首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study was conducted to evaluate the potential applicability of an in situ biological reactive barrier system to treat nitrate-contaminated bank filtrate. The reactive barrier consisted of sulfur granules as an electron donor and autotrophic sulfur-oxidizing bacteria as a biological component. Limestone was also used to provide alkalinity. The results showed that the autotrophic sulfur oxidizers were successfully colonized on the surfaces of the sulfur particles and removed nitrate from synthetic bank filtrate. The sulfur-oxidizing activity continuously increased with time and then was maintained or slightly decreased after five days of column operation. Maximum nitrate removal efficiency and sulfur oxidation rate were observed at near neutral pH. Over 90% of the initial nitrate dissolved in synthetic bank filtrate was removed in all columns tested with some nitrite accumulation. However, nitrite accumulation was observed mainly during the initial operation period, and the concentration markedly diminished with time. The nitrite concentration in effluent was less than 2 mg-N/l after 12 days of column operation. When influent nitrate concentrations were 30, 40, and 60 mg-N/l and sulfur content in column was 75%, half-order autotrophic denitrification reaction rate constants were 31.73 x 10(-3), 33.3 x 10(-3), and 36.4 x 10(-3) mg(1/2)/l(1/2)min, respectively. Our data on the nitrate distribution profile along the column suggest that an appropriate wall thickness of a reactive barrier for autotrophic denitrification may be 30 cm when influent nitrate concentration is less than 60 mg-N/l.  相似文献   

2.
采用序半连续式反应器(sequencing fed-batch reactor,简称SFBR)对人工合成废水顺序地进行硝化和反硝化动力学进行了研究.硝化和反硝化所用微生物为活性污泥.反应器在不同的操作条件进行操作,获得了用于确定动力学常数的数据;获得动力学参数um=0.05 h-1,KNO=2.0 mg/L,y=0.47 mg X/mg N,a=0.001 h-1.类似地确定了反硝化动力学参数kD=0.01 h-1和KD,NO=0.4 mg/L.在一定范围内硝化和反硝化速率随着氨浓度和硝酸盐浓度的增加而增加.实验数据表明,硝化和反硝化的动力学符合Monod动力学方程.  相似文献   

3.
以脱氮副球菌YF1为实验菌株,研究纳米Fe0和纳米Fe/Ni 2种金属纳米材料对菌体生长及其反硝化作用的影响。实验结果表明:添加纳米材料到反应体系中会降低实验菌株的生长量和生物反硝化作用,纳米Fe/Ni对实验菌株的毒性比纳米Fe0大。在含硝态氮初始浓度为100 mg/L的反硝化培养基中接种脱氮副球菌,于30℃培养20 h,脱氮率为89.47%,而菌+1 000 mg/L纳米Fe/Ni的体系脱氮率仅为64.33%;菌+1 000 mg/L纳米Fe0体系的脱氮率为76.36%。不同体系的反硝化过程均可采用零级动力学模型进行拟合(相关系数R2>0.92)。这2种金属纳米材料对实验菌株的生长量及其反硝化作用的影响程度,与体系的pH和温度有较大关系。  相似文献   

4.
Groundwater remediation was evaluated for combined autotrophic and heterotrophic denitrification under high (154 mg/L as CaCO3) and low (95 mg/L as CaCO3) alkaline conditions. Two levels of acetate (47 and 94 mg/L) and ethanol (24 and 48 mg/L) were added to the reactors. Obtained denitrification rates were 2.89, 2.58, 3.55, 1.96, and 2.0 mg-N/L?·?h for high alkaline conditions, whereas under low alkaline conditions has given 2.36, 1.94, 2.47, 2.74, and 2.29 mg-N/L?·?h for control, 47 and 94 mg/L acetate, and 24 and 48 mg/L ethanol, respectively. Nitrite was accumulated for controls but reactors with acetate and ethanol did not accumulate nitrite. Acetate and ethanol addition decreased sulfate to nitrate ratios in the range of 4.5–7.58 for high alkaline conditions (12.77 for control) and 4.43–6.78 for low alkaline conditions (7.90 for control). Acetate was more efficient compared with ethanol in controlling sulfate production and pH maintenance.  相似文献   

5.
针对受低浓度氨氮污染的地下水,实验筛选组合了不同的反应介质,利用串联的多介质填充柱模拟渗透反应格栅,通过物理吸附及生物硝化-反硝化作用来实现氮的去除。结果表明,在进水氨氮浓度为10 mg/L、流速为0.5 m/d的条件下,模拟柱对氨氮的去除率达到98%以上,且不会出现亚硝酸盐及硝酸盐浓度的升高。水体经过释氧柱后溶解氧由2mg/L升高至10 mg/L以上,表明释氧材料可提供硝化细菌所需的好氧环境。好氧柱中填充易于生物挂膜的生物陶粒及对氨氮有较强吸附能力的沸石,二者联用通过生物硝化-物理吸附协同作用实现对氨氮的去除,其中生物作用实现的氨氮去除量占总去除量的50%左右。后续厌氧反应柱填充海绵铁除氧并利用松树皮颗粒作为碳源,创造反硝化菌生长条件,硝酸盐氮浓度可由10 mg/L降低至5 mg/L以下,实现对好氧反应阶段所产生的硝酸盐的去除,避免了地下水的二次污染。  相似文献   

6.
In the hydroblasting of ships' boiler tubes, a wastewater high in nitrite (as high as 1200 mg litre(-1)) is produced by the US Navy. This research has evaluated the use of a suspended-growth biological system to treat this wastewater by denitrification. Two biological treatment configurations were evaluated (direct denitrification versus nitrification/denitrification) with nitrification/denitrification producing better nitrite removal efficiencies (54 to 62% versus 40%, respectively). The introduction of metals (cadmium, chromium, lead, copper and iron) in concentrations typical for this wastewater did not inhibit the nitrite removal efficiencies. The influent metal concentrations ranged from 0.02 mg litre(-1) for cadmium to 22 mg litre(-1) for iron and the metal removal efficiencies ranged from 4.8% for cadmium to 50% for copper. Increasing sludge age resulted in improved nitrite removal efficiencies (52%, 57% and 74% for sludge ages of 4, 6 and 8 days, respectively). The resulting biokinetic constants were similar to those reported by others for lower influent concentrations of nitrite or nitrate (Ygs=0.02 mg/mg; Ygn=0.16 mg/mg; Yb=0.8 mg/mg; and b=0.006 h(-1)).  相似文献   

7.
The effect of nitrate on the reduction of TCE by commercial granular iron was investigated in column experiments designed to allow for the in situ monitoring of the iron surface film with Raman spectroscopy. Three column experiments were conducted; one with an influent solution of 100 mg/l nitrate+1.5 mg/l TCE, and two control columns, one saturated directly with 100 mg/l nitrate solution, the other pre-treated with Millipore water prior to the introduction of a 100 mg/l nitrate solution. In the presence of nitrate, TCE adsorbed onto the iron, but there was little TCE reduction to end-products ethene and ethane. The iron used (Connelly, GPM, Chicago) is a product typical of those used in permeable granular iron walls. The material is covered by an air-formed high-temperature oxidation film, consisting of an inner layer of Fe(3)O(4), and an outer, passive layer of Fe(2)O(3). In the control column pre-treated with Millipore water, the passive Fe(2)O(3) layer was removed upon contact with the water in a manner consistent with an autoreduction reaction. In the TCE+nitrate column and the direct nitrate saturation column, nitrate interfered with the removal of the passive layer and maintained conditions such that high valency protective corrosion species, including Fe(2)O(3) and FeOOH, were stable at the iron surface. The lack of TCE reduction is explained by the presence of these species, as they inhibit both mechanisms proposed for TCE reduction by iron, including catalytic hydrogenation, and direct electron transfer.  相似文献   

8.
在分析传统A2/O工艺缺陷的基础上,提出了一种改进型A2/O工艺。为了防止回流污泥中的硝酸盐进入厌氧区,在传统A2/O工艺的厌氧区后面增加一个体积较小的缺氧选择池,回流污泥进入缺氧选择池,并进行反硝化消耗回流污泥中的硝酸盐;同时,在缺氧区通过反硝化除磷实现"一碳两用"。结果表明,改进型A2/O工艺有较好的脱氮除磷效果,在COD为298mg/L、TN为55mg/L左右、TP为7mg/L左右时,系统对COD、TN、TP的平均去除率分别为88.44%、77%、95%。  相似文献   

9.
研究了低温条件下,沸石和火山岩为载体,锯末为碳源的生物反应器对地下水中硝酸盐氮的去除效果。结果表明,在(14±1)℃,水力停留时间18 h,进水硝酸盐氮浓度为27 mg/L的条件下,以锯末为碳源能有效去除地下水中的硝酸盐,沸石为载体时对硝酸盐氮的平均去除率为98%;火山岩为载体时对硝酸盐氮的平均去除率为95%。实验过程中出现铵盐和亚硝酸盐的积累,出水中氨氮浓度为1~2.55 mg/L,亚硝酸氮浓度为0~0.98 mg/L。出水pH均介于7~8,满足饮用水标准中pH的要求(6.5~8.5)。  相似文献   

10.
A combined anaerobic/aerobic sludge digestion system was studied to determine the effect of aerobic solids retention time (SRT) on its solids and nitrogen removal efficiencies. After the anaerobic digester reached steady state, effluent from the anaerobic digester was fed to aerobic digesters that were operated at 2- to 5-day SRTs. The anaerobic system was fed with a mixture of primary and secondary sludge from a local municipal wastewater treatment plant. Both systems were fed once per a day. The aerobic reactor was continuously aerated with ambient air, maintaining dissolved oxygen level at 1.1 +/- 0.3 mg/L. At a 4-day or longer SRT, more than 11% additional volatile solids and 90% or greater ammonia were removed in the aerobic digester, while 32.8 mg-N/L or more nitrite/nitrate also was measured. Most total Kjeldahl nitrogen removal was via ammonia removal, while little organic nitrogen was removed in the aerobic digester.  相似文献   

11.
电化学脱硝过程参数的响应曲面优化研究   总被引:1,自引:0,他引:1  
以Ti/IrO2-TiO2-RuO2为阳极,Cu/Zn合金电极为阴极,在无隔膜电解池中对这一新构造电极对的脱硝氮性能进行了研究。为了有效结合阴极硝氮还原能力和阳极氧化能力,采用响应曲面法中的Box-Behnken设计优化了对电化学脱硝过程有显著影响的4个重要因素:氯化钠含量、电流密度、pH和初始硝氮浓度。优化结果表明,相对于pH和初始硝氮浓度,氯化钠含量和电流密度对脱硝性能影响更大,而阴极硝氮还原性能主要受初始硝氮浓度、pH的影响。以6 h内电极对脱氮百分率为响应量,优化得最佳电化学脱硝过程参数为:氯化钠含量,1 g/L;电流密度,24.99 mA/cm2;pH,1.81;初始硝氮浓度100 mg/L。在此实验条件下,6 h内电极对脱氮百分率预测值为99.84%。通过3次重复验证实验,确认实际6 h内电极对脱氮百分率为91.34%。预测值与实测值两者相差不大,由此可知,Box-Behnken设计是一种优化电化学脱氮实验参数的有效方法,经过优化后的电极对具有较佳的脱氮效率。  相似文献   

12.
Sulfide generation should be avoided during wastewater transportation. The efficiency of nitrate dosing for the inhibition of sulfide generation was evaluated during reclaimed wastewater transport with two nitrate doses, 2.5 and 5 mg/L nitrate-nitrogen (NO3-N). A calcium nitrate [Ca(NO3)2] solution was injected at the beginning of the 61-km-long gravity pipe, which is part of the Reclaimed Wastewater Reuse System of South Tenerife (Spain). During transportation, after dissolved oxygen depletion, a denitrification process took place. With the 5 mg/L NO3-N dose, nitrate was not completely removed at the end of the pipe, whereas with 2.5 mg/L NO3-N, a complete denitrification was achieved. Sulfide generation was completely inhibited with the 5 mg/L dose. However, with 2.5 mg/L, sulfide generation was not completely inhibited but delayed and minimized to a great extent. Denitrification was stoichiometrically limited by the availability in biodegradable matter. An empirical equation enables one to predict the nitrate concentration.  相似文献   

13.
采集渭河河床沉积物,研究了反硝化条件下有机碳低丰度的河床沉积层中苯胺降解.结果表明,反硝化条件下,苯胺在有机碳低丰度的河床沉积层中可生物降解.使该环境中苯胺(约50 mg/L)降解近95%,当硝酸盐为30.69、184.16、245.54 mg/L时,降解时间分别约为20、45、70 d.在上述环境中另加35.98 mg/L乙酸盐后,苯胺降解速度在硝酸盐为184.16 mg/L时最大,硝酸盐为30.69 mg/L时最小.当硝酸盐为30.69 mg/L,不加乙酸盐,27 d苯胺降解约95%;添加35.98 mg/L乙酸盐后,实验进行了47 d还仍有近13 mg/L苯胺残留,说明外加碳源(乙酸盐)对苯胺降解具有抑制作用.但当硝酸盐为184.16、245.54 mg/L时,外加碳源(乙酸盐)则强化苯胺降解.水合金属氧化物对苯胺降解具有促进作用.  相似文献   

14.
Chemical and microbiological aspects were investigated with regard to biological denitrification of drinking water using the seaweed Gracilaria verrucosa as the carbon and energy substrate and as physical support for the microbial flora in semibatch, fixed-bed reactors. Complete removal of nitrate (100 mg/L) was readily achieved without accumulation of nitrite. Microbiological analysis indicated that the effluent of the reactor contained high numbers of bacteria (>10(6)/mL total count). Among the 44 bacterial strains isolated directly from the samples or isolated after enrichment at 37 degrees C, 25 different fatty acid profiles were found, indicating a complex microflora, including potential pathogens.  相似文献   

15.
Moon HS  Shin do Y  Nam K  Kim JY 《Chemosphere》2008,73(5):723-728
The long-term performance of a sulfur-based reactive barrier system was evaluated using autotrophic denitrification in a large-scale column. A bacterial consortium, containing autotrophic denitrifiers attached on sulfur particles, serving as an electron donor, was able to transform 60mgNL(-1) of nitrate into dinitrogen. In the absence of phosphate, the consortium was unable to remove nitrate, but after the addition of phosphate, nitrate removal was readily evident. Once the column operation had stabilized, seepage velocities of 1.0x10(-3) and 0.5x10(-3)cms(-1), corresponding to hydraulic residence times of 24 and 48h, respectively, did not affect the nitrate removal efficiency, as determined by the nitrate concentration in the effluent. However, data on the nitrate, nitrite and sulfate distribution along the column indicated differential transformation patterns with column depths. Based on the dinitrogen concentration in the total gas collected, the denitrification efficiency of the tested column was estimated to be more than 95%. After 500d operation, the hydrodynamic characteristics of the column slightly changed, but these changes did not inhibit the nitrate removal efficiency. Data from a bacterial community analysis obtained from four parts of the column demonstrated the selective a spatial distribution of predominant species depending on available electron acceptors or donors.  相似文献   

16.
污泥减量过程中臭氧氧化对硝化和反硝化影响的试验研究   总被引:15,自引:3,他引:12  
采用AO工艺,考察了在污泥减量过程中臭氧(O3)氧化对生物系统硝化和反硝化能力的影响.结果表明,在每克SS中O3投量为0.05 g时,氧化后污泥中的CODcr由37.5 mg/L增至700mg/L,TN由4.86 mg/L增至36.6 mg/L,NH4 -N由0.353mg/L增至7.49 mg/L,NO3--N由2.19 mg/L增至5.15 mg/L.虽然氧化系统出水NH4 -N浓度略高于对照系统,但氧化系统NH4 -N的去除率大于98%,硝化能力基本没有受到O3氧化的影响.O3氧化污泥后增加的有机物作为附加的碳源循环至缺氧段,提高了反硝化的效果,当污泥氧化比例分别为10%、20%、30%时,进入缺氧段的CODCr/TN分别平均增至11.21、11.56、11.88,氧化系统的反硝化效果也随之分别提高5%、25%、37%.  相似文献   

17.
Ting WH  Huang JS 《Chemosphere》2006,65(1):148-158
A kinetic model with intrinsic reaction kinetics and a simplified model with apparent reaction kinetics for denitrification in upflow sludge bed (USB) reactors were proposed. USB-reactor performance data with and without sludge wasting were also obtained for model verification. An independent batch study showed that the apparent kinetic constants k' did not differ from the intrinsic k but the apparent Ks' was significantly larger than the intrinsic Ks suggesting that the intra-granule mass transfer resistance can be modeled by changes in Ks. Calculations of the overall effectiveness factor, Thiele modulus, and Biot number combined with parametric sensitivity analysis showed that the influence of internal mass transfer resistance on the overall nitrate removal rate in USB reactors is more significant than the external mass transfer resistance. The simulated residual nitrate concentrations using the simplified model were in good agreement with the experimental data; the simulated results using the simplified model were also close to those using the kinetic model. Accordingly, the simplified model adequately described the overall nitrate removal rate and can be used for process design.  相似文献   

18.
醋酸纤维素包埋非水溶性介体催化强化生物反硝化特性   总被引:3,自引:0,他引:3  
利用醋酸纤维素包埋法固定非水溶性醌类介体,研究其催化强化Paracoccus versutus菌株GW1的反硝化作用。结果表明,醌浓度在26.7 mmol/L时,固定化蒽醌(AQ)、1-氯蒽醌(1-AQ)、2-氯蒽醌(2-AQ)、1,5-二氯蒽醌(1,5-AQ)、1,8-二氯蒽醌(1,8-AQ)和1,4,5,8-四氯蒽醌(1,4,5,8-AQ)催化反硝化效率依次为:1,5-AQ1,8-AQ1,4,5,8-AQAQ1-AQ空白对照2-AQ。反应10 h时,1,5-AQ可使硝酸盐去除率比空白对照提高1.84倍;硝酸盐氮反硝化动力学拟合为零级反应,其速率常数Kx随1,5-AQ浓度的增加均呈线性增加(Kx=0.1885C1,5-AQ+8.378);水中溶解氧会降低GW1菌反硝化的效果;投加1,5-AQ的反硝化体系中亚硝酸盐积累的最大值比不投加介体的低48.3%;醋酸纤维素介体小球经过4次的重复利用,催化效果始终是空白对照的1.5倍以上。醋酸纤维素固定化非水溶性醌可以有效加速生物反硝化,表明其是一种较优的醌固定化方法,具有良好的应用价值。  相似文献   

19.
采用序批式生物膜反应器(SBBR),在连续曝气全程好氧的运行条件下,考察不同溶解氧浓度对同步硝化反硝化脱氮性能及N2O产量的影响。控制溶解氧浓度恒定在1、2、2.5和3 mg/L。结果表明,DO为2 mg/L和2.5 mg/L时,氨氮去除率分别为97.9%和98.5%,同步硝化反硝化率均为99%。DO为2 mg/L时,系统中N2O产生量最低,为0.423 mg/L,占氨氮去除量的1.4%;DO为3 mg/L时N2O的产生量最高,为2.01 mg/L,是DO为2 mg/L时的4.75倍。系统中亚硝酸盐的存在可能是高溶解氧条件下N2O产量增加的主要原因,同步过程中没有NOx-的积累即稳定的SND系统有利于降低生物脱氮过程中N2O的产生量。  相似文献   

20.
Lin CJ  Liou YH  Lo SL 《Chemosphere》2009,74(2):314-319
A Pd/Sn bimetallic nanoparticles resin (nano-Pd/Sn/resin) was successfully synthesized for reductive transformation of aqueous trichloroethylene (TCE). The physicochemical properties of the prepared resin were characterized using scanning electron microscopy, energy dispersive X-ray spectroscopy, N(2) isothermal sorption at and X-ray photospectroscopy. The surface-area-normalized rate constants (k(SA)) of Sn particles in the nanoscale range (50-100 nm) were 4.5 times larger than the k(SA) for powdered Sn (0.04 mm). After depositing 1 wt% Pd onto nano-Sn surface, k(SA) was further enhanced by about a factor of 2. Groundwater constituents such as sulfide nitrate and dissolved oxygen had significant negative effects on the rate of TCE degradation by the nano-Pd/Sn/resin. A wet-chemical method regeneration method was observed to effectively restore the reactivity of the poisoned nano-Pd/Sn/resin after dipping in sulfide solution for 2d. In all cases, less than 0.5% of the degraded TCE appeared as chlorinated byproducts including the three dichloroethene isomers. The nano-Pd/Sn/resin technique performs well in transforming TCE into nontoxic hydrocarbons, as compared with other published methods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号