the emissions varied with vehicle and driving conditions. The reactivity of the exhaust gas, defined as gram ozone per gram of non-methane organic gases (NMOG), increased with vehicle speed.  相似文献   

17.
Background and Aim An accurate estimation of biogenic emissions of VOC (volatile organic compounds) is necessary for better understanding a series of current environmental problems such as summertime smong and global climate change. However, very limited studies have been reported on such emissions in China. The aim of this paper is to present an estimate of biogenic VOC emissions during summertime in China, and discuss its uncertainties and potential areas for further investigations. Materials and Methods This study was mainly based on field data and related research available so far in China and abroad, including distributions of land use and vegetations, biomass densities and emission potentials. VOC were grouped into isoprene, monoterpenes and other VOC (OVOC). Emission potentials of forests were determined for 22 genera or species, and then assigned to 33 forest ecosystems. The NCEP/NCAR reanalysis database was used as standard environmental conditions. A typical summertime of July 1999 was chosen for detailed calculations. Results and Discussion The biogenic VOC emissions in China in July were estimated to be 2.3×1012gC, with 42% as isoprene, 19% as monoterpenes and 39% as OVOC. About 77.3% of the emissions are generated-from forests and woodlands. The averaged emission intensity was 4.11 mgC m−2 hr−1 for forests and 1.12 mgC m−2 hr−1 for all types of vegetations in China during the summertime. The uncertainty in the results arose from both the data and the assumptions used in the extrapolations. Generally, uncertainty in the field measurements is relatively small. A large part of the uncertainty mainly comes from the taxonomic method to assign emission potentials to unmeasured species, while the ARGR method serves to estimate leaf biomass and the emission algorithms to describe light and temperature dependence. Conclusions This study describes a picture of the biogenic VOC emissions during summertime in China. Due to the uneven spatial and temporal distributions, biogenic VOC emissions may play an important role in the tropospheric chemistry during summertime. Recommendations and Perspectives Further investigations are needed to reduce uncertainties involved in the related factors such as emission potentials, leaf biomass, species distribution as well as the mechanisms of the emission activities. Besides ground measurements, attention should also be placed on other techniques such as remotesensing and dynamic modeling. These new approaches, combined with ground measurements as basic database for calibration and evaluation, can hopefully provide more comprehensive information in the research of this field. Submission Editor: Prof. Dr. Gerhard Lammel (lammel@recetox.muni.cz)  相似文献   

18.
ABSTRACT

The concentrations of contaminants in the supply air of mechanically ventilated buildings may be altered by pollutant emissions from and interactions with duct materials. We measured the emission rate of volatile organic compounds (VOCs) and aldehydes from materials typically found in ventilation ducts. The emission rate of VOCs per exposed surface area of materials was found to be low for some duct liners, but high for duct sealing caulk and a neo-prene gasket. For a typical duct, the contribution to VOC concentrations is predicted to be only a few percent of common indoor levels. We exposed selected materials to ~100-ppb ozone and measured VOC emissions. Exposure to ozone increased the emission rates of aldehydes from a duct liner, duct sealing caulk, and neoprene gasket. The emission of aldehydes from these materials could increase indoor air concentrations by amounts that are as much as 20% of odor thresholds. We also measured the rate of ozone uptake on duct liners and galvanized sheet metal to predict how much ozone might be removed by a typical duct in ventilation systems. For exposure to a constant ozone mol fraction of 37 ppb, a lined duct would initially remove ~9% of the ozone, but over a period of 10 days the ozone removal efficiency would diminish to less than 4%. In an unlined duct, in which only galvanized sheet metal is exposed to the air-stream, the removal efficiency would be much lower, ~0.02%. Therefore, ducts in ventilation systems are unlikely to be a major sink for ozone.  相似文献   

19.
EPA Reference Method 25 for measurement of total gaseous nonmethane organics as carbon in source emissions was evaluated in the laboratory and through field testing. Laboratory evaluation included development and testing of a nonmethane organic analyzer. In addition, a series of tests was performed on the condensate trap recovery system. The tests involved evaluation of two different condensate trap recovery system designs. The first design was very similar to the Federal Register design and the second design was a modified system for minimizing interference from trapped carbon dioxide. Field testing of the method was performed at two different printing plants. Both plants used carbon bed adsorption for solvent recovery and control of VOC emissions. Samples were collected from the inlet and outlet streams of adsorption units at both plants. In addition to Method 25 samples, Method 18 samples were collected for analysis by gas chromatography with flame ionization detection. The results of all the laboratory and field test samples are described.  相似文献   

20.
We investigated variations in the relative sensitivity of surface ozone formation in summer to precursor species concentrations of volatile organic compounds (VOCs) and nitrogen oxides (NOx) as inferred from the ratio of the tropospheric columns of formaldehyde to nitrogen dioxide (the “Ratio”) from the Aura Ozone Monitoring Instrument (OMI). Our modeling study suggests that ozone formation decreases with reductions in VOCs at Ratios <1 and NOx at Ratios >2; both NOx and VOC reductions may decrease ozone formation for Ratios between 1 and 2. Using this criteria, the OMI data indicate that ozone formation became: 1. more sensitive to NOx over most of the United States from 2005 to 2007 because of the substantial decrease in NOx emissions, primarily from stationary sources, and the concomitant decrease in the tropospheric column of NO2, and 2. more sensitive to NOx with increasing temperature, in part because emissions of highly reactive, biogenic isoprene increase with temperature, thus increasing the total VOC reactivity. In cities with relatively low isoprene emissions (e.g., Chicago), the data clearly indicate that ozone formation became more sensitive to NOx from 2005 to 2007. In cities with relatively high isoprene emissions (e.g., Atlanta), we found that the increase in the Ratio due to decreasing NOx emissions was not obvious as this signal was convolved with variations in the Ratio associated with the temperature dependence of isoprene emissions and, consequently, the formaldehyde concentration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号