首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Dairies are believed to be a major source of volatile organic compounds (VOC) in Central California, but few studies have characterized VOC emissions from these facilities. In this work, samples were collected from six sources of VOCs (Silage, Total Mixed Rations, Lagoons, Flushing Lanes, Open Lots and Bedding) at six dairies in Central California during 2006–2007 using emission isolation flux chambers and polished stainless steel canisters. Samples were analyzed by gas chromatography/mass spectrometry and gas chromatography/flame ionization detection. Forty-eight VOCs were identified and quantified in the samples, including alcohols, carbonyls, alkanes and aromatics. Silage and Total Mixed Rations are the dominant sources of VOCs tested, with ethanol as the major VOC present. Emissions from the remaining sources are two to three orders of magnitude smaller, with carbonyls and aromatics as the main components. The data suggest that animal feed rather than animal waste are the main source of non-enteric VOC emissions from dairies.  相似文献   

2.
The present study presents the first detailed inventory for non-methane hydrocarbon emissions from vegetation over Greece. The emission inventory, based on a Geographic Information System (GIS), has a spatial resolution of 5×5 km2 and a time resolution of 1 h. For the area under study, the calculated yearly monoterpene emissions are higher than the corresponding isoprene ones. In addition to the methodology presented here, the CORINAIR methodology was also applied for the calculation of emission rates. This resulted in orders of magnitude differences in the calculated emission rates. The CORINAIR methodology is judged to lead to unrealistically high values of biogenic NMHC emission rates. The temperature dependence of the CORINAIR correction factors seems to affect most the emissions, together with grazing land emission factors.  相似文献   

3.
Air quality zones are used by regulatory authorities to implement ambient air standards in order to protect human health. Air quality measurements at discrete air monitoring stations are critical tools to determine whether an air quality zone complies with local air quality standards or is noncompliant. This study presents a novel approach for evaluation of air quality zone classification methods by breaking the concentration distribution of a pollutant measured at an air monitoring station into compliance and exceedance probability density functions (PDFs) and then using Monte Carlo analysis with the Central Limit Theorem to estimate long-term exposure. The purpose of this paper is to compare the risk associated with selecting one ambient air classification approach over another by testing the possible exposure an individual living within a zone may face. The chronic daily intake (CDI) is utilized to compare different pollutant exposures over the classification duration of 3 years between two classification methods. Historical data collected from air monitoring stations in Kuwait are used to build representative models of 1-hr NO2 and 8-hr O3 within a zone that meets the compliance requirements of each method. The first method, the “3 Strike” method, is a conservative approach based on a winner-take-all approach common with most compliance classification methods, while the second, the 99% Rule method, allows for more robust analyses and incorporates long-term trends. A Monte Carlo analysis is used to model the CDI for each pollutant and each method with the zone at a single station and with multiple stations. The model assumes that the zone is already in compliance with air quality standards over the 3 years under the different classification methodologies. The model shows that while the CDI of the two methods differs by 2.7% over the exposure period for the single station case, the large number of samples taken over the duration period impacts the sensitivity of the statistical tests, causing the null hypothesis to fail. Local air quality managers can use either methodology to classify the compliance of an air zone, but must accept that the 99% Rule method may cause exposures that are statistically more significant than the 3 Strike method.

Implications: A novel method using the Central Limit Theorem and Monte Carlo analysis is used to directly compare different air standard compliance classification methods by estimating the chronic daily intake of pollutants. This method allows air quality managers to rapidly see how individual classification methods may impact individual population groups, as well as to evaluate different pollutants based on dosage and exposure when complete health impacts are not known.  相似文献   


4.

Background, aim, and scope

Ten years of public health interventions on industrial emissions to clean air were monitored for the Mediterranean city of Cartagena. During the 1960s, a number of large chemical and non-ferrous metallurgical factories were established that significantly deteriorated the city’s air quality. By the 1970s, the average annual air concentration of sulfur dioxide (SO2) ranged from 200 to 300 µg/m3 (standard conditions units). In 1979, the Spanish government implemented an industrial intervention plan to improve the performance of factories and industrial air pollution surveillance. Unplanned urban development led to residential housing being located adjacent to three major factories. Factory A produced lead, factory B processed zinc from ore concentrates, and factory C produced sulfuric acid and phosphates. This, in combination with the particular abrupt topography and frequent atmospheric thermal inversions, resulted in the worsening of air quality and heightening concern for public health. In 1990, the City Council authorized the immediate intervention at these factories to reduce or shut down production if ambient levels of SO2 or total suspended particles (TSP) exceeded a time-emission threshold in pre-established meteorological contexts. The aim of this research was to assess the appropriateness and effectiveness of the intervention plan implemented from 1992 to 2001 to abate industrial air pollution.

Materials and methods

The maximum daily 1-h ambient air level of SO2, NO2, and TSP pollutants was selected from one of the three urban automatic stations, designed to monitor ambient air quality around industrial emissions sources. The day on which an intervention took place to reduce and/or interrupt industrial production by factory and pollutant was defined as a control day, and the day after an intervention as a post-control day. To assess the short-term intervention effect on air quality, an ecological time series design was applied, using regression analysis in generalized additive models, focusing on day-to-day variations of ambient air pollutants levels. Two indicators were estimated: (a) appropriateness, the ratio between mean levels of the pollutant for control days versus the other days, and (b) effectiveness, the ratio between mean levels of the pollutant for post-control days versus the other days. Ratios in regression analyses were adjusted for trend, seasonality, temperature, humidity and atmospheric pressure, calendar day, and special events as well as the other pollutants.

Results

A total of 702 control days were made on the factories’ industrial production during the 10-year period. Fifteen reductions and five shutdown control days took place at factory A for ambient air SO2. At factory B, more controls were carried out for the SO2 pollutant in the years 1992–1993 and 1997. At factory C, the control days for SO2 decreased from 59 reductions and 14 shutdowns to a minimum from 1995 onwards, whereas the controls on TSP were more frequent, reaching a maximum of 99 reductions and 47 shutdowns in the last year. SO2 ambient air mean levels ranged from 456 to 699 µg/m3 among factories on reduction control days and between 624 and 1,010 µg/m3 on shutdown days. The TSP ambient air mean levels were 428 and 506 µg/m3 on reduction and shutdown days, respectively. For all types of control days and factories, a mean ratio of 104% (95% confidence interval [CI] 88 to 121) in SO2 levels was obtained and a mean ratio of 67% (95% CI 59 to 75) in TSP levels. Post-control days at all factories showed a mean ratio of ?16% (95% CI ?7 to ?24) in SO2 levels and a mean ratio of ?13% (95% CI ?7 to ?19) in TSP levels.

Discussion

Interventions on industrial production based on the urban SO2 and TSP ambient air levels were justified by the high concentrations detected. The best assessment of the interventions’ effectiveness would have been to utilize the ambient air pollutant concentration readings from the entire time of the production shutdowns or reductions; however, the daily hourly maximum turned out to be a useful indicator because of meteorological factors influencing the diurnal concentration profile. A substantial number of interventions were carried out from 1 to 3 am, when vehicular traffic was minimum. On the other hand, atmospheric stability undergoes diurnal cycling in the autumn–winter period due to thermal inversion, which reaches maximum levels around daybreak. Therefore, this increases the ambient air levels and justified the interventions carried out at daybreak in spite of the traffic influence.

Conclusions

All the interventions for SO2 and TSP were carried out when the measured ambient air levels of pollutants were exceeded, which shows the appropriateness of the intervention program. This excess was greater when intervening on SO2 than on the TSP levels. For both ambient air levels of SO2 and TSP, significant drops in air pollution were achieved from all three factories following activity reductions. The production shutdown controls were very effective, because they returned excess levels, higher than in the reduction controls, to everyday mean values.

Recommendations and perspectives

The Cartagena City observational system of intermittent control has proven to effectively reduce industrial emissions’ impact on ambient air quality. This experienced model approach could serve well in highly polluted industrial settings. From a public health perspective, studies are needed to assess that the industrial interventions to control air pollution were related to healthier human populations. Legislation was needed to allow the public administration to take direct actions upon the polluting industries.  相似文献   

5.
采用活性炭吸附、溶剂解吸和气-质联用(GC-MS)分析的方法,对柴油机尾气中芳香烃污染物进行了定性、定量分析。实验结果表明,该方法能够减少柴油机尾气中其他颗粒相和气相有机成分的干扰,采样快速,灵敏度、准确度高;活性炭吸附管采样效率高,当采样流量为4 L/min、采集时间20 min时,不会出现芳香烃脱附现象;测量方法重复性较好,相对标准偏差低于6.5%,检出限为3~9μg/m3,回收率为87.5%~95.2%;该方法可用于测量柴油机燃用生物柴油和0号柴油尾气中芳香烃污染物。  相似文献   

6.
Three a priori methods for estimating the potential for O3 formation of hydrocarbon (HC) mixtures were applied to a large air pollution data set collected aloft over Tokyo during 16–17 July 1981 and 6–7 August 1980. Individual HC samples were compared using the concentration weighted OH-HC reaction rate constant, -kOH the effective O3 formation rate constant, ke; and the maximum O3, O3(max), formed during 12 h of irradation with a NO2 photolysis rate constant, k1, of 0.4 min−1. Values of ke and O3(max) were estimated using a carbon-bond photochemical smog model (CBM-III). The maximum incremental ozone (O3(fp)) above observed levels (O31) was also determined from O3(max)—O31. The HC data set consisted of 192 samples containing 18 components from 1981 and 66 samples containing 47 components from 1980. Each sample was accompanied by measurements of O3, NMHC, NO, NO2, temperature and relative humidity (r.h.). Sampling was mostly at altitudes between 350 and 600 m. Six flights, usually covering the same flight pattern, were spaced at approximately 3 h intervals throughout each day starting at sunrise. In essence, this provided six chemical ‘snapshots’ of the air over Tokyo for each day of sampling.All of the reactivity parameters were found to be reasonably consistent with each other when compared by individual samples for a given year. In addition, when comparisons were carried out on a run averaged basis. O3 (max) appeared to be linearly related to the actual O3 concentration 3 h later; and ke and kOH to the change in observed O3 with time 3–4.5 h later. Trajectory analysis demonstrated that air moved slowly through the sampling region. This was physically consistent with the 3-h lag interpretation. From this evaluation it appears that any of the reactivity parameters are reasonable ways of comparing HC mixtures, with more detailed input information supplying more detailed results.  相似文献   

7.
Rapid and extensive development of shale gas resources in the Barnett Shale region of Texas in recent years has created concerns about potential environmental impacts on water and air quality. The purpose of this study was to provide a better understanding of the potential contributions of emissions from gas production operations to population exposure to air toxics in the Barnett Shale region. This goal was approached using a combination of chemical characterization of the volatile organic compound (VOC) emissions from active wells, saturation monitoring for gaseous and particulate pollutants in a residential community located near active gas/oil extraction and processing facilities, source apportionment of VOCs measured in the community using the Chemical Mass Balance (CMB) receptor model, and direct measurements of the pollutant gradient downwind of a gas well with high VOC emissions. Overall, the study results indicate that air quality impacts due to individual gas wells and compressor stations are not likely to be discernible beyond a distance of approximately 100 m in the downwind direction. However, source apportionment results indicate a significant contribution to regional VOCs from gas production sources, particularly for lower-molecular-weight alkanes (<C6). Although measured ambient VOC concentrations were well below health-based safe exposure levels, the existence of urban-level mean concentrations of benzene and other mobile source air toxics combined with soot to total carbon ratios that were high for an area with little residential or commercial development may be indicative of the impact of increased heavy-duty vehicle traffic related to gas production
ImplicationsRapid and extensive development of shale gas resources in recent years has created concerns about potential environmental impacts on water and air quality. This study focused on directly measuring the ambient air pollutant levels occurring at residential properties located near natural gas extraction and processing facilities, and estimating the relative contributions from gas production and motor vehicle emissions to ambient VOC concentrations. Although only a small-scale case study, the results may be useful for guidance in planning future ambient air quality studies and human exposure estimates in areas of intensive shale gas production.  相似文献   

8.
To understand the behavior and sources of polychlorinated biphenyls (PCBs) in ambient air, gaseous and particulate phase concentrations were measured at Yokohama City, Japan, during March 2002 and February 2003. The concentration of total PCB and TEQ ranged from 62 to 250 pg/m(3) and from 2 to 14 fgTEQ/m(3), respectively. The gas-particle partition coefficient (K(p)) was obtained as a function of temperature. The relationship between the partition coefficient and the sub-cooled liquid vapor pressure (P(L)) was also established (coefficients of determination for log K(p) versus log P(L) plot were >0.76, except for three samples). As a result, the partition ratio of gaseous and particulate phase PCBs can be estimated for an arbitrary temperature. Principal component analysis (PCA) was applied to the source identification of PCBs in ambient air. The concentrations of 122 congeners between tetra-CBs and deca-CB were used as input variables, and three PCs with eigenvalue more than 10 were obtained. The principal component 1 (PC 1) accounted for 43.4% of the total variance, and was interpreted as volatilization from PCB products and/or sites polluted by PCBs. The concentrations of PCB congeners were strongly related with PC 1 which showed high correlation with temperature. PC 2 accounted for 22.3%, and was interpreted as PCBs from incineration sources, while PC 3 accounted for 10.8%, but could not be interpreted.  相似文献   

9.
In 2005 and 2006, the levels of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs), polychlorinated biphenyls (PCBs) and metals (As, Be, Cd, Co, Cr, Cu, Mn, Ni, Pb, Sn, Tl and V) were measured in air samples collected in an industrial area of Sant Adrià del Besòs (Barcelona, Catalonia, Spain) where a municipal solid waste incinerator (MSWI) is placed, and in a background/control area. In general terms, concentrations of all environmental pollutants were higher at the industrial site. No significant seasonal/temporal variations were observed in any of the areas. No Pearson correlation was found between the PCDD/F concentrations and the environmental conditions of the two sampling periods considered. Principal component analyses (PCA) were performed to get information on the relationship among samples, pollutants, and emission sources. The results indicate that the MSWI of S. Adrià de Besòs is not a significant emission source of the above compounds for the area under its direct influence. Moreover, a notable difference in the PCDD/F congener profiles was found between ambient air and stack gas emissions, indicating that the current levels of PCDD/Fs are more related to other potential emissions sources rather than to those from the MSWI.  相似文献   

10.
This paper presents an evaluation of the consistency of an urban state-of-the-art hydrocarbon (HC) emission inventory. The evaluation was conducted through the comparison of this inventory with hourly HC measurements during two summer months in the centre of Marseille, on the Mediterranean French coast. Factors of under or overestimation could be calculated for each compound on the basis of a systematic HC to HC ratio analysis. These results, associated with a deep analysis of the speciation profiles, show that most of the common and highly concentrated hydrocarbons (such as butanes) are too much predominant in the emission speciation, while the heavy and less common species (branched alkanes, substituted aromatics) are under-represented in the inventory. The urban diffuse sources appear here as one critical point of the inventories. The disagreements were shown to have a strong incidence on the representation of the air mass reactivity. In a last step, the identified uncertainties in emissions were implemented in an air-quality model for sensitivity studies. It was shown that the observed biases in the inventory could affect the regional ozone production, with a probable impact on ozone peaks of 2–10 ppbv over the area.  相似文献   

11.
A mobile laboratory equipped with a proton transfer reaction mass spectrometer (PTR-MS) operated in Galena Park, Texas, near the Houston Ship Channel during the Benzene and other Toxics Exposure Study (BEE-TEX). The mobile laboratory measured transient peaks of benzene of up to 37 ppbv in the afternoon and evening of February 19, 2015. Plume reconstruction and source attribution were performed using the four-dimensional (4D) variational data assimilation technique and a three-dimensional (3D) micro-scale forward and adjoint air quality model based on mobile PTR-MS data and nearby stationary wind measurements at the Galena Park Continuous Air Monitoring Station (CAMS). The results of inverse modeling indicate that significant pipeline emissions of benzene may at least partly explain the ambient concentration peaks observed in Galena Park during BEE-TEX. Total pipeline emissions of benzene inferred within the 16-km2 model domain exceeded point source emissions by roughly a factor of 2 during the observational episode. Besides pipeline leaks, the model also inferred significant benzene emissions from marine, railcar, and tank truck loading/unloading facilities, consistent with the presence of a tanker and barges in the Kinder Morgan port terminal during the afternoon and evening of February 19. Total domain emissions of benzene exceeded corresponding 2011 National Emissions Inventory (NEI) estimates by a factor of 2–6.

Implications:?Port operations involving petrochemicals may significantly increase emissions of air toxics from the transfer and storage of materials. Pipeline leaks, in particular, can lead to sporadic emissions greater than in emission inventories, resulting in higher ambient concentrations than are sampled by the existing monitoring network. The use of updated methods for ambient monitoring and source attribution in real time should be encouraged as an alternative to expanding the conventional monitoring network.  相似文献   

12.
As part of a survey programme conducted by the Environment Department of the Autonomous Government of Catalonia in collaboration with the Spanish Council for Scientific Research (CSIC), dioxin concentrations in ambient air were measured in the four provinces of Catalonia (Spain). The study was also performed with the intention of providing data as a basis for future monitoring and evaluation of temporal trends in ambient air. Thus, 91 samples were collected in 25 different sites (rural, urban, suburban and industrial) between 1994 and 2000. The levels revealed a variable content of PCDDs/PCDFs depending both on the area and the contamination source. In particular, industrial areas presented levels ranging from 18 to 954 fg I-TEQ/m3. However, findings in urban and suburban sites varied between 13 and 357 fg I-TEQ/m3. As expected, the lowest levels were found in rural areas with levels between 5 and 125 fg I-TEQ/m3.  相似文献   

13.
宁波市大气可吸入颗粒物PM1o和PM2.5的源解析研究   总被引:2,自引:0,他引:2  
在宁波市布设4个代表性点位,于2010年春季、夏季和冬季进行大气PM10和PM2.s的采样,同时采集了多种颗粒物源样品,建立了PM10、PM2.5和源样品的化学成分谱.采用化学质量平衡模型(CMB)对宁波市PM10、PM2.5进行源解析.结果表明,城市扬尘、煤烟尘、机动车尾气尘是宁波市PM10、PM2.5的3大污染源,...  相似文献   

14.
The chemical composition of emissions from the different anthropogenic sources of non-methane hydrocarbons (NMHC) is essential for modeling and source apportionment studies. The speciated profiles of major NMHC sources in Lebanon, including road transport, gasoline vapor, power generation, and solvent use were established. Field sampling have been carried out by canisters in 2012. Around 67 NMHC (C2 to C9) were identified and quantified by using a gas chromatograph equipped with a flame ionization detector. Typical features of the roadway emissions included high percentages of isopentane, butane, toluene, xylenes, ethylene, and ethyne. Gasoline evaporation profiles included high percentage of the C4–C5 saturated hydrocarbons reaching 59 %. The main compounds of the power generator emissions are related to combustion. Toluene and C8–C9 aromatics were the most abundant species in emissions from paint applications. Finally, the impact of the use of region-specific source profile is tackled regarding the implication on air quality.  相似文献   

15.
16.
This work applied a propagation of uncertainty method to typical total suspended particulate (TSP) sampling apparatus in order to estimate the overall measurement uncertainty. The objectives of this study were to estimate the uncertainty for three TSP samplers, develop an uncertainty budget, and determine the sensitivity of the total uncertainty to environmental parameters. The samplers evaluated were the TAMU High Volume TSP Sampler at a nominal volumetric flow rate of 1.42 m3 min–1 (50 CFM), the TAMU Low Volume TSP Sampler at a nominal volumetric flow rate of 17 L min–1 (0.6 CFM) and the EPA TSP Sampler at the nominal volumetric flow rates of 1.1 and 1.7 m3 min–1 (39 and 60 CFM). Under nominal operating conditions the overall measurement uncertainty was found to vary from 6.1 x 10–6 g m–3 to 18.0 x 10–6 g m–3, which represented an uncertainty of 1.7% to 5.2% of the measurement. Analysis of the uncertainty budget determined that three of the instrument parameters contributed significantly to the overall uncertainty: the uncertainty in the pressure drop measurement across the orifice meter during both calibration and testing and the uncertainty of the airflow standard used during calibration of the orifice meter. Five environmental parameters occurring during field measurements were considered for their effect on overall uncertainty: ambient TSP concentration, volumetric airflow rate, ambient temperature, ambient pressure, and ambient relative humidity. Of these, only ambient TSP concentration and volumetric airflow rate were found to have a strong effect on the overall uncertainty. The technique described in this paper can be applied to other measurement systems and is especially useful where there are no methods available to generate these values empirically.

Implications:?This work addresses measurement uncertainty of TSP samplers used in ambient conditions. Estimation of uncertainty in gravimetric measurements is of particular interest, since as ambient particulate matter (PM) concentrations approach regulatory limits, the uncertainty of the measurement is essential in determining the sample size and the probability of type II errors in hypothesis testing. This is an important factor in determining if ambient PM concentrations exceed regulatory limits. The technique described in this paper can be applied to other measurement systems and is especially useful where there are no methods available to generate these values empirically.  相似文献   

17.
The stack gases of a municipal solid waste incinerator (MSWI), and ambient air were sampled in four locations around the plant for the analysis of polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans (PCDDs/Fs). The sampling area was close to an industrial area near Trieste, in north-east Italy. The purpose of the study was to estimate the impact of the MSWI emissions and to distinguish the contribution of these emissions from other potential emission sources in the industrial area.PCDD/F atmospheric concentrations were similar to those generally detected in urban–rural areas with one location about 2–3 times more contaminated than the others. Since the most contaminated location was inside the industrial area but upwind of the MSWI, principal component analysis (PCA) was used to establish whether other sources were the cause. This analysis clearly showed that a local steel plant’s emission was the main source of PCDDs/Fs in ambient air. This study highlights the usefulness of multivariate data analysis such as PCA to identify, among different potential emission sources, the one really responsible for the contamination.  相似文献   

18.
The concentrations of persistent organic pollutants (POPs), such as HCB, alpha-, beta-, gamma- and delta-HCH, trans- and cis-chlordane (t-CHL, c-CHL), DDE, DDD and DDT, in ambient air have been measured at five sampling points in Niigata area, Japan (Niigata, Maki, Tsubame, Jouzo and Yahiko) during the period from September 1999 to November 2001. HCB, alpha-HCH, t-CHL and c-CHL showed higher concentrations than the other chemicals in all locations. All the POPs except t-CHL and c-CHL collected at urban sites of the Niigata Plain was almost the same in their concentration levels. Higher concentrations of t-CHL and c-CHL in residential areas should be attributed to the past usage of the chemical as a termiticide. At Yahiko (remote site), most of the POPs showed lower concentrations than those measured at the other sampling sites, although alpha-HCH and gamma-HCH were comparable with the concentrations found at the other sampling sites. All POPs except alpha-HCH and gamma-HCH tend to decrease 41-80% in their concentrations from 2000 to 2001. The lower POPs concentrations in winter and the higher POPs concentrations in summer at every sampling point can be partly explained by temperature differences. Applying the equation of the logarithm of the POP partial pressure in air versus reciprocal temperature (lnPa=m/T+b) to our data, linear relations were observed. HCB gave a poor linearity and the smallest slope, while beta-HCH, t-CHL and c-CHL gave good linearities and large slopes in the equation. The results suggest that HCB level is influenced by not only the emission from terrestrial sources but the global-scale background pollution. A peculiar observation is that beta-HCH concentration measured in our study showed large temperature dependence, indicating there could be a source of contamination in the surrounding areas.  相似文献   

19.
The carbonaceous components of Particulate Matter samples form a substantial fraction of their total mass, but their quantification depends strongly on the instruments and methods used. United Kingdom monitoring networks have provided many relevant data sets that are already in the public domain. Specifically, hourly organic carbon (OC) and elemental carbon (EC) were determined at four sites between 2003 and 2007 using Rupprecht and Pattashnik (R & P) 5400 automatic instruments. Since 2007, daily OC/EC measurements have been made by manual thermo-optical analysis of filter samples using a Sunset Laboratory Carbon Aerosol Analysis instrument. In parallel, long term daily measurements of Black Smoke, a quantity directly linked to black carbon (measured by aethalometers) and indirectly related to elemental carbon, have been made at many sites. The measurement issues associated with these techniques are evaluated in the context of UK measurements, making use of several sets of parallel data, with the aim of aiding the interpretation of network results. From the results available, the main conclusions are that the R & P 5400 instruments greatly under-read EC and total carbon (TC = OC + EC) at kerbside sites, probably due to the fact that the smaller particles are not sampled by the instrument; the R & P 5400 instrument is inherently difficult to characterise, so that all quantitative results need to be treated with caution; both aethalometer and Black Smoke (converted to black carbon) measurements can show reasonable agreement with elemental carbon results; and manual thermo-optical OC/EC results may under-read EC (and hence over-read OC), whether either transmittance or reflectance is used for the pyrolysis correction, and this effect is significant at rural sites.  相似文献   

20.
During some past two decades there has been a growing interest among air pollution-vegetation effects-scientists to use passive sampling systems for quantifying ambient, gaseous air pollutant concentrations, particularly in remote and wilderness areas. On the positive side, excluding the laboratory analysis costs, passive samplers are inexpensive, easy to use and do not require electricity to operate. Therefore, they are very attractive for use in regional-scale air quality assessments. Passive samplers allow the quantification of cumulative air pollutant exposures, as total or average pollutant concentrations over a sampling duration. Such systems function either by chemical absorption or by physical adsorption of the gaseous pollutant of interest onto the sampling medium. Selection of a passive sampler must be based on its known or tested characteristics of specificity and linearity of response to the chemical constituent being collected. In addition, the effects of wind velocity, radiation, temperature and relative humidity must be addressed in the context of absorbent/adsorbent performance and sampling rate. Because of all these considerations, passive samplers may provide under- or overestimations of the cumulative exposures, compared to the corresponding data from co-located continuous monitors or active samplers, although such statistical variance can be minimized by taking necessary precautions. On the negative side, cumulative exposures cannot identify short-term (相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号