首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hourly concentrations of benzene, toluene, ethylbenzene, m,p-xylenes, and o-xylene (BTEX) plus CO, NOx, SO2 were monitored at roadsides simultaneously with the traffic volume during the dry season of 2004, in Hanoi, Vietnam. The selected three streets included Truong Chinh (TC) with high traffic volume, Dien Bien Phu (DBP) with low traffic volume, and Nguyen Trai (NT) with high traffic volume running through an industrial estate. BTEX were sampled by SKC charcoal tubes and analyzed by GC–FID. Geometric means of hourly benzene, toluene, ethylbenzene, m,p-xylenes and o-xylene are, respectively, 65, 62, 15, 43, and 22 μg m−3 in TC street; 30, 38, 9, 26, and 13 μg m−3 in DBP street; and 123, 87, 24, 56, and 30 μg m−3 in NT street. Levels of other gaseous pollutants including CO, NOx, and SO2, measured by automatic instruments, were low and not exceeding the Vietnam national ambient air quality standards. BTEX levels were comparatively analyzed for different downwind distances (3–50 m) from the street, between peak hours and off-peak hours, as well as between weekdays and weekend. Results of principal component analysis suggest that the gaseous pollutants are associated with different vehicle types.  相似文献   

2.
Atmospheric concentrations of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) were measured in southeastern Korea during the spring of 2002. During this period, severe Asian dust events (ADs) occurred throughout Korea. Total suspended particulates (TSP) of ADs (456.8 μg m−3) increased approximately 3.6-fold compared with non-Asian dust events (NADs; 128.5 μg m−3). However, the concentrations of PCDD/Fs (average concentration, 3.34 pg m−3) did not increase as much as TSP; there was not a significant difference in the concentrations of particle-bound PCDD/Fs collected between ADs (2.45 pg m−3) and NADs (2.05 pg m−3). Meanwhile, according to TSP levels, the concentrations during NADs were 2.8-fold higher than ADs (16.73 and 5.98 ng g−1-TSP, respectively). High TSP levels during sand storms without an increase in PCDD/Fs reflected an increase in coarse and accumulation mode particles. Gas/particle partitioning studies revealed the additional inputs of particulate matters to the air during ADs which did not relate with the increase of PCDD/Fs. Furthermore, emissions from ADs may consist of relatively complex atmospheric particles; back trajectories showed air masses moving at low altitudes over Korea, but there were no differences in PCDD/Fs or atmospheric pollutants regardless of air movements. The study area, which is located in southeastern Korea, might be affected by both marine and regional anthropogenic sources, which do not appear to cause clear differences in PCDD/F concentrations or congener profiles between different air trajectories.  相似文献   

3.
Industrialized waterways frequently contain nearshore hotspots of legacy polychlorinated biphenyl (PCB) contamination, with uncertain contribution to aquatic food web contamination. We evaluated the utility of estuarine forage fish as biosentinel indicators of local PCB contamination across multiple nearshore sites in San Francisco Bay. Topsmelt (Atherinops affinis) or Mississippi silverside (Menidia audens) contamination was compared between 12 targeted sites near historically polluted locations and 17 probabilistically chosen sites representative of ambient conditions. The average sum of 209 PCB congeners in fish from targeted stations (441 ± 432 ng g?1 wet weight, mean ± SD) was significantly higher than probabilistic stations (138 ± 94 ng g?1). Concentrations in both species were comparable to those of high lipid sport fish in the Bay, strongly correlated with spatial patterns in sediment contamination, and above selected literature thresholds for potential hazard to fish and wildlife. The highest concentrations were from targeted Central Bay locations, including Hunter’s Point Naval Shipyard (1347 ng g?1; topsmelt) and Stege Marsh (1337 ng g?1; silverside). Targeted sites exhibited increased abundance of lower chlorinated congeners, suggesting local source contributions, including Aroclor 1248. These findings indicate that current spatial patterns in PCB bioaccumulation correlate with historical sediment contamination due to industrial activity. They also demonstrate the utility of naturally occurring forage fish as biosentinels of localized PCB exposure.  相似文献   

4.
Chemical composition of precipitation was measured with wet-only samplers at a rural site at Bhubaneswar in eastern India during 1997–1998. All rain events were compared with trajectories and precipitation fields from the ECMWF. The pH and ionic concentrations were found to vary systematically with the origin of air and the amount of rainfall along the trajectory. A seasonal cycle for pH was found with a monthly median pH below 5.0 during October–December. The highest monthly median concentration of Ca2+ was found in May with 20 μmol l−1 and for SO42− in January with 52 μmol l−1. Samples with trajectories within 400 km from Bhubaneswar during the last 5 days were found to have a median pH slightly below 5.0 as an average. These samples also had the highest concentration for all measured ions, indicating large pollution sources within the region. Samples with continental origin showed a decrease of ∼70% in concentration if there had been rain during >50% of the last 5 days compared to rain during <50% of the last 5 days. High concentrations of Na+ and Cl were also found in continental samples. Resuspension of previously deposited sea salt is believed to be the reason. The data were compared with data from three other sites in western India and higher concentrations of almost all ions (NH4+ being the exception) compared to Bhubaneswar were found at the west coast in monsoon samples.  相似文献   

5.
Aerosol from the burning two types of sandalwood-based incense, Hsing Shan and Lao Shan, was analyzed to characterize the chemical profile of total particulate matter emitted. The total particulate matter (PM) mass emission factors were 46.3 ± 2.68 mg g?1 of Hsing Shan incense and 43.7 ± 1.08 mg g?1 of Lao Shan incense. Chemical analysis of emissions from the two types of incense revealed that of the 25 components in four groups characterized, anhydrosugars formed the major group, at 46.7–52.2% w/w of the identified particulate and 1078.3–1169.8 μg g?1 of incense, followed by inorganic salts at 30.4–31.8% w/w of identified particulate and 681.6–734.0 μg g?1 of incense, carboxylic acids at 12.0–17.1% w/w of the identified particulate and 268.6–392.8 μg g?1 of incense, and sugar alcohols at 4.44–5.38% w/w of the identified particulate and 102.3–120.6 μg g?1 of incense. More anhydrosugars and sugar alcohols were emitted from Lao Shan incense than from Hsing Shan incense whereas more carboxylic acids and organic salts were emitted from Hsing Shan than from Lao Shan. These differences were due to structural and functional differences in the young sandalwood used to make Hsing Shan and the aged sandalwood used to make Lao Shan. The anhydrosugar levoglucosan, used as a marker of biomass burning, was always the most abundant species in emitted PM for both incenses (Lao Shan 21.7 mg g?1 of PM and Hsing Shan 18.7 mg g?1). K+ and Cl? were the second most abundant components (K+ and Cl? were summed), accounting for 10.6 mg g?1 of Hsing Shan PM and 9.85 mg g?1 of Lao Shan PM. The most abundant carboxylic acids in the emissions were formic, acetic, succinic, glutaric and phthalic acid. The latter is a fragrance ingredient and a potential health hazard and was twice as prevalent in Lao Shan emissions. Xylitol was the most prevalent of the sugar alcohols at 35.7–36.6% w/w of total identified sugar alcohols. These abundant species are potential markers for incense burning. K+, levoglucosan, mannosan and xylitol are already reported in discriminator ratios for wood burning and it is proposed here that these can and should also apply to incense burning. The calculated discriminator ratios for two types of incense burning reported here are 0.229–0.288 for K/Levo, 12.5–13.5 for Levo/Manno, and 21.5–23.7 for the novel discriminator ratio Levo/Xylitol.  相似文献   

6.
This paper evaluates the role of Saharan dust advection in the exceeding of the PM10 thresholds in the city of Rome, Italy. To this purpose, a series of observations and model forecasts recorded in the year 2001 are analysed and discussed. Lidar profiles collected over 168 days of the year are employed to both assess the presence and magnitude of Saharan dust layers over the city and to evaluate the depth of the planetary boundary layer. Backtrajectories are used to verify the Saharan origin of the lidar-sounded air masses. Model predictions of the presence of Saharan dust over the area are employed to fill the time gaps between lidar observations. PM10 and carbon monoxide records of both a city background (Villa Ada) and a heavy traffic station (Magna Grecia) are cross-analysed with the dust events record and meteorological data. The analysis shows that: (1) Saharan dust was advected over Rome on about 30% of the days of 2001; (2) mean contribution of Saharan dust transport events to daily PM10 levels was of the order of 20 μg m−3; (3) at the urban background station of Villa Ada, the Saharan contribution caused the surpassing of the maximum number of days in excess of 50 μg m−3 fixed by the current legislation (35 per year). Conversely, at the heavy traffic station of Magna Grecia the Saharan contribution was not determinant at causing the observed large exceeding of that limit, as well as of the maximum yearly average of 40 μg m−3; (4) 25% of the Saharan advection days (of the order of 100/year at Rome) led to a PM10 increase >30 μg m−3, 4% caused an increase >50 μg m−3, thus leading on their own to surpassing the 50 μg m−3 daily limit.  相似文献   

7.
The emissions of VOC from freshly cut and shredded Grevillea robusta (Australian Silky Oak) leaves and wood have been measured. The VOC emissions from fresh leaf mulch and wood chips lasted typically for 30 and 20 h respectively, and consisted primarily of ethanol, (E)-2-hexenal, (Z)-3-hexen-1-ol and acetaldehyde. The integrated emissions of the VOCs were 0.38±0.04 g kg−1 from leaf mulch, and 0.022±0.003 g kg−1 from wood chips. These emissions represent a source of VOCs in urban and rural air that has previously been unquantified and is currently unaccounted for. These VOCs from leaf mulch and wood chips will contribute to both urban photochemistry and secondary organic aerosol formation. Any CH4 emissions from leaf mulch and wood chips were <1×10−11 g g dry mass−1 s−1.  相似文献   

8.
The aerosol scattering properties were investigated at two continental sites in northern China in 2004. Aerosol light scattering coefficient (σsp) at 525 nm, PM10, and aerosol mass scattering efficiencies (α) at Dunhuang had a mean value of 165.1±148.8 M m−1, 157.6±270.0 μg m−3, and 2.30±3.41 m2 g−1, respectively, while these values at Dongsheng were, respectively, 180.2±151.9 M m−1, 119.0±112.9 μg m−3, and 1.87±1.41 m2 g−1. There existed a seasonal variability of aerosol scattering properties. In spring, at Dunhuang PM10, σsp, and α were 184.1±211.548 μg m−3, 126.3±89.6 M m−1, and 1.05±0.97 m2 g−1, respectively, and these values at Dongsheng were 146.4±142.1 μg m−3, 183.4±81.7 M m−1, and 1.98±1.52 m2 g−1, respectively. However, in winter at Dunhuang PM10, σsp, and α were 158.1±261.4 μg m−3, 303.3±165.2 M m−1, and 3.17±1.93 m2 g−1, respectively, and these values at Dongsheng were 155.7±170.1 μg m−3, 304.4±158.1 M m−1, and 2.90±1.72 m2 g−1, respectively. σsp and α in winter were higher than that in spring at both the sites, which coincides with the characteristics of dust aerosol and pollution aerosol. Overall, the dominant aerosol types in spring and winter at both sites in northern China are dust aerosol and pollution aerosol, respectively.  相似文献   

9.
Multi-filter rotating shadowband radiometer (MFRSR) measurements have been carried out at Lampedusa (35.52°N, 12.63°E) in 1999, and continuously since 2001. This study describes the Saharan dust (SD) events at Lampedusa on the basis of daily average optical depth at 500 nm, τ, and Ångström exponent, α, derived from these observations. Back-trajectories ending at Lampedusa at 2000 and 4000 m altitude were calculated by means of the HYSPLIT model. SD events are identified as those for which the trajectories interact with the mixed layer in places where the surface wind exceeds 7 m s−1, or spend a large fraction of time over the Sahara. The SD days display values of αα⩽1, with Δα equal to the standard deviation of the daily α. Out of 911 days with cloud-free intervals, 233 (26%) are classified as SD, and correspond to 111 episodes of various duration, from 1 to 13 consecutive days. The occurrence of SD events is maximum in summer (33%), when also the largest seasonal average of τ (0.40) is measured, and minimum in winter (7%), when the smallest seasonal average of α (0.08) is found. SD days have been identified from the back-trajectories also in days lacking of observations, due to either cloudiness or measurement interruptions. The frequency of occurrence of SD days shows little change with respect to the cloud-free periods (24%). The seasonal distribution shows a peak in May (38%), followed by July (37%). Regions of SD production were derived from the HYSPLIT trajectories and NCEP-reanalysis surface winds. Finally, the MFRSR measurements at the solar zenith angle of 60° have been used to derive the single scattering albedo (SSA) for cases clearly dominated by dust (τ⩾0.40 and αα⩽0.5). The average SSA for the whole period is 0.77±0.04 at 415.6 nm and 0.94±0.04 at 868.7 nm.  相似文献   

10.
Environmental heavy metal contamination is a case of concern for both animal and human health. Studying the fate of metals in plant or animal tissues may provide information on pollution. In the present study, we investigated the possibility to follow the biological fate of chromium and platinum uptake in common garden snails (Helix aspersa), typically accumulating high concentrations of metals from their environment. Chromium and platinum were administered orally to snails in 5 groups (n = 25/group): control, food contaminated by ca. 2.5 μg g?1 and 19 μg g?1 chromium and 2.5 μg g?1 and 25 μg g?1 platinum, for 8 weeks. Following exposure, surviving snails were sacrificed, shell and remaining tissue investigated by ICP-MS, and shell, midgut gland and mantle by nano-secondary ion mass-spectrometry (Nano-SIMS). 12C14N-normalized platinum and 40Ca-normalized chromium measurements indicated highest enrichments in cellular vesicles of the midgut gland, and lower concentrations in mantle and shell, with significantly higher platinum and chromium concentrations in the 2 exposure groups vs. control (P < 0.05), with somewhat differing distribution patterns for chromium and platinum. Comparable results were obtained by ICP-MS, with both chromium and platinum fed snails showing drastically elevated concentrations of metals in shell (up to 78 and 122 μg g?1 dw platinum and chromium, respectively) and in other tissues (up to 200 and 1125 μg g?1 dw platinum and chromium, respectively). Nano-SIMS allowed for semi-quantitative comparison of metal fate in snail tissues, making this an interesting technique for future studies in the area of environmental pollution.  相似文献   

11.
A new algorithm has been derived for trajectory models to determine the transfer coefficient of each source along or adjacent to a trajectory and to calculate the concentrations of SO2, NOx, sulfate, nitrate, fine particulate matter (PM) and coarse PM at a receptor. The transfer coefficient tf (s m−1) is defined to be the ratio between the contributed concentration ΔC (μg m−3) to the receptor from a ground source and the emission rate of the source q (μg m−2 s−1) at a grid, i.e. tf≡ΔC/q. The model is developed by combining with a backward trajectory scheme and a circuit-type's parameterization. First, the transfer coefficients of grids along or adjacent a back-trajectory are calculated. Then, the contributed concentration of each emission grid is determined by multiplying its emission rate with the transfer coefficient of the grid. Finally, the concentration at the receptor is determined by the summation of all the contributed concentrations within the domain of simulation.  相似文献   

12.
We use a global 3-D atmospheric chemistry model (GEOS-Chem) to simulate surface and aircraft measurements of organic carbon (OC) aerosol over eastern North America during summer 2004 (ICARTT aircraft campaign), with the goal of evaluating the potential importance of a new secondary organic aerosol (SOA) formation pathway via irreversible uptake of dicarbonyl gases (glyoxal and methylglyoxal) by aqueous particles. Both dicarbonyls are predominantly produced in the atmosphere by isoprene, with minor contributions from other biogenic and anthropogenic precursors. Dicarbonyl SOA formation is represented by a reactive uptake coefficient γ = 2.9 × 10?3 and takes place mainly in clouds. Surface measurements of OC aerosol at the IMPROVE network in the eastern U.S. average 2.2 ± 0.7 μg C m?3 for July–August 2004 with little regional structure. The corresponding model concentration is 2.8 ± 0.8 μg C m?3, also with little regional structure due to compensating spatial patterns of biogenic, anthropogenic, and fire contributions. Aircraft measurements of water-soluble organic carbon (WSOC) aerosol average 2.2 ± 1.2 μg C m?3 in the boundary layer (<2 km) and 0.9 ± 0.8 μg C m?3 in the free troposphere (2–6 km), consistent with the model (2.0 ± 1.2 μg C m?3 in the boundary layer and 1.1 ± 1.0 μg C m?3 in the free troposphere). Source attribution for the WSOC aerosol in the model boundary layer is 27% anthropogenic, 18% fire, 28% semi-volatile SOA, and 27% dicarbonyl SOA. In the free troposphere it is 13% anthropogenic, 37% fire, 23% semi-volatile SOA, and 27% dicarbonyl SOA. Inclusion of dicarbonyl SOA doubles the SOA contribution to WSOC aerosol at all altitudes. Observed and simulated correlations of WSOC aerosol with other chemical variables measured aboard the aircraft suggest a major SOA source in the free troposphere compatible with the dicarbonyl mechanism.  相似文献   

13.
Currently, in operational modelling of NH3 deposition a fixed value of canopy resistance (Rc) is generally applied, irrespective of the plant species and NH3 concentration. This study determined the effect of NH3 concentration on deposition processes to individual moorland species. An innovative flux chamber system was used to provide accurate continuous measurements of NH3 deposition to Deschampsia cespitosa (L.) Beauv., Calluna vulgaris (L.) Hull, Eriophorum vaginatum L., Cladonia spp., Sphagnum spp., and Pleurozium schreberi (Brid.) Mitt. Measurements were conducted across a wide range of NH3 concentrations (1–140 μg m−3).NH3 concentration directly affects the deposition processes to the vegetation canopy, with Rc, and cuticular resistance (Rw) increasing with increasing NH3 concentration, for all the species and vegetation communities tested. For example, the Rc for C. vulgaris increased from 14 s m−1 at 2 μg m−3 to 112 s m−1 at 80 μg m−3. Diurnal variations in NH3 uptake were observed for higher plants, due to stomatal uptake; however, no diurnal variations were shown for non-stomatal plants. Rc for C. vulgaris at 80 μg m−3 was 66 and 112 s m−1 during day and night, respectively. Differences were found in NH3 deposition between plant species and vegetation communities: Sphagnum had the lowest Rc (3 s m−1 at 2 μg m−3 to 23 at 80 μg m−3), and D. cespitosa had the highest nighttime value (18 s m−1 at 2 μg m−3 to 197 s m−1 at 80 μg m−3).  相似文献   

14.
PM10 aerosols at McMurdo Station, Antarctica were sampled continuously during the austral summers of 1995–1996 and 1996–1997. PM10 (particles with aerodynamic diameters less than 10 μm) mass concentrations at Hut Point, located less than 1 km from downtown McMurdo, averaged 3.4 μg m−3, more than an order of magnitude lower than the USEPA annual average National Ambient Air Quality Standard (NAAQS) of 50 μg m−3. Concentrations of methanesulfonate and nitrate were similar to those measured at other Antarctic coastal sites. Non-sea-salt sulfate (NSS) concentrations on Ross Island were higher than those found at other coastal locations. The average elemental carbon concentration (129 ng m−3) downwind of the station was two orders of magnitude higher than those measured at remote coastal and inland Antarctic sites during summer. Average sulfur dioxide concentrations (746 ng m−3) were 3–44 times higher than those reported for coastal Antarctica. Concentrations of Pb and Zn were 17 and 46 times higher than those reported for the South Pole. A methanesulfonate to biogenic sulfate ratio (R) of 0.47 was derived that is consistent with the proposed temperature dependence of R.  相似文献   

15.
The exhaust emission of the polycyclic aromatic hydrocarbons (PAHs) considered toxic to human health were investigated on two spark ignition light duty vehicles, one being gasohol (Gasohol, in Brazil, is the generic denomination for mixtures of pure gasoline plus 20–25% of anhydrous ethyl alcohol fuel (AEAF).)-fuelled and the other a flexible-fuel vehicle fuelled with hydrated ethanol. The influence of fuel type and quality, aged lubricant oil type and use of fuel additives on the formation of these compounds was tested using standardized tests identical to US FTP-75 cycle. PAH sampling and chemical analysis followed the basic recommendations of method TO-13 (United States. Environmental Protection Agency, 1999. Compendium Method TO-13A – Determination of polycyclic Aromatic hydrocarbons (PAH) in Ambient Air Using Gas Chromatography/Mass Spectrometry (CG/MS). Center for environmental research information, Cincinnati, p. 78), with the necessary modification for this particular application.Results showed that the total PAH emission factor varied from 41.9 μg km?1 to 612 μg km?1 in the gasohol vehicle, and from 11.7 μg km?1 to 27.4 μg km?1 in the ethanol-fuelled vehicle, a significant difference in favor of the ethanol vehicle. Generally, emission of light molecular weight PAHs was predominant, while high molecular weights PAHs were not detected. In terms of benzo(a)pyrene toxicity equivalence, emission factors varied from 0.00984 μg TEQ km?1 to 4.61 μg TEQ km?1 for the gasohol vehicle and from 0.0117 μg TEQ km?1 to 0.0218 μg TEQ km?1 in the ethanol vehicle.For the gasohol vehicle, results showed that the use of fuel additive causes a significant increase in the emission of naphthalene and phenanthrene at a confidence level of 90% or higher; the use of rubber solvent on gasohol showed a reduction in the emission of naphthalene and phenanthrene at the same confidence level; the use of synthetic oil instead of mineral oil also contributed significantly to a decrease in the emission of naphthalene and fluorene. In relation to the ethanol vehicle, the same factors were tested and showed no statistically significant influence on PAH emission.  相似文献   

16.
Positive matrix factorization (PMF) was used to identify factors affecting fog formation in Kanpur during the ISRO-GBP land campaign-II (LC-II) in December 2004. PMF predicted factors were validated by contrasting the emission strength of sources in the foggy and clear periods, using a combination of potential source contribution function (PSCF) analysis and quantitative emission inventory information. A time series aerosol chemical data set of 29 days and 12 species was decomposed to identify 4-factors: Secondary species, Biomass burning, Dust and Sea salt. PMF predicted particle mass with a satisfactory goodness-of-fit (slope of 0.83 ± 0.17 and R2 of 0.8), and strong species within 11–12% relative standard deviation. Mean contributions of anthropogenic factors were significantly higher during the foggy period for secondary species (2.9 ± 0.3) and biomass burning (1.2 ± 0.09) compared to the clear period. Local sources contributing to aerosols that mediated fog events at Kanpur, based on emissions in a 200 km × 200 km area around Kanpur city were thermal power plants and transportation (SO2) and biofuel combustion (BC and OM). Regional scale sources influencing emissions during the foggy period, in probable source regions identified by PSCF included thermal power plants, transportation, brick kilns and biofuel combustion. While biofuel combustion and transportation are distributed area sources, individual point sources include coal-fired thermal power plants located in Aligarh, Delhi, Ghaziabad, Jhansi, Kanpur, Rae Bareli and Rupnagar and brick kilns located in Allahabad, Agra, Farrukhabad, Ghaziabad, Kanpur, Ludhiana, Lucknow and Rae Bareli. Additionally, in the foggy period, large areas of probable source regions lay outside India, implying the significance of aerosol incursion from outside India.  相似文献   

17.
Uptake of aromatic hydrocarbons (AH) by ice crystals during vapor deposit growth was investigated in a walk-in cold chamber at temperatures of 242, 251, and 260 K, respectively. Ice crystals were grown from ambient air in the presence of gaseous AH namely: benzene (C6H6), toluene (methylbenzene, C7H8), the C8H10 isomers ethylbenzene, o-, m-, p-xylene (dimethylbenzenes), the C9H12 isomers n-propylbenzene, 4-ethyltoluene, 1,3,5-trimethylbenzene (1,3,5-TMB), 1,2,4-trimethylbenzene (1,2,4-TMB), 1,2,3-trimethylbenzene (1,2,3-TMB), and the C10H14 compound tert.-butylbenzene. Gas-phase concentrations calculated at 295 K were 10.3–20.8 μg m−3. Uptake of AH was detected by analyzing vapor deposited ice with a very sensitive method composed of solid-phase micro-extraction (SPME), followed by gas chromatography/mass spectrometry (GC/MS).Ice crystal size was lower than 1 cm. At water vapor extents of 5.8, 6.0 and 8.1 g m−3, ice crystal shape changed with decreasing temperatures from a column at a temperature of 260 K, to a plate at 251 K, and to a dendrite at 242 K. Experimentally observed ice growth rates were between 3.3 and 13.3×10−3 g s−1 m−2 and decreased at lower temperatures and lower value of water vapor concentration. Predicted growth rates were mostly slightly higher.Benzene, toluene, ethylbenzene, and xylenes (BTEX) were not detected in ice above their detection limits (DLs) of 25 pg gice−1 (toluene, ethylbenzene, xylenes) and 125 pg gice−1 (benzene) over the entire temperature range. Median concentrations of n-propylbenzene, 4-ethyltoluene, 1,3,5-TMB, tert.-butylbenzene, 1,2,4-TMB, and 1,2,3-TMB were between 4 and 176 pg gice−1 at gas concentrations of 10.3–10.7 μg m−3 calculated at 295 K. Uptake coefficients (K) defined as the product of concentration of AH in ice and density of ice related to the product of their concentration in the gas phase and ice mass varied between 0.40 and 10.23. K increased with decreasing temperatures. Values of Gibbs energy (ΔG) were between −4.5 and 2.4 kJ mol−1 and decreased as temperatures were lowered. From the uptake experiments, the uptake enthalpy (ΔH) could be determined between −70.6 and −33.9 kJ mol−1. The uptake entropy (ΔS) was between −281.3 and −126.8 J mol−1 K−1. Values of ΔH and ΔS were rather similar for 4-ethlytoluene, 1,3,5-TMB and tert.-butylbenzene, whereas 1,2,3-TMB showed much higher values.  相似文献   

18.
The quality of an emission calculation model based on emission factors measured on roller test stands and statistical traffic data was evaluated using source strengths and emission factors calculated from real-world exhaust gas concentration differences measured upwind and downwind of a motorway in southwest Germany. Gaseous and particulate emissions were taken into account. Detailed traffic census data were taken during the measurements. The results were compared with findings of similar studies.The main conclusion is the underestimation of CO and NOx source strengths by the model. On the average, it amounts to 23% in case of CO and 17% for NOx. The latter underestimation results from an undervaluation by 22% of NOx emission factors of heavy-duty vehicles (HDVs). There are significant differences between source strengths on working days and weekends because of the different traffic split between light-duty vehicles (LDVs) and HDVs. The mean emission factors of all vehicles from measurements are 1.08 g km−1 veh−1 for NOx and 2.62 g km−1 veh−1 for CO. The model calculations give 0.92 g km−1 veh−1 for NOx and 2.14 g km−1 veh−1 for CO.The source strengths of 21 non-methane hydrocarbon (NMHC) compounds quantified are underestimated by the model. The ratio between the measured and model-calculated emissions ranges from 1.3 to 2.1 for BTX and up to 21 for 16 other NMHCs. The reason for the differences is the insufficient knowledge of NMHC emissions of road traffic.Particulate matter emissions are dominated by ultra-fine particles in the 10–40 nm range. As far as aerosols larger than 29 nm are concerned, 1.80×1014 particles km−1 veh−1 are determined for all vehicles, 1.22×1014 particles km−1 veh−1 and an aerosol volume of 0.03 cm3 km−1 veh−1 are measured for LDVs, and for HDVs 7.79×1014 particles km−1 veh−1 and 0.41 cm3 km−1 veh−1 are calculated. Traffic-induced turbulence has been identified to have a decisive influence on exhaust gas dispersion near the source.  相似文献   

19.
A dynamic soil enclosure was used to characterise monoterpene emissions from 3 soil depths within a Picea sitchensis (Sitka spruce) forest. In addition, a dynamic branch enclosure was used to provide comparative emissions data from foliage. In all cases, limonene and α-pinene dominated monoterpene soil emissions, whilst camphene, β-pinene and myrcene were also present in significant quantities. α-Phellandrene, 3-carene and α-terpinene were occasionally emitted in quantifiable amounts whilst cymene and cineole, although tentatively identified, were always non-quantifiable. Total daily mean monoterpene emission rates, normalised to 30°C, varied considerably between soil depths from 33.6 μg m−2 h−1 (range 28.3–38.4) for undisturbed soil, to 13.0 μg m−2 h−1 (8.97–16.4) with uppermost layer removed, to 199 μg m−2 h−1 (157–216) with partially decayed layer removed, suggesting that the surface needle litter was the most likely source of soil emissions to the atmosphere. Relative monoterpene ratios did not vary significantly between layers. Foliar monoterpenes exhibited a similar emission profile to soils with the exceptions of camphene and 3-carene whose contributions decreased and increased, respectively. Emission rates from foliage, normalised to 30°C were found to have a daily mean of 625 ng g−1 dw h−1 (299–1360). On a land area basis however, total soil emissions were demonstrated to be relatively insignificant to total emissions from the forest ecosystem.  相似文献   

20.
An 80,000-km durability test was performed on two engines using diesel and biodiesel (methyl ester of waste cooking oil) as fuel in order to examine emissions resulting from the use of biodiesel. The test biodiesel (B20) was blended with 80% diesel and 20% methyl ester derived from waste cooking oil. Emissions of regulated air pollutants, including CO, HC, NOx, particulate matter (PM) and polycyclic aromatic hydrocarbons (PAHs) were measured at 20,000-km intervals. The identical-model engines were installed on a standard dynamometer equipped with a dilution tunnel used to measure the pollutants. To simulate real-world driving conditions, emission measurements were made in accordance with the United States Environmental Protection Agency (USEPA) FTP transient cycle guidelines. At 0 km of the durability test, HC, CO and PM emission levels were lower for the B20 engine than those for diesel. After running for 20,000 km and longer, they were higher. However, the deterioration coefficients for these regulated air pollutants were not statistically higher than 1.0, implying that the emission factors do not increase significantly after 80,000 km of driving. Total (gaseous+particulate phase) PAH emission levels for both B20 and diesel decreased as the driving mileage accumulated. However, for the engine using B20 fuel, particulate PAH emissions increased as engine mileage increased. The average total PAH emission factors were 1097 and 1437 μg bhp h−1 for B20 and diesel, respectively. For B20, the benzo[a]pyrene equivalence emission factors were 0.77, 0.24, 0.20, 7.48, 5.43 and 14.1 μg bhp h−1 for 2-, 3-, 4-, 5-, 6-ringed and total PAHs. Results show that B20 use can reduce both PAH emission and its corresponding carcinogenic potency.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号