首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Anheuser-Busch is a large, diversified corporation, both in its products and in its environmental efforts. It is well-known that Anheuser-Busch is the world'S largest brewer, with twelve operating breweries and a thirteenth under construction. It also operates the largest aluminum can recycling network in the world, Anheuser-Busch Recycling (A-BR). A-BR recycled more than 600 million pounds of aluminum in 1991, or more than 17 billion cans. This article describes how Anheuser-Busch has put TQEM ideas into practice involving all of its employees.  相似文献   

2.
《环境质量管理》1991,1(2):159-166
EPA's 33/50 Program calls for voluntary industry reductions of toxic wastes, aimed at achieving an overall national reduction of 33 percent by 1991 and 50 percent by 1995. The seventeen high-priority toxic chemicals included in the program accounted for 1.4 billion pounds of releases and transfers in 1988; a 50-percent reduction would eliminate 700 million pounds by 1995. As of June 1991, 236 companies have committed to an average reduction commitment of more than 200 million pounds. Thousands more companies are being invited to participate.  相似文献   

3.
This report summarizes current developments in the United States and 18 other industrial countries regarding packaging waste. It presents available data concerning the types, amounts, and methods of managing such waste and provides information concerning the policies established or under consideration to reduce the amount of such waste being disposed. The countries discussed are all members of the Organisation for Economic Co-operation and Development (OECD).In recent years, waste disposal capacity has become more scarce in most OECD countries. As a result, waste management policies have focused on efforts to reduce and recycle major components of the waste stream. Packaging represents about one-third of municipal solid waste in many countries. Because of this, measures to reduce the amount and toxicity of packaging and to encourage its recycling are currently being considered in at least 18 OECD countries. In addition, the EC and the Nordic Council are developing programs to address packaging on a regional basis.The report is divided into four main sections. Section I summarizes available information for the OECD countries. The second section discusses waste generation and recycling rates for six types of packaging material: paper, glass, metal, plastic, wood, and composites. The third section discusses key questions raised by the information presented in the report. The fourth briefly discusses packaging waste issues facing the Congress.In general, the report finds, other countries use less packaging than the United States, recycle more of it, and are considering policy measures stronger than the measures generally being considered in America. As noted in detail, other countries have adopted or are developing requirements that:
• • set mandatory requirements for packaging waste reduction;
• • require reusable or refillable packaging;
• • impose taxes to discourage single-use packages;
• • prohibit the use of non-recyclable packaging,
• • prohibit or limit disposal of packaging, and
• • require manufacturers of packaging materials to collect and recycle post-consumer waste.
Perhaps the most fundamental issue raised by these approaches is whether local governments will continue to bear responsibility for funding and operating recycling programs or whether all or some of this responsibility might be shifted to industry. To date, this issue has not been joined in the Congress directly; however, there is a growing consensus in other countries concerning the advantages of industry responsibility.  相似文献   

4.
Amorphous silicon (a-Si:H)-based solar cells have the lowest ecological impact of photovoltaic (PV) materials. In order to continue to improve the environmental performance of PV manufacturing using proposed industrial symbiosis techniques, this paper performs a life cycle analysis (LCA) on both conventional 1-GW scaled a-Si:H-based single junction and a-Si:H/microcrystalline-Si:H tandem cell solar PV manufacturing plants and such plants coupled to silane recycling plants. Both the energy consumed and greenhouse gas emissions are tracked in the LCA, then silane gas is reused in the manufacturing process rather than standard waste combustion. Using a recycling process that results in a silane loss of only 17% instead of conventional processing that loses 85% silane, results in an energy savings of 81,700 GJ and prevents 4400 tons of CO2 from being released into the atmosphere per year for the single junction plant. Due to the increased use of silane for the relatively thick microcrystalline-Si:H layers in the tandem junction plants, the savings are even more substantial – 290,000 GJ of energy savings and 15.6 million kg of CO2 eq. emission reductions per year. This recycling process reduces the cost of raw silane by 68%, or approximately $22.6 million per year for a 1-GW a-Si:H-based PV production facility and over $79 million per year for tandem manufacturing. The results are discussed and conclusions are drawn about the technical feasibility and environmental benefits of silane recycling in an eco-industrial park centered around a-Si:H-based PV manufacturing plants.  相似文献   

5.
Closed-loop recycling of steel in automobiles is particularly difficult because of the low tolerance for impurities and the use of composites of various types of steel products. Technologies that reduce impurities or increase impurity tolerance must be developed and introduced to the steel recycling system at the appropriate time. This study evaluated the feasibility of closed-loop recycling in the automobile industry in China. Material pinch analysis combined with dynamic modeling of the life cycle of steel sheets used in the manufacture of automobiles was employed to estimate the amount of steel sheet scrap available for closed-loop recycling and the amount of copper contamination in the scrap. The results indicate that by 2050, more than half of the old steel sheet scrap generated annually will have to be down-cycled because of its high copper contamination. However, scenario analyses of three types of technologies for mitigating the problem of copper contamination showed the potential for increasing the amount of old scrap used in closed-loop recycling. In particular, improving copper tolerance in the steel production process could be effective both now and in 2050.  相似文献   

6.
Data on the quantity (27 453 tons from litter-free reared animals in Bulgaria, only) and the chemical and energy characteristics of dung produced in intensive management farms for domestic animals suggests that technologies combining biogenic elements recycling with energy utilistation and dung decontamination are expedient to be applied on these types of farms. To this effect a fermenter was designed and a mathematical model (a Chen-Hashimoto model based computer programme) was applied, as a result of which the optimum methane fermentation parameters were determined. The technological methane output (Yv) — indicator of biogas production efficiency (output/dm3 fermentor volume) showed an optimum at temperature 55°C and period of exchange 6 days. The methane output per unit mineralised organic matter in the substrate (B) — assumed as an indicator of ecological efficiency (maximum organic matter degradation) exhibited an optimum at 33°C for 15 days period of exchange.  相似文献   

7.
Construction and demolition wastes (CDW) have increasingly serious problems in environmental, social, and economic realms. There is no coherent framework for utilization of these wastes which are disposed both legally and illegally. This harms the environment, contributes to the increase of energy consumption, and depletes finite landfills resources. The aim of this paper is to evaluate the impacts of two alternatives for the management of CDW, recycling and disposing. The evaluation is carried out through developing a dynamic model with aid STELLA software by conducting the following steps: (1) quantifying the total cost incurred to mitigate the impacts of CDW landfills and uncollected waste on the environment and human health; (2) quantifying the total avoided emissions and saved energy by recycling waste; (3) estimating total external cost saved by recycling waste and; (4) providing a decision support tool that helps in re-thinking about waste disposal. The proposed evaluation methodology allows activating the stringent regulations that restrict waste disposal and developing incentives to encourage constructors to recycle their wastes. The research findings show that recycling CDW leads to significant reductions in emissions, energy use, global warming potential (GWP), and conserves landfills space when compared to disposal of wastes in landfills. Furthermore, the cost of mitigating the impact of disposal is extremely high. Therefore, it is necessary to recycle construction and demolition wastes.  相似文献   

8.
The traditional concept of Aquifer Storage and Recovery (ASR) has been emphasized and extensively applied for water resources conservation in arid and semi-arid regions using groundwater systems as introduced in Pyne's book titled Groundwater Recharge and Wells. This paper extends the ASR concept to an integrated level in which either treated or untreated surface water or reclaimed wastewater is stored in a suitable aquifer through a system of spreading basins, infiltration galleries and recharge wells; and part or all of the stored water is recovered through production wells, dual function recharge wells, or by streams receiving increased discharge from the surrounding recharged aquifer as needed. In this paper, the author uses the El Paso Water Utilities (EPWU) ASR system for injection of reclaimed wastewater into the Hueco Bolson aquifer as an example to address challenges and resolutions faced during the design and operation of an ASR system under a new ASR system definition. This new ASR system concept consists of four subsystems: source water, storage space-aquifer, recharge facilities and recovery facilities. Even though facing challenges, this system has successfully recharged approximately 74.7 million cubic meters (19.7 billion gallons) of reclaimed wastewater into the Hueco Bolson aquifer through 10 recharge wells in the last 18 years. This ASR system has served dual purposes: reuse of reclaimed wastewater to preserve native groundwater, and restoration of groundwater by artificial recharge of reclaimed wastewater into the Hueco Bolson aquifer.  相似文献   

9.
10.
The Japanese system of recycling home electrical appliances has several unique aspects, including (1) a limited number of target appliances, (2) a recycling fee system that requires consumers to pay a recycling fee at the time of disposal, and (3) a direct recycling obligation for manufacturers, who have a physical, rather than a financial, responsibility for their end-of-life products. We studied data from 2001 to 2007 and found that the amount of four specified home electrical appliances and their materials that was recycled increased from about 319,249 tonnes in 2001 to about 447,262 tonnes—or 3.5 kg per inhabitant—in 2006. Recycling yield and development of recycling technologies have also improved. New recycling technologies have enabled a higher rate of material recycling of plastics (i.e., a closed-loop recycling). Improved eco-design, such as design for easier disassembly, has been promoted, and the higher quality of discarded appliances has enhanced the reuse market. Hazardous substances and fluorocarbons are being well managed. Problems with the recycling system include inelastic recycling fees, illegal dumping, illegal transfer by retailers, and the limited number of target appliances. Recycling fees could be reduced; this move might reduce the incidence of illegal dumping, as would engage stakeholders in collaborative efforts against illegal dumping. Illegal transfers could be reduced by improved traceability for retailers. Products such as liquid crystal displays, plasma display panels and clothes dryers have become increasingly common and should be also be targeted for recycling.  相似文献   

11.
对典型炼化企业热媒水的温度、压力、流量及气分、伴热装置的蒸汽使用情况等进行调研,根据低温余热的利用原则,简化低温余热回收利用系统建立步骤,提出适合本企业、有针对性的低温余热回收利用方案。方案实施后,可为企业节省各类蒸汽3.6×105 t/a,年增加经济效益近4 000万元。  相似文献   

12.
ABSTRACT: Nitrogen inputs to, and outputs from, a 55-acre site in Lancaster County, Pennsylvania, were estimated to determine the pathways and relative magnitude of loads of nitrogen entering and leaving the site, and to compare the loads of nitrogen before and after the implementation of nutrient management. Inputs of nitrogen to the site were manure fertilizer, commercial fertilizer, nitrogen in precipitation, and nitrogen in ground-water inflow; and these sources averaged 93, 4, 2, and 1 percent of average annual nitrogen additions, respectively. Outputs of nitrogen from the site were nitrogen in harvested crops, loads of nitrogen in surface runoff, volatilization of nitrogen, and loads of nitrogen in ground-water discharge, which averaged 37, less than 1, 25, and 38 percent of average annual nitrogen removals from the site, respectively. Virtually all of the nitrogen leaving the site that was not removed in harvested crops or by volatilization was discharged in the ground water. Applications of manure and fertilizer nitrogen to 47.5 acres of cropped fields decreased about 33 percent, from an average of 22,700 pounds per year (480 pounds per acre per year) before nutrient management to 15,175 pounds of nitrogen per year (320 pounds per acre per year) after the implementation of nutrient management practices. Nitrogen loads in ground-water discharged from the site decreased about 30 percent, from an average of 292 pounds of nitrogen per million gallons of ground water before nutrient management to an average of 203 pounds of nitrogen per million gallons as a result of the decreased manure and commercial fertilizer applications. Reductions in manure and commercial fertilizer applications caused a reduction of approximately 11,000 pounds (3,760 pounds per year; 70 pounds per acre per year) in the load of nitrogen discharged in ground water from the 55-acre site during the three-year period 1987–1990.  相似文献   

13.
Energy analysis of nonmarket values of the Mississippi Delta   总被引:1,自引:0,他引:1  
An energy analysis was used to estimate nonmarket values under various land cover scenarios in the Mississippi Delta. Land loss since 1900 has led to a decline in nonmarket values from $3.1 billion/year in 1900 to $2.5 billion in 1990, resulting in a total loss of $29.4 billion. This loss is concentrated in the Barataria-Terrebonne basins, where nonmarket value has dropped from $1.6 billion/year in 1956 to $1.3 billion/year in 1988. Although values are projected to increase in the Atchafalaya basin (from $723 million/year in 1988 to $756 million/year in 2058), total nonmarket value for the Louisiana coast is projected to decrease to $2.1 billion/year under currently approved levels of restoration.  相似文献   

14.
In Korea due to rapid economical growth followed by urbanisation, breakage of large traditional families into small nuclear families, continuous changes in equipment features and capabilities causes tremendous increase in sale of new electrical and electronic equipment (EEE) and decrease in sale of used EEE. Subsequently, the ever-increasing quantity of waste electrical and electronic equipment (WEEE) has become a serious social problem and threat to the environment. Therefore, the gradual increase in the generation of WEEE intensifies the interest for recycling to conserve the resources and protect the environment. In view of the above, a review has been made related to the present status of the recycling of waste electrical and electronic equipment in Korea. This paper describes the present status of generation and recycling of waste electrical and electronic equipment, namely TVs, refrigerators, washing machines, air conditioners, personal computers and mobile phones in Korea. The commercial processes and the status of developing new technologies for the recycling of metallic values from waste printed circuit boards (PCBs) is also described briefly. Since 1998, three recycling centers are in full operation to recycle WEEE such as refrigerators, washing machines and air conditioners, having the total capacity of 880,000 units/year. All waste TVs are recently recycled on commission basis by several private recycling plants. The recycling of waste personal computers and mobile phones is insignificant in comparison with the amount of estimated obsolete those. Korea has adopted and enforced the extended producer responsibility (EPR) system. Korea is making consistent efforts to improve the recycling rate to the standards indicated in the EU directives for WEEE. Especially environmentally friendly and energy-saving technologies are being developed to recycle metal values from PCBs of WEEE.  相似文献   

15.
A model recycling program for Alabama   总被引:1,自引:0,他引:1  
Solid waste disposal is becoming a difficult problem for many states. Since 1960, the amount of municipal solid waste (MSW) has been increasing at a rate of 1% per year. More than 75% of the waste is comprised of recyclable materials. Several states have mandated recycling to decrease the volume of waste intended for disposal. Those mandated programs are very popular, but depend on many political, social, and economic factors for success. While Alabama has the manufacturing infrastructure to support a mandated recycling program, no recycling legislation has been promulgated. At this time recycling is only being done on a voluntary basis. A mandatory program with the proper support, education and funding could allow Alabama to recycle much of the 5.2 million tons of waste that are generated within its borders each year.  相似文献   

16.
The household-recycling rate in the Borough of Burnley, England in 2001/2002 was only half the national average of 12%. This research employed both quantitative and qualitative surveys in order to ascertain whether householders’ attitudes to recycling were contributory factors to the generally poor recycling performance and to investigate other social, cultural and structural influences. The Borough has a large Asian–British population concentrated in two deprived wards where recycling rates are particularly low, so special attention was given to ascertaining their attitudes towards recycling.The quantitative survey comprised a postal questionnaire sent to a random sample of 360 households drawn from the electoral register. The qualitative survey consisted of group interviews with the Asian–British population at local community centres and focus groups attended by volunteers from the quantitative study.The findings suggest that householders are very willing to participate in recycling, as shown by the almost 80% claiming to recycle paper, but that local recycling services are too unreliable and inconvenient to allow them to do so comprehensively. Asian–British attitudes to recycling were found to be no different to those of the wider population, with their low participation being linked to the higher priorities imposed upon them by economic deprivation. The findings are broadly in line with those of the literature in that recycling participation tends to be higher among more affluent and older people, but lower among less affluent and younger households, probably due in part to the availability of both storage space and time, with the implication that the Borough's preponderance of terraced housing militates against a high recycling rate. Policy recommendations to local authorities include the provision of bespoke recycling services to suit the variety of residential conditions across the UK, and the provision of regular feedback to householders regarding recycling services and performance.Further research is needed to identify non-recyclers and to explore how householders’ underlying psychological, cultural and social attitudes to recycling impinge upon recycling and participation rates.  相似文献   

17.
Whether to recycle the recyclable fraction in the MSW (municipal solid waste) or to incinerate it for energy recovery is a debating issue. In this paper we present a simple criterion to judge what type of waste components should be recycled or incinerated with energy recovery. According to the R1 formula presented by the waste framework directive (Directive 2008/98/EC of the European Parliament), this paper calculates the energy performances of MSW waste-to-energy plants currently operated in Taiwan firstly. By using the assumed value of energy recovery efficiency and carbon emission costs, we compare the treatment methods between recycling (material recovery) and energy recovery by the cost and benefit analysis, and examine the suitability of recycling for waste fractions of paper, food waste, PET, PVC, and plastic bags/films under a variety of scenarios. The results show that food waste is more appropriate to be treated by recycling while plastic bags/films are suggested to be incinerated with energy recovery.  相似文献   

18.
This paper considers two alternative feedstocks for bioethanol production, both derived from household waste—Refuse Derived Fuel (RDF) and Biodegradable Municipal Waste (BMW). Life Cycle Assessment (LCA) has been carried out to estimate the GHG emissions from bioethanol using these two feedstocks. An integrated waste management system has been considered, taking into account recycling of materials and production of bioethanol in a combined gasification/bio-catalytic process. For the functional unit defined as the ‘total amount of waste treated in the integrated waste management system’, the best option is to produce bioethanol from RDF—this saves up to 196 kg CO2 equiv. per tonne of MSW, compared to the current waste management practice in the UK.However, if the functional unit is defined as ‘MJ of fuel equiv.’ and bioethanol is compared with petrol on an equivalent energy basis, the results show that bioethanol from RDF offers no saving of GHG emissions compared to petrol. For example, for a typical biogenic carbon content in RDF of around 60%, the life cycle GHG emissions from bioethanol are 87 g CO2 equiv./MJ while for petrol they are 85 g CO2 equiv./MJ. On the other hand, bioethanol from BMW offers a significant GHG saving potential over petrol. For a biogenic carbon content of 95%, the life cycle GHG emissions from bioethanol are 6.1 g CO2 equiv./MJ which represents a saving of 92.5% compared to petrol. In comparison, bioethanol from UK wheat saves 28% of GHG while that from Brazilian sugar cane – the best performing bioethanol with respect to GHG emissions – saves 70%. If the biogenic carbon of the BMW feedstock exceeds 97%, the bioethanol system becomes a carbon sequester. For instance, if waste paper with the biogenic carbon content of almost 100% and a calorific value of 18 MJ/kg is converted into bioethanol, a saving of 107% compared to petrol could be achieved. Compared to paper recycling, converting waste paper into bioethanol saves 460 kg CO2 equiv./t waste paper or eight times more than recycling.  相似文献   

19.
ABSTRACT: According to the 1990 National Water Quality Inventory nutrient runoff from agriculture is one of the largest contributors to watershed contamination. Nutrient balance studies suggest that many farmers use more fertilizer than necessary because of insufficient crediting for nutrients coming from manure and legumes. Using data from the USDA's 1990 Farm Costs and Returns Survey, we found that farmers raising only conventional crops spend between $470 to $624 million more per year on fertilizer than necessary. This accounts for a range of 24 percent to 32 percent of total annual nitrogen (N) purchases. The excess N amounts to between 2.5 to 3.3 billion pounds N and has considerable water pollution potential. Farmers and the fertilizer industry have responded positively to highly focused research and education programs which support improved crediting of these nutrients.  相似文献   

20.
ABSTRACT: Ground water nitrate contamination and water level decline are common concern in Nebraska. Effects of artificial recharge on ground water quality and aquifer storage recovery (ASR) were studied with spreading basins constructed in the highly agricultural region of the Central Platte, Nebraska. A total of 1.10 million m3 of Platte River water recharged the aquifer through 5000 m2 of the recharge basins during 1992, 1993, and 1994. This is equivalent to the quantity needed to completely displace the ground water beneath 34 ha of the local primary aquifer with 13 m thickness and 0.25 porosity. Successful NO3-N remediation was documented beneath and downgradient of the recharge basins, where NO3-N declined from 20 to 2 mg L-1. Ground water atrazine concentrations at the site decreased from 2 to 0.2 mg L-1 due to recharge. Both NO3-N and atrazine contamination dramatically improved from concentrations exceeding the maximum contaminant levels to those of drinking water quality. The water table at the site rose rapidly in response to recharge during the early stage then leveled off as infiltration rates declined. At the end of the 1992 recharge season, the water table 12 m downgradient from the basins was elevated 1.36 m above the preproject level; however, at the end of the 1993 recharge season, any increase in the water table from artificial recharge was masked by extremely slow infiltration rates and heavy recharge from precipitation from the wettest growing season in over 100 years. The water table rose 1.37 m during the 1994 recharge season. Resultant ground water quality and ASR improvement from the artificial recharge were measured at 1000 m downgradient and 600 m upgradient from the recharge basins. Constant infiltration rates were not sustained in any of the three years, and rates always decreased with time presumably because of clogging. Scraping the basin floor increased infiltration rates. Using a pulsed recharge to create dry and wet cycles and maintaining low standing water heads in the basins appeared to reduce microbial growth, and therefore enhanced infiltration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号