首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Although interest in particulate emissions has increased considerably during recent years, the subject of particulate matter (PM) emissions from small two-stroke engines used in road vehicles is still largely unexplored. This paper presents the results of an investigation, which examined the typical emission level and the typical characteristics of two-stroke PM, as well as the possible impact on the (urban) environment, all in comparison to diesel engines. Attention was also paid to the possible problems concerning the measurement of two-stroke PM and the possibilities to add a PM requirement to the moped type approval procedure. It is demonstrated that despite the significant PM emission levels of current two wheelers, particle characteristics are different compared to diesel exhaust PM and hence following a diesel-like procedure to quantify particle emissions may not be the indicated approach. Hence, based on the experimental evidence and the foreseen technology developments, recommended steps forward are proposed, taking into account the need for efficient regulation of PM and the particularities of the specific vehicle technology.  相似文献   

2.
Small utility engines represent an important contribution to the emissions inventory and have been subjected to increasingly stringent regulations in recent years. For this project, a Tanaka two-stroke engine was tested in its original condition and with a modified fuel/oil injection system. The modified fuel/oil injection system applied to the Tanaka two-stroke engine resulted in significant emissions reductions of approximately 52% for carbon monoxide (CO), 70% for total hydrocarbons (THC), 70% for particulate matter (PM), and 67% for the regulated THC + nitrogen oxides metric. This technology met the California Air Resources Board's 2000 model-year regulations for all pollutants, with the exception of slightly higher PM emissions. Two additional two-stroke engines were tested under a new condition and after at least 100 hr of use to examine the effects of deterioration on in-use, two-stroke engines. For one engine, CO and PM emissions more than tripled after 162 hr of operation in the field, with smaller increases also observed for THC (20%). For the second engine, significant repairs were required throughout the 100 operating hours, which counteracted the effects of the emissions deterioration and resulted in lower CO and THC emissions.  相似文献   

3.
Abstract

In Taiwan, a continuous increase in the number of motorcycles has made exhaust pollution one of the major emission sources of air pollutants. The regular testing program carried out by the Republic of China Environmental Protection Agency was designed to reduce air pollutant emissions by enhancing maintenance and repair. During the execution period, abundant testing results were accumulated to discuss pollutant emissions from motorcycles. Exhaust testing data of motorcycles in Taipei City from 1996 to 2005 were chosen as the basic data to survey changes in motorcycle exhaust. Effects of motorcycle age and mileage on exhaust pollution were studied. The introduction of advanced emission standards enhances the elimination of high-emitting motorcycles. The testing data indicate that the testing rate rose from approximately 50 to 70% and the failure rate changed from approximately 15 to 10%. The operation cycles of two-stroke motorcycles make them high-emitting vehicles. Concentrations of carbon monoxide and hydrocarbons are higher in two-stroke motorcycle exhaust than that in four-stroke motorcycles. In contrast, the concentration of carbon dioxide produced from complete oxidation processes is lower in exhaust from two-stroke motorcycles. Therefore, failure rates of two-stroke motorcycles are higher than those of four-stroke motorcycles and were also observed to deactivate more easily. On the basis of analytical results of testing data, we found that failure rates show a gradually increasing trend for motorcycles older than 3 yr or used for mileages greater than 10,000 km, and failure rates are highly correlated to the age/mileage of motorcycles. We reason that the accumulation of age or mileage means accumulating usage time of engines and emission control systems. Concentrations of pollutant emissions would increase because of engine wear and emission control system deactivation. After discussing changes of failure rates and pollutant emissions, some suggestions are proposed to improve the testing rate and effectiveness of regular testing.  相似文献   

4.
Variability refers to real differences in emissions among multiple emission sources at any given time or over time for any individual emission source. Variability in emissions can be attributed to variation in fuel or feedstock composition, ambient temperature, design, maintenance, or operation. Uncertainty refers to lack of knowledge regarding the true value of emissions. Sources of uncertainty include small sample sizes, bias or imprecision in measurements, nonrepresentativeness, or lack of data. Quantitative methods for characterizing both variability and uncertainty are demonstrated and applied to case studies of emission factors for lawn and garden (L&G) equipment engines. Variability was quantified using empirical and parametric distributions. Bootstrap simulation was used to characterize confidence intervals for the fitted distributions. The 95% confidence intervals for the mean grams per brake horsepower/hour (g/hp-hr) emission factors for two-stroke engine total hydrocarbon (THC) and NOx emissions were from -30 to +41% and from -45 to +75%, respectively. The confidence intervals for four-stroke engines were from -33 to +46% for THCs and from -27 to +35% for NOx. These quantitative measures of uncertainty convey information regarding the quality of the emission factors and serve as a basis for calculation of uncertainty in emission inventories (EIs).  相似文献   

5.
Abstract

A fuel-based methodology for calculating motor vehicle emission inventories is presented. In the fuel-based method, emission factors are normalized to fuel consumption and expressed as grams of pollutant emitted per gallon of gasoline burned. Fleet-average emission factors are calculated from the measured on-road emissions of a large, random sample of vehicles. Gasoline use is known at the state level from sales tax data, and may be disaggregated to individual air basins. A fuel-based motor vehicle CO inventory was calculated for the South Coast Air Basin in California for summer 1991. Emission factors were calculated from remote sensing measurements of more than 70,000 in-use vehicles. Stabilized exhaust emissions of CO were estimated to be 4400 tons/day for cars and 1500 tons/day for light-duty and medium- duty trucks, with an estimated uncertainty of ±20% for cars and ±30% for trucks. Total motor vehicle CO emissions, including incremental start emissions and emissions from heavy-duty vehicles were estimated to be 7900 tons/day. Fuelbased inventory estimates were greater than those of California's MVEI 7F model by factors of 2.2 for cars and 2.6 for trucks. A draft version of California's MVEI 7G model, which includes increased contributions from high-emitting vehicles and off-cycle emissions, predicted CO emissions which closely matched the fuel-based inventory. An analysis of CO mass emissions as a function of vehicle age revealed that cars and trucks which were ten or more years old were responsible for 58% of stabilized exhaust CO emissions from all cars and trucks.  相似文献   

6.
Abstract

Variability refers to real differences in emissions among multiple emission sources at any given time or over time for any individual emission source. Variability in emissions can be attributed to variation in fuel or feedstock composition, ambient temperature, design, maintenance, or operation. Uncertainty refers to lack of knowledge regarding the true value of emissions. Sources of uncertainty include small sample sizes, bias or imprecision in measurements, nonrepresentativeness, or lack of data. Quantitative methods for characterizing both variability and uncertainty are demonstrated and applied to case studies of emission factors for lawn and garden (L&G) equipment engines. Variability was quantified using empirical and parametric distributions. Bootstrap simulation was used to characterize confidence intervals for the fitted distributions. The 95% confidence intervals for the mean grams per brake horsepower/hour (g/hp-hr) emission factors for two-stroke engine total hydrocarbon (THC) and NOx emissions were from -30 to +41% and from -45 to +75%, respectively. The confidence intervals for four-stroke engines were from -33 to +46% for THCs and from -27 to +35% for NOx. These quantitative measures of uncertainty convey information regarding the quality of the emission factors and serve as a basis for calculation of uncertainty in emission inventories (Els).  相似文献   

7.
An important marine pollution issue identified by the International Maritime Organization (IMO) is NOx emissions; however, the stipulated method for determining the NOx certification value does not reflect the actual high emission factors of slow-speed two-stroke diesel engines over long-term slow steaming. In this study, an accurate method is presented for calculating the NOx emission factors and total amount of NOx emissions by using the actual power probabilities of the diesel engines in four types of bulk carriers. The proposed method is suitable for all types and purposes of diesel engines, is not restricted to any operating modes, and is highly accurate. Moreover, it is recommended that the IMO-stipulated certification value calculation method be modified accordingly to genuinely reduce the amount of NOx emissions. The successful achievement of this level of reduction will help improve the air quality, especially in coastal and port areas, and the health of local residents.

Implications: As per the IMO, the NOx emission certification value of marine diesel engines having a rated power over 130 kW must be obtained using specified weighting factor (WF)-based calculation. However, this calculation fails to represent the current actual situation. Effective emission reductions of 6.91% (at sea) and 31.9% (in ports) were achieved using a mathematical model of power probability functions. Thus, we strongly recommend amending the certification value of NOx Technical Code 2008 (NTC 2008) by removing the WF constraints, such that the NOx emissions of diesel engines is lower than the Tier-limits at any load level to obtain genuine NOx emission reductions.  相似文献   


8.
It is important to establish a reliable regional emission inventory of sulfur as a function of time when assessing the possible effects of global change and acid rain. This study developed a database of annual estimates of national sulfur emissions from 1850 to 1990. A common methodology was applied across all years and countries allowing for global totals to be produced by adding estimates from all countries. The consistent approach facilitates the modification of the database and the observation of changes at national, regional, or global levels. The emission estimates were based on net production (i.e., production plus imports minus exports), sulfur content, and sulfur retention for each country's production activities. Because the emission estimates were based on the above considerations, our database offers an opportunity to independently compare our results with those estimates based on individual country estimates. Fine temporal resolution clearly shows emission changes associated with specific historical events (e.g., wars, depressions, etc.) on a regional, national, or global basis. The spatial pattern of emissions shows that the US, the USSR, and China were the main sulfur emitters (i.e., approximately 50% of the total) in the world in 1990. The USSR and the US appear to have stabilized their sulfur emissions over the past 20 yr, and the recent increases in global sulfur emissions are linked to the rapid increases in emissions from China. Sulfur emissions have been reduced in some cases by switching from high- to low-sulfur coals. Flue gas desulfurization (FGD) has apparently made important contributions to emission reductions in only a few countries, such as Germany.  相似文献   

9.
Vehicular air pollution is common in growing metropolitan areas throughout the world. Vehicular emissions of fine particles are particularly harmful because they occur near ground level, close to where people live and work. Two-stroke engines represented an important contribution to the motor vehicle emissions where they constitute approximately half of the total vehicle fleet in Dhaka city. Two-stroke engines have lower fuel efficiency than four-stroke engines, and they emit as much of an order of magnitude and more particulate matter (PM) than four-stroke engines of similar size. To eliminate their impact on air quality, the government of Bangladesh promulgated an order banning all two-stroke engines from the roads in Dhaka starting on December 31, 2002. The effect of the banning of two-stroke engines on airborne PM was studied at the Farm Gate air quality-monitoring station in Dhaka (capital of Bangladesh), a hot spot with very high-pollutant concentrations because of its proximity to major roadways. The samples were collected using a "Gent" stacked filter unit in two fractions of 0-2.2 microm and 2.2-10 microm sizes. Samples of fine and coarse fractions of airborne PM collected from 2000 to 2004 were studied. It has been found that the fine PM and black carbon concentrations decreased from the previous years because of the banning of two-stroke engine baby taxies.  相似文献   

10.
In this study, the nitrogen oxide (NOx) emission factors and total NOx emissions of two groups of post-Panamax container ships operating on a long-term slow-steaming basis along Euro–Asian routes were calculated using both the probability density function of engine power levels and the NOx emission function. The main engines of the five sister ships in Group I satisfied the Tier I emission limit stipulated in MARPOL (International Convention for the Prevention of Pollution from Ships) Annex VI, and those in Group II satisfied the Tier II limit. The calculated NOx emission factors of the Group I and Group II ships were 14.73 and 17.85 g/kWhr, respectively. The total NOx emissions of the Group II ships were determined to be 4.4% greater than those of the Group I ships. When the Tier II certification value was used to calculate the average total NOx emissions of Group II engines, the result was lower than the actual value by 21.9%. Although fuel consumption and carbon dioxide (CO2) emissions were increased by 1.76% because of slow steaming, the NOx emissions were markedly reduced by 17.2%. The proposed method is more effective and accurate than the NOx Technical Code 2008. Furthermore, it can be more appropriately applied to determine the NOx emissions of international shipping inventory.

Implications: The usage of operating power probability density function of diesel engines as the weighting factor and the NOx emission function obtained from test bed for calculating NOx emissions is more accurate and practical. The proposed method is suitable for all types and purposes of diesel engines, irrespective of their operating power level. The method can be used to effectively determine the NOx emissions of international shipping and inventory applications and should be considered in determining the carbon tax to be imposed in the future.  相似文献   


11.
ABSTRACT

Idle emissions of total hydrocarbon (THC), CO, NOx, and particulate matter (PM) were measured from 24 heavy-duty diesel-fueled (12 trucks and 12 buses) and 4 heavy-duty compressed natural gas (CNG)-fueled vehicles. The volatile organic fraction (VOF) of PM and aldehyde emissions were also measured for many of the diesel vehicles. Experiments were conducted at 1609 m above sea level using a full exhaust flow dilution tunnel method identical to that used for heavy-duty engine Federal Test Procedure (FTP) testing. Diesel trucks averaged 0.170 g/min THC, 1.183 g/min CO, 1.416 g/min NOx, and 0.030 g/min PM. Diesel buses averaged 0.137 g/min THC, 1.326 g/min CO, 2.015 g/min NOx, and 0.048 g/min PM.

Results are compared to idle emission factors from the MOBILE5 and PART5 inventory models. The models significantly (45-75%) overestimate emissions of THC and CO in comparison with results measured from the fleet of vehicles examined in this study. Measured NOx emissions were significantly higher (30-100%) than model predictions. For the pre-1999 (pre-consent decree) truck engines examined in this study, idle NOx emissions increased with Health and Environment; June 30, 1999 (available from the authors).  相似文献   

12.
This paper highlights the effect of emissions regulations on in-use emissions from heavy-duty vehicles powered by different model year engines. More importantly, fuel economy data for pre- and post-consent decree engines are compared.The objective of this study was to determine the changes in brake-specific emissions of NOx as a result of emission regulations, and to highlight the effect these have had on brake-specific CO2 emission; hence, fuel consumption. For this study, in-use, on-road emission measurements were collected. Test vehicles were instrumented with a portable on-board tailpipe emissions measurement system, WVU's Mobile Emissions Measurement System, and were tested on specific routes, which included a mix of highway and city driving patterns, in order to collect engine operating conditions, vehicle speed, and in-use emission rates of CO2 and NOx. Comparison of on-road in-use emissions data suggests NOx reductions as high as 80% and 45% compared to the US Federal Test Procedure and Not-to-Exceed standards for model year 1995–2002. However, the results indicate that the fuel consumption; hence, CO2 emissions increased by approximately 10% over the same period, when the engines were operating in the Not-to-Exceed region.  相似文献   

13.
Lu Y  Huang Y  Zou J  Zheng X 《Chemosphere》2006,65(11):1915-1924
Fertilized agricultural soils are a major anthropogenic source of atmospheric N2O. A credible national inventory of agricultural N2O emission would benefit its global strength estimate. We compiled a worldwide database of N2O emissions from fertilized fields that were consecutively measured for more than or close to one year. Both nitrogen input (N) and precipitation (P) were found to be largely responsible for temporal and spatial variabilities in annual N2O fluxes (N2O–N). Thus, we established an empirical model (N2O–N = 1.49 P + 0.0186 P · N), in which both emission factor and background emission for N2O were rectified by precipitation. In this model, annual N2O emission consists of a background emission of 1.49 P and a fertilizer-induced emission of 0.0186 P · N. We used this model to develop a spatial inventory at the 10 × 10 km scale of direct N2O emissions from agriculture in China. N2O emissions from rice paddies were separately quantified using a cropping-specific emission factor. Annual fertilizer-induced N2O emissions amounted to 198.89 Gg N2O–N in 1997, consisting of 18.50 Gg N2O–N from rice paddies and 180.39 Gg N2O–N from fertilized uplands. Annual background emissions and total emissions of N2O from agriculture were estimated to be 92.78 Gg N2O–N and 291.67 Gg N2O–N, respectively. The annual direct N2O emission accounted for 0.92% of the applied N with an uncertainty of 29%. The highest N2O fluxes occurred in East China as compared with the least fluxes in West China.  相似文献   

14.
Abstract

Large-scale studies like the Southeast Michigan Ozone Study (SEMOS) have focused attention on quantifying and spedating inventories for volatile organic compounds (VOCs). One approach for evaluating the accuracy of a VOC emission inventory is the development of a chemical mass balance (CMB) receptor model for ambient non-methane organic compound (NMOC) measurements. CMB evaluations of ambient hydrocarbon data provide a sample-specific allocation of emissions to individual source categories. This study summarizes the results of an application of the CMB model to the NMOC data from the SEMOS study. Comparison of CMB results with emission inventory values for the Detroit area show that vehicle emissions are well represented by the inventory, as are architectural coatings and coke ovens. Estimated emissions from petroleum refineries and graphic arts industries are much lower in the inventory than determined from the receptor allocation. Under-reporting of fugitive VOC emissions from petroleum refineries is an ongoing problem. Emissions from graphic arts industries are underestimated in the inventory partly because of the broad characterization of the emission factor (i.e., mass emitted/capita), which may be less useful when specific locations and days are under consideration. This study also demonstrates the effectiveness of the CMB approach when used prospectively to track the implementation of emission control strategies. While vehicle emission concentrations were unchanged from 1988 to 1993, measurement-based CMB results suggest a decrease in evaporative emissions during this time period resulting from Reid vapor pressure (RVP) reductions (from 11.0 psi in 1988 to 8.6 psi in 1993) and fleet turnover. Changes in emissions from coke plants and petroleum refineries were also seen in the CMB allocations for these sources.  相似文献   

15.
Since current estimates of hexachlorobenzene (HCB), polychlorinated biphenyls (PCB), dioxins (PCDD) and furans (PCDF) from ships are based on a relatively limited and old data set, an update of these emission factors has been outlined as a target towards improved Swedish emission inventories. Consequently, a comprehensive study was undertaken focusing on these emissions from three different ships during December 2003 to March 2004. Analyses were performed on 12 exhaust samples, three fuel oil samples and three lubricating oil samples from a representative selection of diesel engine models, fuel types and during different “real-world” operating conditions.The determined emissions corresponded reasonably well with previous measurements. The data suggest however that previous PCDD/PCDF emission factors are somewhat higher than those measured here. As expected the greatest emissions were observed during main engine start-up periods and for engines using heavier fuel oils. Total emissions for 2002, using revised emission factors, have been calculated based on Swedish sold marine fuels and also for geographical areas of national importance. In terms of their toxic equivalence (WHO-TEQ), the PCDD/PCDF emissions from ships using Swedish fuels are small (0.37–0.85 g TEQ) in comparison to recent estimates for the national total (ca. 45 g TEQ). Emissions from other land-based diesel engines (road vehicles, off-road machinery, military vehicles and locomotives) are estimated to contribute a further 0.18–0.42 g TEQ. Similarly, HCB and PCB emissions from these sources are small compared to 1995 national emission inventories.  相似文献   

16.
The aerosol in a non-industrial town normally is dominated by emissions from vehicles. Whereas gasoline-powered cars normally only emit a small amount of particulates, the emission by diesel-powered cars is considerable. The aerosol particles produced by diesel engines consist of graphitic carbon (GC) with attached hydrocarbons (HCs) including also polyaromatic HCs. Therefore the diesel particles can be carcinogenic. Besides diesel vehicles, all other combustion processes are also a source for GC; thus source apportionment of diesel emissions to the GC in the town is difficult.A direct apportionment of diesel emissions has been made possible by marking all the diesel fuel used by the vehicles in Vienna by a normally not occurring and easily detectable substance. All emitted diesel particles thus were marked with the tracer and by analyzing the atmospheric samples for the marking substance we found that the mass concentrations of diesel particles in the atmosphere varied between 5 and 23 μg m−3. Busy streets and calm residential areas show less difference in mass concentration than expected. The deposition of diesel particles on the ground has been determined by collecting samples from the road surface. The concentration of the marking substance was below the detection limit before the marking period and a year after the period. During the period when marked diesel fuel was used, the concentrations of the diesel particles settling to the ground was 0.012–0.07 g g−1 of collected dust.A positive correlation between the diesel vehicle density and the sampled mass of diesel vehicles exists. In Vienna we have a background diesel particle concentration of 11 μg m−3. This value increases by 5.5 μg m−3 per 500 diesel vehicles h−1 passing near the sampling location.The mass fraction of diesel particles of the total aerosol mass varied between 12.2 and 33%; the higher values were found in more remote areas, since diesel particles apparently diffuse easily.Estimates of diesel particle concentration by emission inventory or by using lead concentrations as an indicator for vehicle emissions gave similar values to those obtained in this study.Using available cancer risk data and diesel particle concentration found in this study, 1–2.6 additional lung cancers per 100,000 persons yr−1 breathing diesel emissions in the measured concentration the whole lifetime can be expected.  相似文献   

17.
Societal and governmental pressures to reduce diesel exhaust emissions are reflected in the existing and projected future heavy-duty certification standards of these emissions. Various factors affect the amount of emissions produced by a heterogeneous charge diesel engine in any given situation, but these are poorly quantified in the existing literature. The parameters that most heavily affect the emissions from compression ignition engine-powered vehicles include vehicle class and weight, driving cycle, vehicle vocation, fuel type, engine exhaust aftertreatment, vehicle age, and the terrain traveled. In addition, engine control effects (such as injection timing strategies) on measured emissions can be significant. Knowing the effect of each aspect of engine and vehicle operation on the emissions from diesel engines is useful in determining methods for reducing these emissions and in assessing the need for improvement in inventory models. The effects of each of these aspects have been quantified in this paper to provide an estimate of the impact each one has on the emissions of diesel engines.  相似文献   

18.
A sample of eight private gasoline and diesel conventional light-duty vehicles (LDVs) in use with various ages, carrying a load of 460 kg, were tested on a representative trip in the traffic flow of the city of Blida to obtain emission factors representing the actual use conditions of Algerian LDVs. The gas sampling system (mini-constant volume sampling) as well as the analyzers are carried on-board the vehicle. Around 55 tests were conducted during 3 months covering more than 480 km under various real driving conditions. The mean speed downtown is about 16.1 km/hr with a rather low acceleration, an average of 0.60 m/sec2. For each test, kinematics are recorded as well as the analysis of the four emitted pollutants carbon dioxide, carbon monoxide, oxides of nitrogen, and total hydrocarbons. Emission factors were evaluated according to speed for each category of gasoline and diesel engines. The influence of some parameters such as cold/hot start, age of vehicle and its state of maintenance are discussed. Results are compared with the European database ARTEMIS for comparable vehicles. These measurements contribute to the development of unit emission of the vehicles used in Algeria, which are necessary for the calculation of emission inventory of pollutants and greenhouse gases from the road transportation sector. The unit emissions constitute a tool of decisionmaking aid regarding the conception of new regulations of vehicle control and inspection in Algeria and even in similar developing countries.  相似文献   

19.
The objective of this paper is to develop and demonstrate a fuel-based approach for emissions factor estimation for highway paving construction equipment in China for better accuracy. A highway construction site in Chengdu was selected for this study with NO emissions being characterized and demonstrated. Four commonly used paving equipment, i.e., three rollers and one paver were selected in this study. A portable emission measurement system (PEMS) was developed and used for emission measurements of selected equipment during real–world highway construction duties. Three duty modes were defined to characterize the NO emissions, i.e., idling, moving, and working. In order to develop a representative emission factor for these highway construction equipment, composite emission factors were estimated using modal emission rates and the corresponding modal durations in the process of typical construction duties. Depending on duty mode and equipment type, NO emission rate ranged from 2.6–63.7mg/s and 6.0–55.6g/kg–fuel with the fuel consumption ranging from 0.31–4.52 g/s correspondingly. The NO composite emission factor was estimated to be 9–41mg/s with the single-drum roller being the highest and double-drum roller being the lowest and 6–30g/kg-fuel with the pneumatic tire roller being the highest while the double-drum roller being the lowest. For the paver, both time-based and fuel consumption-based NO composite emission rates are higher than all of the rollers with 56mg/s and 30g/kg-fuel, respectively. In terms of time–based quantity, the working mode contributes more than the other modes with idling being the least for both emissions and fuel consumption. In contrast, the fuel-based emission rate appears to have less variability in emissions. Thus, in order to estimate emission factors for emission inventory development, the fuel-based emission factor may be selected for better accuracy.

Implications: The fuel-based composite emissions factors will be less variable and more accurate than time-based emission factors. As a consequence, emissions inventory developed using this approach will be more accurate and practical.  相似文献   


20.
Exhaust emissions of seventeen 2,3,7,8-substituted polychlorinated dibenzo-p-dioxin/furan (PCDD/F) congeners, tetra-octa PCDD/F homologues, 12 WHO 2005 polychlorinated biphenyl (PCB) congeners, mono-nona chlorinated biphenyl homologues, and 19 polycyclic aromatic hydrocarbons (PAHs) from three legacy diesel engines were investigated. The three engines tested were a 1985 model year GM 6.2 J-series engine, a 1987 model year Detroit Diesel Corporation 6V92 engine, and a 1993 model year Cummins L10 engine. Results were compared to United States’ mobile source inventory for on-road diesel engines, as well as historic and modern diesel engine emission values. The test fuel contained chlorine at 9.8 ppm which is 1.5 orders of magnitude above what is found in current diesel fuel and 3900 ppm sulfur to simulate fuels that would have been available when these engines were produced. Results indicate PCDD/F emissions of 13.1, 7.1, and 13.6 pg International Toxic Equivalency (I-TEQ) L−1 fuel consumed for the three engines respectively, where non-detects are equal to zero. This compares with a United States’ mobile source on-road diesel engine inventory value of 946 pg I-TEQ L−1 fuel consumed and 1.28 pg I-TEQ L−1 fuel consumed for modern engines equipped with a catalyzed diesel particle filter and urea selective catalytic reduction. PCB emissions are 2 orders of magnitude greater than modern diesel engines. PAH results are representative of engines from this era based on historical values and are 3-4 orders of magnitude greater than modern diesel engines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号