首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The objective of the study was to quantify the concentration and emission levels of sulfuric odorous compounds emitted from pig-feeding operations. Five types of pig-housing rooms were studied: gestation, farrowing, nursery, growing and fattening rooms. The concentration range of sulfuric odorous compounds in these pig-housing rooms were 30–200 ppb for hydrogen sulfide (H2S), 2.5–20 ppb for methyl mercaptan (CH3SH), 1.5–12 ppb for dimethyl sulfide (DMS; CH3SCH3) and 0.5–7 ppb for dimethyl disulfide (DMDS; CH3S2CH3), respectively. The emission rates of H2S, CH3SH, DMS and DMDS were estimated by multiplying the average concentration (mg m−3) measured near the air outlet by the mean ventilation rate (m3 h−1) and expressed either per area (mg m−2 h−1) or animal unit (AU; liveweight of the pig, 500 kg) (mg pig−1 h−1). As a result, the emission rates of H2S, CH3SH, DMS and DMDS in the pig-housing rooms were 14–64, 0.8–7.3, 0.4–3.4 and 0.2–1.9 mg m−2 h−1, respectively, based on pig's activity space and 310–723, 18–80, 9–39 and 5–22 mg AU−1 h−1, respectively, based on pig's liveweight, which indicates that their emission rates were similar, whether based upon the pig's activity space or liveweight. In conclusion, the concentrations and emission rates of H2S were highest in the fattening room followed by the growing, nursery, farrowing and gestation rooms whereas those of CH3SH, DMS and DMDS concentrations were largest in the growing room followed by the nursery, gestation and farrowing rooms.  相似文献   

2.
Volatile organic sulfur compounds in a stratified lake   总被引:3,自引:0,他引:3  
Hu H  Mylon SE  Benoit G 《Chemosphere》2007,67(5):911-919
Three volatile organic sulfur compounds (VOSCs), dimethyl sulfide (DMS), carbon disulfide (CS(2)), and dimethyl disulfide (DMDS), were detected in the stratified water column of a lake (Linsley Pond) in Connecticut. The compounds DMS and DMDS appeared in both the oxic and the anoxic portions of the water column, CS(2) was primarily found in anoxic hypolimnion. Algal metabolism and/or bacterial degradation of sulfur-containing amino acids or other organic materials are potential sources of VOSCs in the oxic lake water. Reactions of hydrogen sulfide with organic compounds and microbial degradation of organic matter may be responsible for the production of VOSCs in the anoxic lake water. The vertical distribution patterns of these three VOSCs varied from month to month in the summer, but the daily profiles obtained in one 5-day period in the summer displayed consistency. No clear diurnal pattern for any of the three VOSCs was observed. Based on observation that these VOSCs were not present in surface and near surface waters of Linsley Pond, freshwater inputs of reduced sulfur compounds to the atmosphere may be insignificant.  相似文献   

3.
The objectives of this research were to elucidate the mechanisms for production and degradation of volatile organic sulfur compounds (VOSCs), key odor causing compounds produced by biosolids. These compounds included methanethiol (MT), dimethyl sulfide (DMS), and dimethyl disulfide (DMDS). A series of experiments were used to probe various pathways hypothesized to produce and degrade these VOSCs. The production of MT was found to mainly occur from degradation of methionine and the methylation of hydrogen sulfide. DMS was formed through the methylation of MT. DMDS was formed by MT oxidation. All three of the VOSCs were readily degraded by methanogens and a cyclic pathway was proposed to describe the production and degradation of VOSCs. The research demonstrated that the main source of VOSCs was the biodegradation of protein within the biosolids and the results provided a framework for understanding the production of odor from anaerobically digested sludges before and after dewatering.  相似文献   

4.
The spatial and temporal variability of sulfur gas fluxes (H2S, COS, CH3SH, DMS, and CS2) at the sediment–air interface were studied in the intertidal Wadden Sea area of Sylt-Rømø (Germany/Denmark) during eight measuring campaigns between June 1991 and September 1994. Measurements were performed mainly at four sites in a sheltered intertidal bay of approximately 6 km2 (Königshafen) and discontinuously in a wider range of the 400 km2 Sylt-Rømø tidal flat area. In situ fluxes of the S-gases were determined by a dynamic chamber technique focusing on dry sediment periods. Additional experiments were conducted in order to determine changes in S-gas concentrations in the sediment between the surface and 70 cm depth.In most cases H2S was the dominant S-gas emitted from the sediment to the atmosphere, contributing up to 70% of the total S-emission at this interface. Mean H2S emission rates ranged between 0.07 and 9.95 μg S m-2 h-1. Both emission rates and relative contribution of H2S were lowest from fine sand and highest from muddy sites. Diurnal variation of H2S emission was evident in summer and fall with up to 10-fold higher rates during night than during the day. Distinct seasonal variation of H2S-transfer between the sediment and the atmosphere was observed with higher emission rates in the summer than in spring or fall. The emission of H2S to the atmosphere was smaller by a factor of 1600–26 000 than the H2S produced from sulfate reduction. Apparently, the efficiency by which H2S produced in the sediment is retained and reoxidized by biogeochemical sediment processes is extremely high. Carbonyl sulfide (COS) was emitted with relatively constant rates in space and time with mean flux rates ranging between 0.24 and 2.0 μg S m-2 h-1. Carbon disulfide emission rates were comparable to those of COS and varied between 0.3 and 2.23 μg S m-2 h-1. DMS played a minor role in the S-gas transfer from uncovered sediment areas contributing between 3.1 and 23% to total S-emission from the sediment to the atmosphere.  相似文献   

5.
An experimental campaign was carried out on a hospital and cemetery waste incineration plant in order to assess the emissions of polychlorinated dibenzo-p-dioxins (PCDDs), polychlorinated dibenzofurans (PCDFs) and polycyclic aromatic hydrocarbons (PAHs). Raw gases were sampled in the afterburning chamber, using a specifically designed device, after the heat recovery section and at the stack. Samples of slags from the combustion chamber and fly ashes from the bag filter were also collected and analyzed. PCDD/Fs and PAHs concentrations in exhaust gas after the heat exchanger (200–350 °C) decreased in comparison with the values detected in the afterburning chamber. Pollutant mass balance regarding the heat exchanger did not confirm literature findings about the de novo synthesis of PCDD/Fs in the heat exchange process. In spite of a consistent reduction of PCDD/Fs in the flue gas treatment system (from 77% up to 98%), the limit of 0.1 ng ITEQ Nm−3 at the stack was not accomplished. PCDD/Fs emission factors for air spanned from 2.3 up to 44 μg ITEQ t−1 of burned waste, whereas those through solid residues (mainly fly ashes) were in the range 41–3700 μg ITEQ t−1. Tests run with cemetery wastes generally showed lower PCDD/F emission factors than those with hospital wastes. PAH total emission factors (91–414 μg kg−1 of burned waste) were in the range of values reported for incineration of municipal and industrial wastes. In spite of the observed release from the scrubber, carcinogenic PAHs concentrations at the stack (0.018–0.5 μg Nm−3) were below the Italian limit of 10 μg Nm−3.  相似文献   

6.
Two different biowaste composting techniques were compared with regard to their overall emission of volatile compounds during the active composting period. In the aerobic composting process, the biowaste was aerated during a 12-week period, while the combined anaerobic/aerobic composting process consisted of a sequence of a 3-week anaerobic digestion (phase I) and a 2-week aeration period (phase II). While the emission of volatiles during phase I of the combined anaerobic/aerobic composting process was measured in a full-scale composting plant, the aerobic stages of both composting techniques were performed in pilot-scale composting bins. Similar groups of volatile compounds were analysed in the biogas and the aerobic composting waste gases, being alcohols, carbonyl compounds, terpenes, esters, sulphur compounds and ethers. Predominance of alcohols (38% wt/wt of the cumulative emission) was observed in the exhaust air of the aerobic composting process, while predominance of terpenes (87%) and ammonia (93%) was observed in phases I and II of the combined anaerobic/aerobic composting process, respectively. In the aerobic composting process, 2-propanol, ethanol, acetone, limonene and ethyl acetate made up about 82% of the total volatile organic compounds (VOC)-emission. Next to this, the gas analysis during the aerobic composting process revealed a strong difference in emission profile as a function of time between different groups of volatiles. The total emission of VOC, NH3 and H2S during the aerobic composting process was 742 g ton-1 biowaste, while the total emission during phases I and II of the combined anaerobic/aerobic composting process was 236 and 44 g ton-1 biowaste, respectively. Taking into consideration the 99% removal efficiency of volatiles upon combustion of the biogas of phase I in the electricity generator, the combined anaerobic/aerobic composting process can be considered as an attractive alternative for aerobic biowaste composting because of its 17 times lower overall emission of the volatiles mentioned.  相似文献   

7.
A flow-through chamber was used to measure the net gaseous sulfur fluxes (emission minus uptake) to the atmosphere from an area of Spartina alterniflora in a New England salt marsh. The fluxes of hydrogen sulfide, dimethyl sulfide, carbonyl sulfide, carbon disulfide and dimethyl disulfide were measured monthly over a year to obtain the annual emission estimates. Peak releases of the various sulfur gases did not occur simultaneously but were measured from July through to October depending on the individual sulfur species. The total annual emission was estimated to be 5.8 g S m−2 y−1, with dimethyl sulfide (49% of the total) and hydrogen sulfide (35% of the total) the major components emitted. The emissions of the other sulfur gases were nearly 10-fold lower.  相似文献   

8.
A gas monitoring system based on broadband absorption spectroscopic techniques in the ultraviolet region is described and tested. The system was employed in real-time continuous concentration measurements of sulfur dioxide (SO2) and nitric oxide (NO) from a 220-ton h?1 circulating fluidized bed (CFB) boiler in Shandong province, China. The emission coefficients (per kg of coal and per kWh of electricity) and the total emission of the two pollutant gases were evaluated. The measurement results showed that the emission concentrations of SO2 and NO from the CFB boiler fluctuated in the range of 750–1300 mg m?3 and 100–220 mg m?3, respectively. Compared with the specified emission standards of air pollutants from thermal power plants in China, the values were generally higher for SO2 and lower for NO. The relatively high emission concentrations of SO2 were found to mainly depend on the sulfur content of the fuel and the poor desulfurization efficiency. This study indicates that the broadband UV spectroscopy system is suitable for industrial emission monitoring and pollution control.  相似文献   

9.
Biological air filtration for reduction of emissions of volatile sulfur compounds (e.g., hydrogen sulfide, methanethiol and dimethyl sulfide) from livestock production facilities is challenged by poor partitioning of these compounds into the aqueous biofilm or filter trickling water. In this study, Henry’s law constants of reduced volatile sulfur compounds were measured for deionized water, biotrickling filter liquids (from the first and second stages of a two-stage biotrickling filter), and NaCl solutions by a dynamic method using Proton-Transfer-Reaction Mass Spectrometry (PTR-MS) at a temperature range of 3–45 °C. NaCl solutions were used to estimate salting-out constants up to an ionic strength of 0.7 M in order to evaluate the effect of ionic strength on partitioning between air and biofilter liquids. Thermodynamic parameters (enthalpy and entropy of phase exchange) were obtained from the measured partition coefficients as a function of temperature. The results show that the partition coefficients of organic sulfur compounds in the biotrickling filter liquids were generally very close to the corresponding partition coefficients in deionized water. Based on the estimated ionic strength of biofilter liquids, it is assessed that salting-out effects are of no importance for these compounds. For H2S, a higher enthalpy of air–liquid partitioning was observed for 2nd stage filter liquid, but not for 1st stage filter liquid. In general, the results show that co-solute effects for sulfur compounds can be neglected in numerical biofilter models and that the uptake of volatile sulfur compounds in biotrickling filter liquids cannot be increased by decreasing ionic strength.  相似文献   

10.
In April 2000 atmospheric trace gas measurements were performed on the western Indian Ocean on a cruise of the Dutch research vessel Pelagia from the Seychelles (5°S, 55°E) to Djibouti (12°N, 43°E). The measurements included analysis of dimethyl sulfide (DMS), acetone and acetonitrile every 40 s using PTR-MS (proton-transfer-reaction mass spectrometry) and gas chromatographic analyses of C2–C7 hydrocarbons in air samples taken during the cruise. The measurements took place at the end of the winter monsoon season and the sampled air masses came predominantly from the Southern Hemisphere, resulting in low concentrations of some long-lived hydrocarbons, halocarbons, acetone (350 pptv) and acetonitrile (120 pptv). On three consecutive days a diurnal cycle in DMS concentration was observed, which was used to estimate the emission of DMS (1.5±0.7×1013 molecules m−2 s−1) and the 24 h averaged concentration of hydroxyl (OH) radicals (1.4±0.7×106 molecules cm−3). A strongly increased DMS concentration was found at a location where upwelling of deeper ocean waters took place, coinciding with a marked decrease in acetone and acetonitrile. In the northwestern Indian Ocean a slight increase of some trace gases was noticed showing a small influence of pollution from Asia and from northeast Africa as indicated with back trajectory calculations. The air masses from Asia had elevated acetonitrile concentrations showing some influence of biomass burning as was also found during the 1999 Indian Ocean Experiment, whereas the air masses from northeast Africa seemed to have other sources of pollution.  相似文献   

11.
The global atmospheric emissions of the 16 polycyclic aromatic hydrocarbons (PAHs) listed as the US EPA priority pollutants were estimated using reported emission activity and emission factor data for the reference year 2004. A database for emission factors was compiled, and their geometric means and frequency distributions applied for emission calculation and uncertainty analysis, respectively. The results for 37 countries were compared with other PAH emission inventories. It was estimated that the total global atmospheric emission of these 16 PAHs in 2004 was 520 giga grams per year (Gg y?1) with biofuel (56.7%), wildfire (17.0%) and consumer product usage (6.9%) as the major sources, and China (114 Gg y?1), India (90 Gg y?1) and United States (32 Gg y?1) were the top three countries with the highest PAH emissions. The PAH sources in the individual countries varied remarkably. For example, biofuel burning was the dominant PAH source in India, wildfire emissions were the dominant PAH source in Brazil, while consumer products were the major PAH emission source in the United States. In China, in addition to biomass combustion, coke ovens were a significant source of PAHs. Globally, benzo(a)pyrene accounted for 0.05% to 2.08% of the total PAH emission, with developing countries accounting for the higher percentages. The PAH emission density varied dramatically from 0.0013 kg km?2 y in the Falkland Islands to 360 kg km?2 y in Singapore with a global mean value of 3.98 kg km?2 y. The atmospheric emission of PAHs was positively correlated to the country's gross domestic product and negatively correlated with average income. Finally, a linear bivariate regression model was developed to explain the global PAH emission data.  相似文献   

12.
Field measurements and data investigations were conducted for developing an emission factor database for inventories of atmospheric pollutants from Chinese coal-fired power plants. Gaseous pollutants and particulate matter (PM) of different size fractions were measured using a gas analyzer and an electric low-pressure impactor (ELPI), respectively, for ten units in eight coal-fired power plants across the country. Combining results of field tests and literature surveys, emission factors with 95% confidence intervals (CIs) were calculated by boiler type, fuel quality, and emission control devices using bootstrap and Monte Carlo simulations. The emission factor of uncontrolled SO2 from pulverized combustion (PC) boilers burning bituminous or anthracite coal was estimated to be 18.0S kg t?1 (i.e., 18.0 × the percentage sulfur content of coal, S) with a 95% CI of 17.2S–18.5S. NOX emission factors for pulverized-coal boilers ranged from 4.0 to 11.2 kg t?1, with uncertainties of 14–45% for different unit types. The emission factors of uncontrolled PM2.5, PM10, and total PM emitted by PC boilers were estimated to be 0.4A (where A is the percentage ash content of coal), 1.5A and 6.9A kg t?1, respectively, with 95% CIs of 0.3A–0.5A, 1.1A–1.9A and 5.8A–7.9A. The analogous PM values for emissions with electrostatic precipitator (ESP) controls were 0.032A (95% CI: 0.021A–0.046A), 0.065A (0.039A–0.092A) and 0.094A (0.0656A–0.132A) kg t?1, and 0.0147A (0.0092–0.0225A), 0.0210A (0.0129A–0.0317A), and 0.0231A (0.0142A–0.0348A) for those with both ESP and wet flue-gas desulfurization (wet-FGD). SO2 and NOX emission factors for Chinese power plants were smaller than those of U.S. EPA AP-42 database, due mainly to lower heating values of coals in China. PM emission factors for units with ESP, however, were generally larger than AP-42 values, because of poorer removal efficiencies of Chinese dust collectors. For units with advanced emission control technologies, more field measurements are needed to reduce emission factor uncertainties.  相似文献   

13.
The photochemical oxidation and dispersion of reduced sulfur compounds (RSCs: H2S, CH3SH, DMS, CS2, and DMDS) emitted from anthropogenic (A) and natural (N) sources were evaluated based on a numerical modeling approach. The anthropogenic emission concentrations of RSCs were measured from several sampling sites at the Donghae landfill (D-LF) (i.e., source type A) in South Korea during a series of field campaigns (May through December 2004). The emissions of natural RSCs in a coastal study area near the D-LF (i.e., source type N) were estimated from sea surface DMS concentrations and transfer velocity during the same study period. These emission data were then used as input to the CALPUFF dispersion model, revised with 34 chemical reactions for RSCs. A significant fraction of sulfur dioxide (SO2) was produced photochemically during the summer (about 34% of total SO2 concentrations) followed by fall (21%), spring (15%), and winter (5%). Photochemical production of SO2 was dominated by H2S (about 55% of total contributions) and DMS (24%). The largest impact of RSCs from source type A on SO2 concentrations occurred around the D-LF during summer. The total SO2 concentrations produced from source type N around the D-LF during the summer (a mean SO2 concentration of 7.4 ppbv) were significantly higher than those (≤0.3 ppbv) during the other seasons. This may be because of the high RSC and SO2 emissions and their photochemistry along with the wind convergence.  相似文献   

14.
Uncertainties still remain in the size and number emission of nucleation and soot mode particles from diesel vehicles and understanding of the nucleation process under different ambient conditions. Particle emission measurements were carried out with a EURO-3 certified European diesel passenger car running on low (<10 ppm S) and high (310 ppm S) sulfur fuel. A newly developed in situ diluter which sampled exhaust continuously from the tailpipe and diluted in two steps by a factor of 500–6000 was employed to study nucleation particle formation under well-controlled temperature and humidity conditions. Particle emission measurements were also carried out with a mobile laboratory chasing the exhaust plume of the same vehicle in summer (19–25 °C) and winter (9 °C), with no significant difference of the nucleation or soot mode particle emission found. The particle size distributions compared well with those measured in the laboratory with the same vehicle under identical driving conditions. Simple nucleation and coagulation calculations were compared with the atmospheric and laboratory measurements. It was shown that the primary dilution step had the largest impact on the nucleation mode formation, while the model overpredicted the influence of temperature and humidity. No nucleation mode particles were observed running the diesel vehicle on low (<10 ppm S) fuel.  相似文献   

15.
Understanding the spatial–temporal variations of source apportionment of PM2.5 is critical to the effective control of particulate pollution. In this study, two one-year studies of PM2.5 composition were conducted at three contrasting sites in Hong Kong from November 2000 to October 2001, and from November 2004 to October 2005, respectively. A receptor model, principal component analysis (PCA) with absolute principal component scores (APCS) technique, was applied to the PM2.5 data for the identification and quantification of pollution sources at the rural, urban and roadside sites. The receptor modeling results identified that the major sources of PM2.5 in Hong Kong were vehicular emissions/road erosion, secondary sulfate, residual oil combustion, soil suspension and sea salt regardless of sampling sites and sampling periods. The secondary sulfate aerosols made the most significant contribution to the PM2.5 composition at the rural (HT) (44 ± 3%, mean ± 1σ standard error) and urban (TW) (28 ± 2%) sites, followed by vehicular emission (20 ± 3% for HT and 23 ± 4% for TW) and residual oil combustion (17 ± 2% for HT and 19 ± 1% for TW). However, at the roadside site (MK), vehicular emissions especially diesel vehicle emissions were the major source of PM2.5 composition (33 ± 1% for diesel vehicle plus 18 ± 2% for other vehicles), followed by secondary sulfate aerosols (24 ± 1%). We found that the contribution of residual oil combustion at both urban and rural sites was much higher than that at the roadside site (2 ± 0.4%), perhaps due to the marine vessel activities of the container terminal near the urban site and close distance of pathway for the marine vessels to the rural site. The large contribution of secondary sulfate aerosols at all the three sites reflected the wide influence of regional pollution. With regard to the temporal trend, the contributions of vehicular emission and secondary sulfate to PM2.5 showed higher autumn and winter values and lower summer levels at all the sites, particularly for the background site, suggesting that the seasonal variation of source apportionment in Hong Kong was mainly affected by the synoptic meteorological conditions and the long-range transport. Analysis of annual patterns indicated that the contribution of vehicular emission at the roadside was significantly reduced from 2000/01 to 2004/05 (p < 0.05, two-tail), especially the diesel vehicular emission (p < 0.001, two-tail). This is likely attributed to the implementation of the vehicular emission control programs with the tightening of diesel fuel contents and vehicular emission standards over these years by the Hong Kong government. In contrast, the contribution of secondary sulfate was remarkably increased from 2001 to 2005 (p < 0.001, two-tail), indicating a significant growth in regional sulfate pollution over the years.  相似文献   

16.
Real-world emissions of a traffic fleet on a transit route in Austria were determined in the Tauerntunnel experiment in October 1997. The total number of vehicles and the average speed was nearly the same on both measuring days (465 vehicles 30 min−1 and 76 km h−1 on the workday, 477 and 78 km h−1 on Sunday). The average workday fleet contained 17.6% heavy-duty vehicles (HDV) and the average Sunday fleet 2.8% HDV resulting in up to four times higher emission rates per vehicle per km on the workday than on Sunday for most of the regulated components (CO2, CO, NOx, SO2, and particulate matter-PM10). Emission rates of NMVOC accounted for 200 mg vehicle−1 km−1 on both days. The relative contributions of light-duty vehicles (LDV) and HDV to the total emissions indicated that aldehydes, BTEX (benzene, toluene, ethylbenzene, xylenes), and alkanes are mainly produced by LDV, while HDV dominated emissions of CO, NOx, SO2, and PM10. Emissions of NOx caused by HDV were 16,100 mg vehicle−1 km−1 (as NO2). Produced by LDV they were much lower at 360 mg vehicle−1 km−1. Comparing the emission rates to the results that were obtained by the 1988 experiment at the same place significant changes in the emission levels of hydrocarbons and CO, which accounted 1997 to only 10% of the levels in 1988, were noticed. However, the decrease of PM has been modest leading to values of 80 and 60% of the levels in 1988 on the workday and on Sunday, respectively. Emission rates of NOx determined on the workday in 1997 were 3130 mg vehicle−1 km−1 and even higher than in 1988 (2630 mg vehicle−1 km−1), presumable due to the increase of the HD-traffic.  相似文献   

17.
The assessment of the wind blown dust emission for Europe and selected regions of North Africa and Southwest Asia was carried out using a mesoscale model. The mesoscale model was parameterized based on the current literature review. The model provides data on PM10 emission from several dust reservoirs (anthropogenic, agriculture, semi- and natural) with spatial resolution of 10 × 10 km and temporal resolution of 1 h. The spatial variability of PM10 emission depends on soil texture, land cover/land use as well as meteorological conditions. Lands covered with water or permanently wet were excluded from the model. The land covered with vegetation is treated as dust reservoir whose dust emission capacity depends on the type of vegetation and cover. The dust reservoirs are divided into reservoirs with stable and unstable surface. The changes of emission in time depend on meteorological parameters.The wind blown dust emission should be treated as a non-continuous spatio-temporal process. The emissions are estimated with high uncertainty. The estimated PM10 yearly total load emitted by wind from the European territory is highly differentiated in space and time and is equal to 0.74 Tg. The total load of PM10 emitted by wind from North African and Southwest Asian land surface located in the vicinity of European boundaries is assessed as nearly 50% (0.43 Tg) of the total load estimated for the whole Europe.The average yearly PM10 emission factor for Europe was estimated at 0.139 Mg km?2.The PM10 emission from agricultural areas is estimated at 52% of the total wind blown emission from the domain of the European Union project “Improving and applying methods for the calculation of natural and biogenic emissions and assessment of impacts to the air quality” - NatAir.PM10 emission factor for natural areas of Europe is estimated at 0.021 Mg km?2. Appropriate factors for agricultural areas and anthropogenic areas are 0.157 Mg km?2 and 0.118 Mg km?2, respectively. The latter two factors are probably underestimated due to omitting in the model of other dust emission mechanisms than aeolian erosion.  相似文献   

18.
A field experiment was conducted in a rice–winter wheat rotation agroecosystem to quantify the direct emission of N2O for synthetic N fertilizer and crop residue application in the 2002–2003 annual cycle. There was an increase in N2O emission accompanying synthetic N fertilizer application. Fertilizer-induced emission factor for N2O (FIE) averaged 1.08% for the rice season, 1.49% for the winter wheat season and 1.26% for the whole annual rotation cycle. The annual background emission of N2O totaled 4.81 kg N2O–N ha−1, consisting of 1.24 kg N2O–N ha−1 for rice, 3.11 kg N2O–N ha−1 for wheat seasons. When crop residue and synthetic N fertilizer were both applied in the fields, crop residue-induced emission factor for N2O (RIE) was estimated as well. When crop residue was retained at the rate of 2.25 and 4.50 t ha−1 for each season, the RIE averaged 0.64% and 0.27% for the whole annual rotation cycle, respectively. Based on available multi-year data of N2O emissions over the whole rice–wheat rotation cycle at 3 sites in southeast China, the FIE averaged 1.02% for the rice season, 1.65% for the wheat season. On the whole annual cycle, the FIE for N2O ranged from 1.05% to 1.45%, with an average of 1.25%. Annual background emission of N2O averaged 4.25 kg ha−1, ranging from 3.62 to 4.87 kg ha−1. It is estimated that annual N2O emission in paddy rice-based agroecosystem amounts to 169 Gg N2O–N in China, accounting for 26–60% of the reported estimates of total emission from croplands in China.  相似文献   

19.
Silage on dairy farms has been identified as a major source of volatile organic compound (VOC) emissions. However, rates of VOC emission from silage are not accurately known. In this work, we measured ethanol (a dominant silage VOC) emission from loose corn silage and exposed corn silage particles using wind tunnel systems. Flux of ethanol was highest immediately after exposing loose silage samples to moving air (as high as 220 g m?2 h?1) and declined by as much as 76-fold over 12 h as ethanol was depleted from samples. Emission rate and cumulative 12 h emission increased with temperature, silage permeability, exposed surface area, and air velocity over silage samples. These responses suggest that VOC emission from silage on farms is sensitive to climate and management practices. Ethanol emission rates from loose silage were generally higher than previous estimates of total VOC emission rates from silage and mixed feed. For 15 cm deep loose samples, mean cumulative emission was as high as 170 g m?2 (80% of initial ethanol mass) after 12 h of exposure to an air velocity of 5 m s?1. Emission rates measured with an emission isolation flux chamber were lower than rates measured in a wind tunnel and in an open setting. Results show that the US EPA emission isolation flux chamber method is not appropriate for estimating VOC emission rates from silage in the field.  相似文献   

20.
The exhaust emission of the polycyclic aromatic hydrocarbons (PAHs) considered toxic to human health were investigated on two spark ignition light duty vehicles, one being gasohol (Gasohol, in Brazil, is the generic denomination for mixtures of pure gasoline plus 20–25% of anhydrous ethyl alcohol fuel (AEAF).)-fuelled and the other a flexible-fuel vehicle fuelled with hydrated ethanol. The influence of fuel type and quality, aged lubricant oil type and use of fuel additives on the formation of these compounds was tested using standardized tests identical to US FTP-75 cycle. PAH sampling and chemical analysis followed the basic recommendations of method TO-13 (United States. Environmental Protection Agency, 1999. Compendium Method TO-13A – Determination of polycyclic Aromatic hydrocarbons (PAH) in Ambient Air Using Gas Chromatography/Mass Spectrometry (CG/MS). Center for environmental research information, Cincinnati, p. 78), with the necessary modification for this particular application.Results showed that the total PAH emission factor varied from 41.9 μg km?1 to 612 μg km?1 in the gasohol vehicle, and from 11.7 μg km?1 to 27.4 μg km?1 in the ethanol-fuelled vehicle, a significant difference in favor of the ethanol vehicle. Generally, emission of light molecular weight PAHs was predominant, while high molecular weights PAHs were not detected. In terms of benzo(a)pyrene toxicity equivalence, emission factors varied from 0.00984 μg TEQ km?1 to 4.61 μg TEQ km?1 for the gasohol vehicle and from 0.0117 μg TEQ km?1 to 0.0218 μg TEQ km?1 in the ethanol vehicle.For the gasohol vehicle, results showed that the use of fuel additive causes a significant increase in the emission of naphthalene and phenanthrene at a confidence level of 90% or higher; the use of rubber solvent on gasohol showed a reduction in the emission of naphthalene and phenanthrene at the same confidence level; the use of synthetic oil instead of mineral oil also contributed significantly to a decrease in the emission of naphthalene and fluorene. In relation to the ethanol vehicle, the same factors were tested and showed no statistically significant influence on PAH emission.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号