首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Dobor J  Varga M  Záray G 《Chemosphere》2012,87(2):105-110
The sorption process of selected non-steroidal anti-inflammatory drugs (ibuprofen, naproxen, ketoprofen, diclofenac) on biofilm covered river sediments were investigated in laboratory. In the course of the experiments, the effect of pH of aqueous phase, the effect of TOC (total organic carbon) content of biofilm on the sorption processes were studied. The determination of concentration of drugs was performed by gas chromatography mass spectrometry (GC-MS) both in liquid and solid phases. The pseudo-first-order rate constant of the sorption was found to be 83 min(-1). The effect of pH on the sorption of diclofenac was significantly lower than the obtained values in case of the other three drugs. The calculated K(d) (sorption coefficient) values increased in the sequence of ibuprofen, naproxen, ketoprofen and diclofenac and varied between 0.1-0.4; 0.2-0.7; 0.2-1.2; 0.2-1.4 kg L(-1) respectively, depending on the characteristics of the sediments. The value of K(d)×f(oc) showed a straight line as function of f(oc) (fraction of organic carbon) therefore, instead of the widely distributed normalization process (K(d)/f(oc)), an empirical equation (K(d)=A/f(oc)+B) was suggested for estimation of the K(d) values in case of different TOC content sediments.  相似文献   

2.
Sorption is a natural process that takes place in sediments or soils and changes the mobility and availability of hydrophobic organic compounds, such as toxaphene pesticide in the environment. The sorption of the 2-exo,3-endo,5-exo,8,9,10,10-heptachlorobornane (B7-1450), used as a model compound of the toxaphene heptachlorobornane congeners found in sediments, was investigated for the first time through a series of batch sorption experiments. The losses of B7-1450 due to adsorption onto glass walls and to evaporation occurring during analytical treatment steps were corrected. The study showed that these specific losses ranged from 2% to 3.5% for the glass walls adsorption and can be as high as 15% for the evaporation treatment. The sorption coefficients, K(d) and K(oc), of B7-1450 could be overestimated by >30%, particularly for low-concentration samples, if the losses were not corrected. Loss correction equations were established, validated and applied to determine sorption coefficients for the B7-1450 congener. The K(oc) values for B7-1450 determined over a gradient of concentrations ranged from 3.5x10(4) to 6.5x10(4)mlg(-1), revealing a strong affinity of B7-1450 for marine sediments.  相似文献   

3.
Many pharmaceuticals pass the unsaturated zone before reaching an aquifer. Therefore, laboratory sand column transport experiments were conducted to study the transport behavior of carbamazepine, diclofenac, ibuprofen, and propyphenazone under unsaturated conditions. The test water was artificial sewage effluent to simulate the infiltration of reused wastewater. The test water was spiked with the pharmaceutically active compounds and the tracer LiCl. Afterwards it was passed through laboratory sand columns, one experiment for each pharmaceutical. The physical and chemical parameters were recorded and general ions measured. Pharmaceuticals were measured using solid phase extraction, derivatization, and detection with GC-MS. The column experiments indicate a significant elimination of ibuprofen (54%), propyphenazone (55%), and diclofenac (35%), whereas carbamazepine was not eliminated. Retardation factors varied between 1.84 for carbamazepine, 2.51 for propyphenazone, 3.00 for ibuprofen, and 4.80 for diclofenac. These results show that mobility and elimination of diclofenac, ibuprofen, and propyphenazone is about in the same range as for experiments under saturated conditions whereas carbamazepine had a significantly lower sorption and elimination under unsaturated conditions.  相似文献   

4.
Sorption of acetamiprid ((E)-N1-[(6-chloro-3-pyridyl)methyl]-N2-cyano-N1-methylacetamidine), carbendazim (methyl benzimidazol-2-ylcarbamate), diuron (N-(3,4-dichlorophenyl)-N, N-dimethyl urea) and thiamethoxam (3-(2-chloro-thiazol-5-ylmethyl)-5-methyl-[1,3,5]oxadiazinan-4-ylidene-N-nitroamine) was evaluated in two Brazilian tropical soils, Oxisol and Entisol, from Primavera do Leste region, Mato Grosso State, Brazil. To describe the sorption process, batch experiments were carried out. Linear and Freundlich isotherm models were used to calculate the K(d) and K(f) coefficients from experimental data. The K(d) values were utilized to calculate the partition coefficient normalized to soil organic carbon (K(oc)). For the pesticides acetamiprid, carbendazim, diuron and thiamenthoxan the K(oc) (mL g(- 1)) values ranged in both soils from 98 - 3235, 1024 - 2644, 145 - 2631 and 104 - 2877, respectively. From the studied pesticides, only carbendazim presented correlation (r(2) = 0.82 and p < 0.01) with soil organic carbon (OC) content. Acetamiprid and thiamethoxam showed low sorption coefficients, representing a high risk of surface and ground water contamination.  相似文献   

5.
Sorption of imidazolium-based ionic liquids to aquatic sediments   总被引:1,自引:0,他引:1  
Beaulieu JJ  Tank JL  Kopacz M 《Chemosphere》2008,70(7):1320-1328
Ionic liquids (ILs) have received much attention as "green" alternatives to traditional solvents because they do not evaporate, eliminating concerns over fugitive emissions. However, if ionic liquids are used in industrial applications, they may enter aquatic systems via effluent, and their fate and transport may be influenced by sorption to sediments. In this study, we conducted batch mixing experiments with four alkylmethylimidizolium-based ILs and four types of aquatic sediments to asses the capacity for natural aquatic sediments to remove these chemicals from the water column. The concentration isotherms were non linear with point estimates of the distribution coefficient (K(d)) decreasing with increasing concentration. Apparent distribution coefficients ranged from 7.9 to 95.7l kg(-1) at an initial concentration of 0.5mM and were positively related to sediment organic matter (SOM) content. These K(d) values indicate that the ILs did not sorb strongly to the tested sediments. Increased alkyl chain length did not lead to increased sorption suggesting that hydrophobic interactions were not the most important sorption mechanism. We conclude that aquatic sediments have a limited capacity to sorb alkylmethylimidazolium ILs and that the transport of these contaminants in aquatic systems will not be strongly attenuated by sediments.  相似文献   

6.
Sun WL  Ni JR  Xu N  Sun LY 《Chemosphere》2007,66(4):700-707
Humic substances (HS) have a critical influence on the sorption of organic contaminants by soils and sediments. This paper describes investigations into the sorption behavior of three representative endocrine disruptors, bisphenol A (BPA), 17beta-estradiol (E2), and 17alpha-ethynylestradiol (EE2), onto sediments and HS extracted sediments using a batch technique. The organic carbon-normalized partition coefficients (K(oc)) for the extracted HS (K(oc)(hs)) were calculated, and the fluorescence spectra of the HS extraced from different sediment samples were gained using excitation/emission matrix (EEM). Particular attention was paid to the correlations between the fluorescence characteristics of HS and the log K(oc)(hs) of selected endocrine disruptors. The results show that the log K(oc)(hs) values range from 3.14 to 4.09 for BPA, from 3.47 to 4.33 for E2, and from 3.65 to 4.32 for EE2. Two characteristic excitation-emission peaks were observed for HS samples extracted from sediments. They are located at Ex/Em=250-260 nm/400-450 nm (peak alpha') and Ex/Em=310-330 nm/390-400 nm (peak alpha) respectively. The alpha' and alpha peak relative intensities I(alpha')/I(alpha) vary from 0.46 to 1.64 for different extracted HS samples. The similarity between fulvic acids (FA) Ex/Em pairs and those observed for HS indicates that FA is the predominant fraction of HS extracted from sediments. Moreover, the log K(oc)(hs) values of BPA, E2, and EE2 have a negative linear correlation to I(alpha')/I(alpha) values. Peak alpha is often attributed to relatively stable and high molecular weight aromatic fulvic-like matter. Therefore, the result presented here reveals that the abundance of aromatic rings in HS molecular structure plays a critical role in the sorption of selected endocrine disruptors.  相似文献   

7.
This study addresses the issues related to decontamination of marine beach sand accidentally contaminated by petroleum products. Sorption and desorption of BTEX (i.e., benzene, toluene, ethylbenzene, and xylene) onto the sand from Uran Beach, located near the city of Mumbai, India, were studied, and isotherms were determined using the bottle point method to estimate sorption coefficients. Alternatively, QSARs (i.e., quantitative structure activity relationships) were developed and used to estimate the sorption coefficients. Experiments for kinetics of volatilization as well as for kinetics of sorption and desorption in the presence of volatilization were conducted in a fabricated laboratory batch reactor. A mathematical model describing the fate of volatile hydrophobic organic pollutants like BTEX (via sorption and desorption in presence of volatilization) in a batch sediment-washing reactor was proposed. The experimental kinetic data were compared with the values predicted using the proposed models for sorption and desorption, and the optimum values of overall mass transfer coefficients for sorption (K(s)a(s)) and desorption (K(d)a(d)) were estimated. This was achieved by minimization of errors while using the sorption coefficients (Kp) obtained from either laboratory isotherm studies or the QSARs developed in the present study. Independent experimental data were also collected and used for calibration of the model for volatilization, and the values of the overall mass transfer coefficient for volatilization (K(g)a(g)) were estimated for BTEX. In these exercises of minimization of errors, comparable cumulative errors were obtained from the use of Kp values derived from experimental isotherms and QSARs.  相似文献   

8.
Chefetz B  Mualem T  Ben-Ari J 《Chemosphere》2008,73(8):1335-1343
Use of reclaimed wastewater for irrigation is an important route for the introduction of pharmaceutical compounds (PCs) into the environment. In this study, the mobility and sorption-desorption behavior of carbamazepine, naproxen and diclofenac were studied in soil layers sampled from a plot irrigated with secondary-treated wastewater (STWW). Carbamazepine and diclofenac were significantly retarded in the 0-5 cm soil sample rich in soil organic matter (SOM): carbamazepine was not affected by the water quality (freshwater versus STWW), whereas diclofenac exhibited a higher retardation factor (RF) in the freshwater system. Naproxen exhibited significantly lower RFs than diclofenac but with a similar trend - higher retardation in the freshwater versus STWW system. In the 5-15 cm soil sample containing low SOM, naproxen was highly mobile while carbamazepine and diclofenac were still retarded. In the 15-25 cm sample, all compounds exhibited their lowest RFs. Sorption data suggested that SOM governs the studied PCs' interactions with the soil samples. However, higher carbon-normalized sorption coefficients were measured for the PCs in the 15-25 cm sample, suggesting that both quantity and the physicochemical nature of SOM affect sorption interactions. While both naproxen and carbamazepine exhibited reversible sorption isotherms, diclofenac exhibited pronounced sorption-desorption hysteresis. This study suggests that carbamazepine and diclofenac can be classified as slow-mobile compounds in SOM-rich soil layers. When these compounds pass this layer and/or introduced into SOM-poor soils, their mobility increases significantly. This emphasizes the potential transport of PCs to groundwater in semiarid zones due to intensive irrigation with reclaimed wastewater in SOM-poor soils.  相似文献   

9.
Fate and mobility of pharmaceuticals in solid matrices   总被引:2,自引:0,他引:2  
The sorption and mobility of six pharmaceuticals were investigated in two soil types with different organic carbon and clay content, and in bacterial biomass (aerobic and anaerobic). The pharmaceuticals examined were carbamazepine, propranolol, diclofenac sodium, clofibric acid, sulfamethoxazole and ofloxacin. The sorption experiments were performed according to the OECD test Guideline 106. The distribution coefficients determined by this batch equilibrium method varied with the pharmaceutical tested and the solid matrix type. Ofloxacin was particularly strongly adsorbed (except of the case of using anaerobic biomass for the solid matrix) while clofibric acid was found to be weakly adsorbed. The fate of pharmaceuticals in soil was also assessed using lysimeters. Important parameters that were studied were: the pharmaceutical loading rate and the hydraulic loading rate for adsorption and the rate and duration of a "rain" event for desorption. Major differences in the mobility of the six pharmaceuticals were observed and correlated with the adsorption/desorption properties of the compounds.  相似文献   

10.
Laboratory studies were conducted to determine the sorption behaviour of six commonly used pesticides (acetochlor, atrazine, carbendazim, diazinon, imidacloprid and isoproturon) on Hungarian brown forest soil with clay alluviation (Luvisol) using the batch equilibrium technique. The sorption isotherms could be described by the Freundlich equation in non-linear form (n < 1) for all compounds, however in case of diazinon using the extended Freundlich equation proved to be a better approach. The adsorption constant related soil organic carbon content (Koc) calculated from Freundlich equation were 314 for acetochlor, 133 for atrazine, 2805 for carbendazim, 1589 for diazinon, 210 for imidacloprid and 174 for isoproturon. The octanol-water partition coefficients (Pow), which can be a useful parameter to predict of adsorption behaviour of a chemical on soil, and dissociation coefficients of these pesticides were calculated based on the chemical structure of them using a computerized expert system. The octanol-water partition coefficients were determined experimentally from high performance liquid chromatographic parameters as well. Good agreement was observed between experimental and the computer expert system estimated data. Computer estimated log Pow values ranged 0.5 and 3.86 for the examined pesticides, with imidacloprid and diazinon being the least and most hydrophobic respectively. Experimentally determined logPow ranged between 0.92 and 3.81 with the same tendency. It can be concluded that the Freundlich adsorption constants (Kf) are slightly related to the octanol-water partition coefficients of investigated chemicals, nevertheless no close correlation could be established because of the influence of further characteristics of solutes and soil.  相似文献   

11.
Background, aim, and scope  Herbicide fate and its transport in soils and sediments greatly depend upon sorption–desorption processes. Quantitative determination of herbicide sorption–desorption is therefore essential for both the understanding of transport and the sorption equilibrium in the soil/sediment–water system; and it is also an important parameter for predicting herbicide fate using mathematical simulation models. The total soil/sediment organic carbon content and its qualitative characteristics are the most important factors affecting sorption–desorption of herbicides in soil or sediment. Since the acetochlor is one of the most frequently used herbicides in Slovakia to control annual grasses and certain annual broad-leaved weeds in maize and potatoes, and posses various negative health effects on human beings, our aim in this study was to investigate acetochlor sorption and desorption in various soil/sediment samples from Slovakia. The main soil/sediment characteristics governing acetochlor sorption–desorption were also identified. Materials and methods  The sorption–desorption of acetochlor, using the batch equilibration method, was studied on eight surface soils, one subsurface soil and five sediments collected from the Laborec River and three water reservoirs. Soils and sediments were characterized by commonly used methods for their total organic carbon content, distribution of humus components, pH, grain-size distribution, and smectite content, and for calcium carbonate content. The effect of soil/sediment characteristics on acetochlor sorption–desorption was examined by simple correlation analysis. Results  Sorption of acetochlor was expressed as the distribution coefficient (K d). K d values slightly decreased as the initial acetochlor concentration increased. These values indicated that acetochlor was moderately sorbed by soils and sediments. Highly significant correlations between the K d values and the organic carbon content were observed at both initial concentrations. However, sorption of acetochlor was most closely correlated to the humic acid carbon, and less to the fulvic acid carbon. The total organic carbon content was found to also significantly influence acetochlor desorption. Discussion  Since the strong linear relationship between the K d values of acetochlor and the organic carbon content was already released, the corresponding K oc values were calculated. Considerable variation in the K oc values suggested that other soil/sediment parameters besides the total soil organic carbon content could be involved in acetochlor sorption. This was revealed by a significant correlation between the K oc values and the ratio of humic acid carbon to fulvic acid carbon (CHA/CFA). Conclusions  When comparing acetochlor sorption in a range of soils and sediments, different K d values which are strongly correlated to the total organic carbon content were found. Concerning the humus fractions, the humic acid carbon content was strongly correlated to the K d values, and it is therefore a better predictor of the acetochlor sorption than the total organic carbon content. Variation in the K oc values was attributed to the differences in distribution of humus components between soils and sediments. Desorption of acetochlor was significantly influenced by total organic carbon content, with a greater organic carbon content reducing desorption. Recommendations and perspectives  This study examined the sorption–desorption processes of acetochlor in soils and sediments. The obtained sorption data are important for qualitative assessment of acetochlor mobility in natural solids, but further studies must be carried out to understand its environmental fate and transport more thoroughly. Although, the total organic carbon content, the humus fractions of the organic matter and the CHA/CFA ratio were sufficient predictors of the acetochlor sorption–desorption. Further investigations of the structural and chemical characteristics of humic substances derived from different origins are necessary to more preciously explain differences in acetochlor sorption in the soils and sediments observed in this study.  相似文献   

12.
The use of a reference compound to quantify the sorption of nonpolar organic chemicals is proposed. This is because organic carbon normalized sorption coefficients (KOC) do appear to be dependent on the type of sediment, and are thus not generally applicable to characterize the sorption properties of chemicals. Therefore, in this paper the hypothesis that nonpolar chemicals sorb in a constant ratio, independent of the sediment, has been investigated. Evidence for this hypothesis is shown with data from the literature. This enables one to compare sorption properties of nonpolar compounds on different sediments, if the differences between the sediments are normalized with a reference chemical rather than with the organic carbon content. Sediments with an organic carbon content of less than 0.1% seem to be unsuitable, because the compounds do not sorb mainly on the organic carbon, but also on other parts of the sediment. Sorption coefficients of compounds with aqueous solubilities in the μg per liter range or octan-1-ol water partition coefficients of more than 105 are strongly influenced by the experimental techniques used. For these compounds the sorption coefficients measured by different techniques are less comparable. To enable comparison of sorption coefficients of hydrophobic chemicals, the use of a chlorobenzene as a reference compound in sorption experiments is suggested.  相似文献   

13.
Sorption of ametryn and imazethapyr in 25 soils from Pakistan and Australia was investigated using the batch method. The soils varied widely in their intrinsic capacities to sorb these herbicides as shown by the sorption coefficients, Kd, which ranged from 0.59 to 47.6 for ametryn and 0.02 to 6.94 for imazethapyr. Generally the alkaline soils of Pakistan had much lower Kd values of both herbicides than the soils of Australia. Both soil pH and soil organic carbon (SOC) were correlated significantly with the sorption of ametryn, whereas only soil pH was strongly correlated with imazethapyr sorption. No correlation was found between Kd values of the herbicides and the clay contents of the soils. Multiple regression analysis showed that Kd values were better correlated (r2=0.94 and 0.89 for ametryn and imazethapyr, respectively) if SOC and pH were simultaneously taken into account. The study indicated that sorption of these herbicides in the alkaline soils of Pakistan was low and consequently there is considerable risk of groundwater contamination.  相似文献   

14.
This paper presents a modification of chemical oxygen demand (COD) monitoring giving a better indication of the pollution level compared with the conventional COD method for rivers with a high content of sediments. The correlation between the sediment organic carbon and COD was investigated using sediments sampled in the middle Yellow River, China. Partitioning of the sediment organic carbon between the water and sediment phases was also investigated using batch experiments, with the sediment concentration varying from 20 to 400 g/L. As a result, the COD modification equations are proposed for both turbid water (mixture of water and sediment) and supematant water (filtrate using a 0.45-microm membrane). The modified COD in turbid water and supernatant water could be 40 and 10% less than the monitored COD values, respectively. These results may have a significant influence on the assessment of water quality class in the Yellow River.  相似文献   

15.
Sorption of acetamiprid ((E)-N1-[(6-chloro-3-pyridyl)methyl]-N2-cyano-N1-methylacetamidine), carbendazim (methyl benzimidazol-2-ylcarbamate), diuron (N-(3,4-dichlorophenyl)-N, N-dimethyl urea) and thiamethoxam (3-(2-chloro-thiazol-5-ylmethyl)-5-methyl-[1,3,5]oxadiazinan-4-ylidene-N-nitroamine) was evaluated in two Brazilian tropical soils, Oxisol and Entisol, from Primavera do Leste region, Mato Grosso State, Brazil. To describe the sorption process, batch experiments were carried out. Linear and Freundlich isotherm models were used to calculate the K d and K f coefficients from experimental data. The K d values were utilized to calculate the partition coefficient normalized to soil organic carbon (K oc ). For the pesticides acetamiprid, carbendazim, diuron and thiamenthoxan the K oc (mL g? 1) values ranged in both soils from 98 – 3235, 1024 – 2644, 145 – 2631 and 104 – 2877, respectively. From the studied pesticides, only carbendazim presented correlation (r2 = 0.82 and p < 0.01) with soil organic carbon (OC) content. Acetamiprid and thiamethoxam showed low sorption coefficients, representing a high risk of surface and ground water contamination.  相似文献   

16.
Shareef K  Shaw G 《Chemosphere》2008,72(1):8-15
Agriculture in northern Iraq (Kurdistan) relies on the widespread use of pesticides to promote crop performance. Over-application of many pesticides is commonplace, however, and may compromise soil and water quality, and ultimately human health, within the region. The aim of this study was to investigate the sorption-desorption kinetics and equilibrium partitioning of two selected pesticides in agricultural soils from northern Iraq. This was achieved by fitting a dual-rate sorption-desorption model to time-dependent data obtained from batch experiments. 2,4-D and carbaryl were selected for scrutiny since both are in common use in the region. Six agricultural soils, sampled around the city of Erbil, were investigated. These were low in organic carbon (OC) compared with many agricultural soils from more temperate regions. However, there was still a clear trend of increasing sorption of both 2,4-D and carbaryl with increasing % OC. In the case of both compounds, fast and slow adsorption rate coefficients and 48 h experimental K(d) values were positively correlated with % OC. It was assumed that K(OC) would provide a simple and reliable predictor of K(d). However, while this assumption holds true for short-term (48 h) experimental data, longer-term sorption in some soils (as indicated by theoretical K(d) values estimated from kinetic parameters in our study) appears to be under-predicted by K(OC) alone. The data presented here provide a useful starting point for further site-specific investigations of pesticide impacts in the Kurdistan region of Iraq.  相似文献   

17.
This study was undertaken to determine sorption coefficients of eight herbicides (alachlor, amitrole, atrazine, simazine, dicamba, imazamox, imazethapyr, and pendimethalin) to seven agricultural soils from sites throughout Lithuania. The measured sorption coefficients were used to predict the susceptibility of these herbicides to leach to groundwater. Soil-water partitioning coefficients were measured in batch equilibrium studies using radiolabeled herbicides. In most soils, sorption followed the general trend pendimethalin > alachlor > atrazine approximately amitrole approximately simazine > imazethapyr > imazamox > dicamba, consistent with the trends in hydrophobicity (log K(ow)) except in the case of amitrole. For several herbicides, sorption coefficients and calculated retardation factors were lowest (predicted to be most susceptible to leaching) in a soil of intermediate organic carbon content and sand content. Calculated herbicide retardation factors were high for soils with high organic carbon contents. Estimated leaching times under saturated conditions, assuming no herbicide degradation and no preferential water flow, were more strongly affected by soil textural effects on predicted water flow than by herbicide sorption effects. All herbicides were predicted to be slowest to leach in soils with high clay and low sand contents, and fastest to leach in soils with high sand content and low organic matter content. Herbicide management is important to the continued increase in agricultural production and profitability in the Baltic region, and these results will be useful in identifying critical areas requiring improved management practices to reduce water contamination by pesticides.  相似文献   

18.
Linear alkylbenzene sulfonates (LAS) are anionic high production volume surfactants used in the manufacture of cleaning products. Here, we have studied the effect of the characteristics of marine and estuarine sediments on the sorption of LAS. Sorption experiments were performed with single sediment materials (pure clays and sea sand), with sediments treated to reduce their organic carbon content, and with field marine and estuarine sediments. C12-2-LAS was used as a model compound. Sorption to the clays montmorillonite and kaolinite resulted in non-linear isotherms very similar for both clays. When reducing the organic content, sorption coefficients decreased proportionally to the fraction removed in fine grain sediments but this was not the case for the sandy sediment. The correlation of the sediment characteristics with the sorption coefficients at different surfactant concentrations showed that at concentrations below 10 μg C12-2-LAS/L, the clay content correlated better with sorption, while the organic fraction became more significant at higher concentrations.  相似文献   

19.
Yu Z  Huang W  Song J  Qian Y  Peng P 《Chemosphere》2006,65(11):2493-2501
The objective of this study was to quantify sorption properties for kerogen/black carbon (BC)-bearing sediments. Single-solute sorption isotherms were measured for five pristine marine sediments using phenanthrene, naphthalene, 1,3,5-trichlorobenzene, and 1,4-dichlorobenzene as the sorbates. The results showed that the sorption isotherms were nonlinear and that the organic carbon normalized single point KOC values were comparable to those reported in the literature for the purified keorgen and BC, but are much higher than the data reported for HA and kerogen/BC-containing terrestrial soils and sediments. It is likely that koergen and BC associated with these pristine marine sediments may not be encapsulated with humic acids or Fe and Mn oxides and hydroxides as often do in terrestrial soils and sediments. As a result, they may be fully accessible to sorbing molecules, exhibiting higher sorption capacities. The study suggests that competition from background HOCs and reduced accessibility when kerogen and BC are associated with terrestrial sediments may dramatically increase variability of sorption reactivities of geosorbents. Such variability may lead to large uncertainties in the prediction of sorption from the contents of kerogen and/or BC along with TOC.  相似文献   

20.
The application of a solvophobic approach for predicting the sorption of hydrophobic organic compounds (HOC) was evaluated with data collected using synthetic sorbents and soils. The experimental data consisted of batch equilibrium sorption coefficients (KD), as well as soil-TLC and reversed-phase liquid chromatographic (RPLC) retention factors (κ′). All data were collected using aqueous solutions and binary or ternary solvent mixtures of water, methanol, acetone, and acetonitrile. As predicted by the theory, the chromatographic retention factors and sorption coefficients for HOC decreased log-linearly with increasing fraction of organic cosolvent in binary solvents. Model parameters estimated from the binary solvent data could be used to predict sorption (or retention) from ternary solvents. Reasonable agreement was found between model parameters reported in the literature and those estimated using the data from batch sorption, soil-TLC, and RPLC studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号