首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Despite their burden in urban particulate air pollution, road traffic non-exhaust emissions are often uncontrolled and information about the effectiveness of mitigation measures on paved roads is still scarce. The present study is aimed to evaluate the effectiveness of mechanical sweeping/water flushing treatments in mitigating urban road dust resuspension and to quantify the real benefit in terms of ambient PM10 concentrations. To this aim a specific campaign was carried out in a heavily trafficked central road of Barcelona (Spain), a Mediterranean city suffering from a traffic-related pollution, both for a high car density and a frequent lack of precipitation. Several street washings were performed by means of mechanical sweepers and pressure water during night in all traffic lanes and sidewalks. PM10 levels were simultaneously compared with four reference urban background air quality stations to interpret any meteorological variability. At the downwind measurement site, PM10 concentrations registered a mean daily decrease of 8.8 μg m?3 during the 24 h after street washing treatments. However 3.7–4.9 μg m?3 of such decrease were due to the meteorological variability detected at the upwind site, as well as at two of the reference sites. This reveals that an effective decrease of 4–5 μg m?3 (7–10%) can be related to street washing efficiency. Mitigation of road dust resuspension was confirmed by investigating the chemical composition of airborne-PM10 filters. Concentrations of Cu, Sb, Fe and mineral matter decrease significantly with respect to concentrations of elemental carbon, used as tracer for exhaust diesel emissions. High efficiency of street washing in reducing road dust loads was found by performing periodic samplings both on the treated and the untreated areas.  相似文献   

2.
This study attempts to determine the influence of air quality in a residential area near a medical waste incineration plant. Ambient air concentrations of polycyclic aromatic hydrocarbons (PAHs), PM10 and PM2.5 (PM—particulate matter) were determined by collecting air samples in areas both upwind and downwind of the plant. The differences in air pollutant levels between the study area and a reference area 11 km away from the plant were evaluated.Dichotomous samplers were used for sampling PM2.5 and PM10 from ambient air. Two hundred and twenty samples were obtained from the study area, and 100 samples were taken from a reference area. Samples were weighed by an electronic microbalance and concentrations of PM2.5 and PM10 were determined. A HPLC equipped with a fluorescence detector was employed to analyze the concentrations of 15 PAHs compounds adsorbed into PM2.5 and PM10.The experimental results indicated that the average concentrations of PM2.5 and PM10 were 30.34±17.95 and 36.81±20.45 μg m−3, respectively, in the study area, while the average ratio of PM2.5/PM10 was 0.82±0.01. The concentrations of PM2.5 and PM10 of the study area located downwind of the incinerator were significantly higher than the study area upwind of the incinerator (P<0.05).The concentration of PAHs in PM2.5 in the study area was 2.2 times higher than in the reference area (P<0.05). Furthermore, the benzo(a)pyrene concentrations in PM2.5 and PM10 were 0.11±0.05 ng m−3 and 0.12±0.06 ng m−3 in the study area, respectively. The benzo(a)pyrene concentrations of PM2.5 and PM10 in the study area were 7 and 5.3 times higher than in the reference area (P<0.05), respectively.The study indicated that the air quality of PM2.5, PM10 and PAHs had significant contamination by air pollutants emitted from a medical waste incineration factory, representing a public health problem for nearby residences, despite the factory being equipped with a modern air pollution control system.  相似文献   

3.
Results concerning the levels and elemental compositions of daily PM10 samples collected at four air quality monitoring sites in Palermo (Italy) are presented. The highest mean value of PM10 concentrations (46 μg m−3, with a peak value of 158 μg m−3) was recorded at the Di Blasi urban station, and the lowest at Boccadifalco station (25 μg m−3), considered as a sub-urban background station. Seventeen elements (Al, As, Ba, Co, Cr, Cu, Fe, Li, Mn, Mo, Ni, Pb, Sb, Sr, U, V, Zn) were measured by ICP-MS. Al and Fe showed the highest concentrations, indicating the significant contribution of soil and resuspended mineral particles to atmospheric PM10. Ba, Cr, Cu, Mn, Mo, Ni, Pb, Sb, V and Zn had higher concentrations at the three urban sampling sites than at the sub-urban background station. Besides soil-derived particles, an R-mode cluster analysis revealed a group of elements, Mo, Cu, Cr, Sb and Zn, probably related to non-exhaust vehicle emission, and another group, consisting of Ba, As and Ni, which seemed to be associated both with exhaust emissions from road traffic, and other combustion processes such as incinerators or domestic heating plants. The results also suggest that Sb, or the association Sb–Cu–Mo, offers a way of tracing road traffic emissions.  相似文献   

4.
For over one year, the Environmental Protection Commission of Hillsborough County (EPCHC) in Tampa, Florida, operated two dichotomous sequential particulate matter air samplers collocated with a manual Federal Reference Method (FRM) air sampler at a waterfront site on Tampa Bay. The FRM was alternately configured as a PM2.5, then as a PM10 sampler. For the dichotomous sampler measurements, daily 24-h integrated PM2.5 and PM10–2.5 ambient air samples were collected at a total flow rate of 16.7 l min−1. A virtual impactor split the air into flow rates of 1.67 and 15.0 l min−1 onto PM10–2.5 and PM2.5 47-mm diameter PTFE® filters, respectively. Between the two dichotomous air samplers, the average concentration, relative bias and relative precision were 13.3 μg m−3, 0.02% and 5.2% for PM2.5 concentrations (n=282), and 12.3 μg m−3, 3.9% and 7.7% for PM10–2.5 concentrations (n=282). FRM measurements were alternate day 24-h integrated PM2.5 or PM10 ambient air samples collected onto 47-mm diameter PTFE® filters at a flow rate of 16.7 l min−1. Between a dichotomous and a PM2.5 FRM air sampler, the average concentration, relative bias and relative precision were 12.4 μg m−3, −5.6% and 8.2% (n=43); and between a dichotomous and a PM10 FRM air sampler, the average concentration, relative bias and relative precision were 25.7 μg m−3, −4.0% and 5.8% (n=102). The PM2.5 concentration measurement standard errors were 0.95, 0.79 and 1.02 μg m−3; for PM10 the standard errors were 1.06, 1.59, and 1.70 μg m−3 for two dichotomous and one FRM samplers, respectively, which indicate the dichotomous samplers have superior technical merit. These results reveal the potential for the dichotomous sequential air sampler to replace the combination of the PM2.5 and PM10 FRM air samplers, offering the capability of making simultaneous, self-consistent determinations of these particulate matter fractions in a routine ambient monitoring mode.  相似文献   

5.
Between November 1995 and October 1996, particulate matter concentrations (PM10 and PM2.5) were measured in 25 study areas in six Central and Eastern European countries: Bulgaria, Czech Republic, Hungary, Poland, Romania and Slovak Republic. To assess annual mean concentration levels, 24-h averaged concentrations were measured every sixth day on a fixed urban background site using Harvard impactors with a 2.5 and 10 μm cut-point. The concentration of the coarse fraction of PM10 (PM10−2.5) was calculated as the difference between the PM10 and the PM2.5 concentration. Spatial variation within study areas was assessed by additional sampling on one or two urban background sites within each study area for two periods of 1 month. QA/QC procedures were implemented to ensure comparability of results between study areas. A two to threefold concentration range was found between study areas, ranging from an annual mean of 41 to 98 μg m−3 for PM10, from 29 to 68 μg m−3 for PM2.5 and from 12 to 40 μg m−3 for PM10−2.5. The lowest concentrations were found in the Slovak Republic, the highest concentrations in Bulgaria and Poland. The variation in PM10 and PM2.5 concentrations between study areas was about 4 times greater than the spatial variation within study areas suggesting that measurements at a single sampling site sufficiently characterise the exposure of the population in the study areas. PM10 concentrations increased considerably during the heating season, ranging from an average increase of 18 μg m−3 in the Slovak Republic to 45 μg m−3 in Poland. The increase of PM10 was mainly driven by increases in PM2.5; PM10−2.5 concentrations changed only marginally or even decreased. Overall, the results indicate high levels of particulate air pollution in Central and Eastern Europe with large changes between seasons, likely caused by local heating.  相似文献   

6.
Trees are efficient scavengers of particulate matter and are characterised by higher rates of dry deposition than other land types. To estimate the potential of urban tree planting for the mitigation of urban PM10 concentrations, an atmospheric transport model was used to simulate the transport and deposition of PM10 across two UK conurbations (the West Midlands and Glasgow). Tree planting was simulated by modifying the land cover database, using GIS techniques and field surveys to estimate reasonable planting potentials. The model predicts that increasing total tree cover in West Midlands from 3.7% to 16.5% reduces average primary PM10 concentrations by 10% from 2.3 to 2.1 μg m−3 removing 110 ton per year of primary PM10 from the atmosphere. Increasing tree cover of the West Midlands to a theoretical maximum of 54% by planting all available green space would reduce the average PM10 concentration by 26%, removing 200 ton of primary PM10 per year. Similarly, for Glasgow, increasing tree cover from 3.6% to 8% reduces primary PM10 concentrations by 2%, removing 4 ton of primary PM10 per year. Increasing tree cover to 21% would reduce primary PM10 air concentrations by 7%, removing 13 ton of primary PM10 per year.  相似文献   

7.
This paper uses a simple model of atmospheric transport and an emissions inventory prepared by TNO to estimate the contribution of primary particulate material to PM10 and PM2.5 concentration across Europe. The resulting population exposure is compared with that of secondary particulates, and it is noted that both primary and secondary contributions will be significantly reduced with the implementation of new protocols under the Convention on Long-Range Transboundary Air Pollution (CLRTAP). Since concentrations of primary PM10 can become elevated in episodic situations, when long-range transport of particulate could, on its own, exceed 24 h average targets of 50 μg m−3 over large areas of Europe, such reduction is important for achievement of current air quality standards to control exposure to atmospheric particulate PM10.  相似文献   

8.
Statistically significant downward trends in measured UK annual mean PM10 concentrations have been observed at eight out of the nine urban background monitoring sites between the start of monitoring in 1992 or 1993 and 2000.Site-specific projections of the individual components of measured PM10 concentrations have been derived for the period 1992–2000 at three monitoring sites from receptor modelling results for 1999 monitoring data. Measured annual average PM10 concentrations declined to between 71% and 66% of the 1992 values during this period at the sites studied. The largest contributions to the decline in total PM10 are from secondary particles at London Bloomsbury (40%, 3.4 μg m−3, tapered element oscillating microbalance (TEOM)), stationary sources at Belfast Centre (53%, 4.6 μg m−3, TEOM) and roadside traffic emissions at Bury Roadside (49%, 5.0 μg m−3, TEOM). The good agreement between the projected total PM10 concentrations and measured values for the years 1992–2000 indicate that the combination of the receptor model and the site-specific projections provide a suitably robust method for predicting future PM10 concentrations and the quantification of the impact of possible future policy measures to reduce PM10 concentrations. The good agreement between the projections and measured concentration also provides a useful verification of the trends in emissions inventory estimates for the 1990s.Projections of estimated PM10 concentrations have also been calculated for the London Bloomsbury site for the period from 1970 to 1991. Annual mean concentrations are predicted to have been in the range from 30 to 35 μg m−3, TEOM from 1977 to 1991 but much higher at values between 39 and 46 μg m−3, TEOM in the early 1970s.  相似文献   

9.
Regional haze from biomass burning in SE Asia is a recurring air pollution phenomenon with a potential impact on the health of several hundred million people. Air quality data in Brunei Darussalam during the 1998 haze episode revealed that only particulate matter is a significant pollutant. The WHO guideline of 70 μg m−3 for PM10 (24 h average) was exceeded on 54 days during the haze episode which lasted from 1 February to 30 April 1998. Concentrations of SO2, NO2, and O3 were all below WHO guidelines and the 8 h guideline for CO was exceeded on only seven occasions. Average daily PM10 concentrations were below 450 μg m−3 but concentrations greater than 600 μg m−3 persisted for several hours at a time and total exposure to such high concentrations could add up to several days over the course of a haze episode. Airborne particles exhibited diurnal variation, typically rising through the night to very high levels in the early morning and thereafter decreasing due largely to meteorological factors. The pollutant standards index (PSI), widely used to report urban air quality, may not be suitable for haze from forest fires as it does not take into account short-term exposure to extremely high particle concentrations of up to 1 mg m−3.  相似文献   

10.
This study provides the first comprehensive report on mass concentrations of particulate matter of various sizes, inorganic and organic gas concentrations monitored at three sampling sites in the city of Palermo (Sicily, Italy). It also provides information on the water-soluble species and trace elements. A total of 2054 PM10 (1333) and PM2.5 (721) daily measurements were collected from November 2006 to February 2008. The highest mass concentrations were observed at the urban stations, average values being about two times higher than those at the suburban (control) site. Time variations in PM10 and also PM10–2.5 were observed at the urban stations, the highest concentrations being measured in autumn and winter. CO, NOx, NO2, benzene, toluene and o-xylene concentrations peaked in autumn and winter, a pattern similar to those recorded for PM10 and PM10–2.5 mass levels, indicating the importance of traffic emissions in urban air pollution. 91% and 51% of the benzene measurements exceeded the limit of 5 μg m?3 at the two urban monitoring sites. Trace elements (As, Ba, Cr, Cu, Mo, Pb, Sb) suspected of being introduced into the atmosphere mainly by anthropogenic activities, were highly enriched with respect to local soil. Results indicate that a large fraction of PM10 (31–47% in weight) and PM2.5 (29% in weight) is made up of water-soluble ions. Ammonium sulphate and nitrate particles accounted for 14–29 wt% of particulate matter mass concentrations. Crustal and marine components, combined, account for 41% and 49% in PM2.5 and PM10, respectively. The calculated deficits in Cl- and NH4+ ions suggest that a proportion of these ions are lost, via the formation of gaseous NH4Cl or HCl and NH3.  相似文献   

11.
Simultaneous continuous measurements of PM2.5, PM10, black carbon mass (BCae), Black smoke (BS) and particle number density (N) were conducted in the close vicinity of a high traffic road around Paris during a three-month period beginning in August 1997. In parallel some aerosol collection was performed on filters in order to assess the black carbon (BC), organic carbon (OC) and water soluble organic fractions (WSOC) of the freshly emitted traffic aerosols. The high hourly concentrations of PM2.5 (39±20 μg m−3), BCae (14±7 μg m−3), and N (220,000±115,000 cm−3), were found to be well correlated with each other. On average PM2.5 represented 66±13% of PM10 and appears to be composed primarily of BC (43±20%). On the contrary no correlation was found between PM2.5 and the coarse (PM10–PM2.5) mass fractions which was attributed to resuspension processes by vehicles. Black carbon mass concentrations obtained from both filter analyses (BC) and Aethalometre data (BCae) show a good agreement suggesting that the Aethalometre calibration based on a black carbon specific attenuation coefficient (σ) of 19 m2 g−1 is well adapted to nearby roadside measurements. Daily BC (used as a surrogate for fine particles) concentrations and wind speed were found to be anti-correlated. Average daily variations of BC could be related to traffic intensity and regime as well as to the boundary layer height. As expected for freshly emitted traffic aerosols, filter analyses indicated a high BC/TC ratio (29±5%) and a low mean WSOC/OC ratio (12.5±5%) for the bulk aerosol. For these two ratios no day/night differences were observed, the sampling station being probably too close to traffic to evidence photochemical modification of the aerosol phase. Finally, a linear relationship was found between BC and BS hourly concentrations (BC=0.10×BS+1.18; r2=0.93) which offers interesting perspectives to retrieve BC concentrations from existing BS archives.  相似文献   

12.
The paper presents a comprehensive model evaluation focusing on the meaning and shortcomings of accuracy measures used to determine model quality according to European Union (EU) directives on air quality. European wide simulations employing the chemical transport model REM-CALGRID for the year 2002 were compared with O3, NO2, SO2 and PM10 observations of the German measurement network.The EU model quality objective, which is based on maximum relative errors, tends to penalise (i) the overestimation of very low measured concentrations in the case of annual averages and (ii) the underestimation of extremely high measured concentrations in the case of short-term values. As a more robust alternative, a model accuracy measure is presented, which corresponds to the allowed number of exceedances of the corresponding short-term air quality limit values.The influence of the spatial heterogeneity of the observations in relation to the spatial resolution of the model is investigated by spatial averaging of observation data. Because of this heterogeneity, any model with a 25 km resolution would fail to simulate about 20% of all NO2 and SO2 stations and 5–10% of all O3 and PM10 stations in Germany according to the EU model quality objectives for short-term averages.  相似文献   

13.
Numerous epidemiological studies have demonstrated the association between particle mass (PM) concentration in outside air and the occurrence of health related problems and/or diseases. However, much less is known about indoor PM concentrations and associated health risks. In particular, data are needed on air quality in schools, since children are assumed to be more vulnerable to health hazards and spend a large part of their time in classrooms.On this background, we evaluated indoor air quality in 64 schools in the city of Munich and a neighbouring district outside the city boundary. In winter 2004–2005 in 92 classrooms, and in summer 2005 in 75 classrooms, data on indoor air climate parameters (temperature, relative humidity), carbon dioxide (CO2) and various dust particle fractions (PM10, PM2.5) were collected; for the latter both gravimetrical and continuous measurements by laser aerosol spectrometer (LAS) were implemented. In the summer period, the particle number concentration (PNC), was determined using a scanning mobility particle sizer (SMPS). Additionally, data on room and building characteristics were collected by use of a standardized form. Only data collected during teaching hours were considered in analysis. For continuously measured parameters the daily median was used to describe the exposure level in a classroom.The median indoor CO2 concentration in a classroom was 1603 ppm in winter and 405 ppm in summer. With LAS in winter, median PM concentrations of 19.8 μg m−3 (PM2.5) and 91.5 μg m−3 (PM10) were observed, in summer PM concentrations were significantly reduced (median PM2.5=12.7 μg m−3, median PM10=64.9 μg m−3). PM2.5 concentrations determined by the gravimetric method were in general higher (median in winter: 36.7 μg m−3, median in summer: 20.2 μg m−3) but correlated strongly with the LAS-measured results. In explorative analysis, we identified a significant increase of LAS-measured PM2.5 by 1.7 μg m−3 per increase in humidity by 10%, by 0.5 μg m−3 per increase in CO2 indoor concentration by 100 ppm, and a decrease by 2.8 μg m−3 in 5–7th grade classes and by 7.3 μg m−3 in class 8–11 compared to 1–4th class. During the winter period, the associations were stronger regarding class level, reverse regarding humidity (a decrease by 6.4 μg m−3 per increase in 10% humidity) and absent regarding CO2 indoor concentration. The median PNC measured in 36 classrooms ranged between 2622 and 12,145 particles cm−3 (median: 5660 particles cm−3).The results clearly show that exposure to particulate matter in school is high. The increased PM concentrations in winter and their correlation with high CO2 concentrations indicate that inadequate ventilation plays a major role in the establishment of poor indoor air quality. Additionally, the increased PM concentration in low level classes and in rooms with high number of pupils suggest that the physical activity of pupils, which is assumed to be more pronounced in younger children, contributes to a constant process of resuspension of sedimented particles. Further investigations are necessary to increase knowledge on predictors of PM concentration, to assess the toxic potential of indoor particles and to develop and test strategies how to ensure improved indoor air quality in schools.  相似文献   

14.
Atmospheric Aluminum measured in northern Taiwan from 2003 to 2006 is used as a dust tracer, from which dust concentrations are derived, and major Asian dust events are determined. The source locations for the major dust events are traced back and identified, and the processes leading to the southeastward transport of Asian dust is investigated. The derived dust concentrations are compared to the local PM10 (particle with size less than 10 μm) concentrations, and the impacts of Asian dust on the air quality of Taiwan are quantified.According to the backward trajectory and dust observation analyses, most of the southeastward transport of major Asian dust events originate from Mongolia and Inner Mongolia in northern China, and only one out of 16 events is generated from western China. Modeling studies and weather analyses of dust events suggest that the southeastward transport of Asian dust is usually generated behind a surface front and transported downwind behind the associated upper level trough. The associated upper level trough is usually deep, in which the northwesterly wind behind the trough favors the southeastward transport of dust to lower latitudes. Dust transported to Taipei generally occur during periods of large-scale subsidence.Asian dust contributes about 15 μg m?3 of aerosol particles to northern Taiwan during winter monsoon, which accounts for about 24–30% of the PM10 concentrations to the northern Taiwan. The contributions of Asian dust are raised pronouncedly to about 60–70% during major dust events. The impacts of Asian dust on Taiwan's air quality are most substantial in December. The Asian dust impacts decrease in other months, but still remain at around 30% in the late winter to early spring.  相似文献   

15.
This paper evaluates the relative impact on air quality of harbour emissions, with respect to other emission sources located in the same area. The impact assessment study was conducted in the city of Taranto, Italy. This area was considered as representative of a typical Mediterranean harbour region, where shipping, industries and urban activities co-exist at a short distance, producing an ideal case to study the interaction among these different sources. Chemical and meteorological field campaigns were carried out to provide data to this study. An emission inventory has been developed taking into account industrial sources, traffic, domestic heating, fugitive and harbour emissions. A 3D Lagrangian particle dispersion model (SPRAY) has then been applied to the study area using reconstructed meteorological fields calculated by the diagnostic meteorological model MINERVE. 3D short term hourly concentrations have been computed for both all and specific sources. Industrial activities are found to be the main contributor to SO2. Industry and traffic emissions are mainly responsible for NOx simulated concentrations. CO concentrations are found to be mainly related to traffic emissions, while primary PM10 simulated concentrations tend to be linked to industrial and fugitive emissions. Contributions of harbour activities to the seasonal average concentrations of SO2 and NOx are predicted to be up to 5 and 30 μg m−3, respectively to be compared to a overall peak values of 60 μg m−3 for SO2 and 70 μg m−3 for NOx. At selected urban monitoring stations, SO2 and NOx average source contributions are predicted to be both of about 9% from harbour activities, while 87% and 41% respectively of total concentrations are predicted to be of industrial origin.  相似文献   

16.
The European Union has set limit values for PM10 to be met in 2005. At Marylebone Road, London, where the traffic is heavy, the daily limit value of 50 μg m−3 is exceeded more than 35 times a year. A total of 185 days with daily PM10 concentrations exceeding the limit value of 50 μg m−3 measured between January 2002 and December 2004 (data capture of 89.5%) are discussed in this paper. These exceedences were more frequent in early spring and in autumn. Concentrations have been disaggregated into regional, urban (background) and local (street) contributions. Most of the episodes of gravimetric PM10 above the limit value were associated with a high regional background and very often the regional contribution dominated the PM10 mass. The secondary aerosol (especially the particulate nitrate) made a major contribution to the PM10 load. These situations were frequently observed when air masses came from the European mainland (showing that both emissions from the UK and other EU countries contributed to the exceedences), and less frequently with maritime air masses that have stagnated over the UK (showing that emissions from the UK alone less frequently contributed to the high regional background). However, the higher frequency of episodes breaching the limit value at the roadside site than at the rural site and the higher frequency of PM10 concentrations above the limit value on weekdays show that the high regional contributions are additional to local and urban emissions. Local emissions mainly due to traffic were the second important contributor to the exceedences, while the contribution of the urban background of London was less important than the local emissions and the regional background. Applying the pragmatic mass closure model of Harrison et al. [2003. A pragmatic mass closure model for airborne particulate matter at urban background and roadside sites. Atmospheric Environment 37, 4927–4933], revealed that the regional aerosol is comprised very largely of ammonium nitrate and sulphate and secondary organic aerosol. Findings suggest that international abatement of secondary aerosol precursors may be the most effective measure to fulfil the requirements of the European Directive 1999/30/CE by lowering the regional background.  相似文献   

17.
Italy is frequently affected by Saharan dust intrusions, which result in high PM10 concentrations in the atmosphere and can cause the exceedances of the PM10 daily limits (50 μg m?3) set by the European Union (EU/2008/50). The estimate of African dust contribution to PM10 concentrations is therefore a key issue in air quality assessment and policy formulation. This study presents a first identification of Saharan dust outbreaks as well as an estimate of the African dust contribution to PM10 concentrations during the period 2003–2005 over Italy. The identification of dust events has been carried out by looking at different sources of information such as monitoring network observations, satellite images, ground measurements of aerosol optical properties, dust model simulations and air mass backward trajectory analysis. The contribution of Saharan dust to PM10 monthly concentrations has been estimated at seven Italian locations. The results are both spatially (with station) and temporally (with month and year) variable, as a consequence of the variability of the meteorological conditions. However, excluding the contribution of severe dust events (21st February 2004, 25th–28th September 2003, 23rd–27th March 2005), the monthly contribution of dust varies approximately between 1 μg m?3 and 10 μg m?3 throughout year 2005 and between 1 μg m?3 and 8 μg m?3 throughout year 2003. In 2004 the dust concentration is lower than 2003 and 2005 (<5 μg m?3 at all sites). The reduction in the number of daily exceedances of the limit value (50 μg m?3) after subtraction of the dust contribution is also calculated at each station: it varies with station between 20% and 50% in 2005 and between 5% and 25% in 2003 and 2004.  相似文献   

18.
A modelling method has been developed to map PM10 and PM2.5 concentrations across the UK at background and roadside locations. Separate models have been calibrated using gravimetric measurements and Tapered Element Oscillating Microbalance instruments (TEOM) using source apportionments appropriate to the size fractions and sampling methods. Maps have been prepared for a base year of 2004 and predictions have been calculated for 2010 and 2020 on the basis of current policies. Comparisons of the modelling results with air quality regulations suggest that exceedences of the EU Daughter Directive stage 1 24-h limit value for PM10 at the roadside in 2004 will be largely eliminated by 2020. The concentration cap of 25 μg m−3 for PM2.5 proposed within the CAFÉ Directive is expected to be met at all locations. Projections for 2010 and 2020 suggest that the proposed exposure reduction (ER) target is likely to be considerably more stringent and require additional measures beyond current policies. Thus the model results suggest that the balance between the stringency of the concentration cap and the ER target in the proposed directive is appropriate. Measures to achieve greater reductions should therefore have the maximum public health benefit and air quality policy is not driven by the need to reduce concentrations at isolated ‘hotspots’.  相似文献   

19.
Particle measurements were conducted at a road site 15 km north of the city of Gothenburg for 3 weeks in June 2000. The size distribution between 10 and 368 nm was measured continuously by using a differential mobility particle sizer (DMPS) system. PM2.5 was sampled on a daily basis with subsequent elemental analysis using EDXRF-spectroscopy. The road is a straight four-lane road with a speed limit of 90 kph. The road passing the site is flat with no elevations where the vehicles run on a steady workload and with constant speed. The traffic intensity is about 20,000 cars per workday and 13,000 vehicles per day during weekends. The diesel fuel used in Sweden is low in sulphur content (<10 ppm) and therefore the diesel vehicles passing the site contribute less to particle emissions in comparison with other studies. A correlation between PM2.5 and accumulation mode particles (100–368 nm) was observed. However, no significant correlation was found between number concentrations of ultrafine particles (10–100 nm) and PM2.5 or the accumulation mode number concentration. The particle distribution between 10 and 368 nm showed great dependency on wind speed and wind direction, where the wind speed was the dominant factor for ultrafine (10–100 nm) particle concentrations. The difference in traffic intensity between workday and weekend together with wind data made it possible to single out the traffic contribution to particle emissions and measure the size distribution. The results presented in combination with previous studies show that both PM2.5 and the mass of accumulation mode particles are bad estimates for ultrafine particles.  相似文献   

20.
In August 2003 during the anticipated month of the 2008 Beijing Summer Olympic Games, we simultaneously collected PM10 and PM2.5 samples at 8, 100, 200 and 325 m heights up a meteorological tower and in an urban and a suburban site in Beijing. The samples were analysed for organic carbon (OC) and elemental carbon (EC) contents. Particulate matter (PM) and carbonaceous species pollution in the Beijing region were serious and widespread with 86% of PM2.5 samples exceeding the daily National Ambient Air Quality Standard of the USA (65 μg m−3) and the overall daily average PM10 concentrations of the three surface sites exceeding the Class II National Air Quality Standard of China (150 μg m−3). The maximum daily PM2.5 and PM10 concentrations reached 178.7 and 368.1 μg m−3, respectively, while those of OC and EC reached 22.2 and 9.1 μg m−3 in PM2.5 and 30.0 and 13.0 μg m−3 in PM10, respectively. PM, especially PM2.5, OC and EC showed complex vertical distributions and distinct layered structures up the meteorological tower with elevated levels extending to the 100, 200 and 300 m heights. Meteorological evidence suggested that there exist fine atmospheric layers over urban Beijing. These layers were featured by strong temperature inversions close to the surface (<50 m) and more stable conditions aloft. They enhanced the accumulation of pollutants and probably caused the complex vertical distributions of PM and carbonaceous species over urban Beijing. The built-up of PM was accompanied by transport of industrial emissions from the southwest direction of the city. Emissions from road traffic and construction activities as well as secondary organic carbon (SOC) are important sources of PM. High OC/EC ratios (range of 1.8–5.1 for PM2.5 and 2.0–4.3 for PM10) were found, especially in the higher levels of the meteorological tower suggesting there were substantial productions of SOC in summer Beijing. SOC is estimated to account for at least 33.8% and 28.1% of OC in PM2.5 and PM10, respectively, with higher percentages at the higher levels of the tower.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号