首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Ozone (O3) exposure at Italian background sites exceeds UN/ECE concentration-based critical levels (CLe(c)), if expressed in terms of AOT40. Yet the occurrence of adverse effects of O3 on forests and crops is controversial. Possible reasons include (i) ability of response indicators to provide an unbiased estimate of O3 effects, (ii) setting of current CLe(c) in terms of cut-off value and accumulation level, (iii) response functions adopted to infer a critical level, (iv) environmental limitation to O3 uptake and (v) inherent characteristics of Mediterranean vegetation. In particular, the two latter points suggest that critical levels based on accumulated stomatal flux (CLe(f)) can be a better predictor of O3 risk than CLe(c). While this concept is largely acknowledged, a number of factors may limit its applicability for routine monitoring. This paper reviews levels, uptake and vegetation response to O3 in Italy over recent years to discuss value, uncertainty and feasibility of different approaches to risk assessment.  相似文献   

2.
Growth response to ozone of annual species from Mediterranean pastures   总被引:2,自引:0,他引:2  
Ozone (O3) phytotoxicity has been reported on a wide range of plant species. However, scarce information has been provided regarding the sensitivity of semi-natural grassland species, especially those from dehesa Mediterranean grasslands, in spite of their great biological diversity and the high O3 levels recorded in the region. A screening study was carried out in open-top chambers (OTCs) to assess the O3-sensitivity of representative therophytes of these ecosystems based on the response of selected growth-related parameters. Three O3 treatments and 3 OTCs per treatment were used. Legume species were very sensitive to O3, because 78% of the tested species showed detrimental effects on their total biomass relative growth rate (RGR) following their exposure to O3. The Trifolium genus was particularly sensitive showing O3-induced adverse effects on most of the assessed parameters. Gramineae plants were less sensitive than Leguminosae species because detrimental effects on total biomass RGR were only observed in 14% of the assessed species. No relationship was found between relative growth rates when growing in clean air and O3 susceptibility. The implications of these effects on the performance of dehesa acidic grasslands and on the definition of ozone critical levels for the protection of semi-natural vegetation are discussed.  相似文献   

3.
Ozone (O3) concentrations were monitored during the 1997-1999 growing seasons in 32 forest sites of the Carpathian Mountains. At all sites (elevation between 450 and 1320 m) concentrations of O3, nitrogen dioxide (NO2), and sulfur dioxide (SO2) were measured with passive samplers. In addition, in two western Carpathian locations, Vychodna and Gubalówka, ozone was continuously monitored with ultraviolet (UV) absorption monitors. Highest average hourly O3 concentrations in the Vychodna and Guba?ówka sites reached 160 and 200 microg/m3 (82 and 102 ppb), respectively (except for the AOT40 values, ozone concentrations are presented as microg/m3; and at 25 degrees C and 760 mm Hg, 1 microg O3/m3 = 0.51 ppb O3). These sites showed drastically different patterns of diurnal 03 distribution, one with clearly defined peaks in the afternoon and lowest values in the morning, the other with flat patterns during the entire 24-h period. On two elevational transects, no effect of elevation on O3 levels was seen on the first one, while on the other a significant increase of O3 levels with elevation occurred. Concentrations of O3 determined with passive samplers were significantly different between individual monitoring years, monitoring periods, and geographic location of the monitoring sites. Results of passive sampler monitoring showed that high O3 concentrations could be expected in many parts of the Carpathian range, especially in its western part, but also in the eastern and southern ranges. More than four-fold denser network of monitoring sites is required for reliable estimates of O3 distribution in forests over the entire Carpathian range (140 points). Potential phytotoxic effects of O3 on forest trees and understory vegetation are expected on almost the entire territory of the Carpathian Mountains. This assumption is based on estimates of the AOT40 indices for forest trees and natural vegetation. Concentrations of NO2 and SO2 in the entire Carpathian range were typical for this part of Europe and below the expected levels of phytotoxicity.  相似文献   

4.
Over the last decades much of the work on the impact of air pollution on forests in Europe has concentrated on central and northern countries. The southern part of Europe has received far less attention, although air pollutants-especially the photochemical ones-can reach concentrations likely to have adverse effects on forest vegetation. Although international forest condition surveys present serious problems where data consistency is concerned, they reveal considerable year-by-year species-specific fluctuations rather than a large-scale forest decline. Cases of obvious decline related to environmental factors are well circumscribed: (1) the deterioration of some coastal forests due to the action of polluted seaspray; (2) the deterioration of reforestation projects, especially conifers, mainly due to the poor ecological compatibility between species and site; and (3) the decline of deciduous oaks in southern Italy and of evergreen oaks in the Iberian peninsula apparently due to the interaction of climate stresses and pests and diseases. However, besides obvious deterioration, changes in environmental factors can provoke situations of more subtle stress. The most sensitive stands are Mediterranean conifer forests and mesophile forests of the Mediterranean-montane plane growing at the edges of the natural ecological distribution. Evergreen sclerophyllous forests appear less sensitive to variations in climatic parameters, since they can adapt quite well to both drought and the action of UV-B rays. Several experiments were carried out to test the sensitivity of Mediterranean forest species to air pollutants. Most of those experiments used seedlings of different species treated with pollutant concentrations too high to be realistic, so it is difficult to derive adequate information on the response of adult trees in field conditions. Ozone has been proved to cause foliar injury in a variety of native forest species in different Southern European countries, while the effects of other pollutants (e.g. nitrogen, sulphur, acidic deposition) are less obvious and likely to be very localized. In the case of ozone, visible symptoms were almost completely missed by large-scale surveys and-at the same time-non-visible symptoms are suspected to be even more widespread than the visible ones. Owing to this and to the complex relationships existing between species sensitivity, ozone exposure and doses, length of the vegetative periods, influence of climatic and edaphic condition on the tree's response, the impacted areas are yet to be identified. Therefore, the large-scale impact of air pollutants on the forests of Southern Europe remains largely unknown, until more specific investigations are carried out.  相似文献   

5.
Atmospheric ozone: formation and effects on vegetation   总被引:20,自引:0,他引:20  
Ozone (O(3)) is present both in the troposphere and the stratosphere. Troposphere O(3) is predominantly produced by photochemical reactions involving precursors generated by natural processes and to a much larger extent by man's activities. There is evidence for a trend towards increasing tropospheric O(3) concentrations. However, tropospheric O(3) is known to account for only 10% of the vertical O(3) column above the earth's surface. The stratosphere accounts for an additional 90% of the O(3) column. There is evidence to suggest that there are losses in the stratospheric O(3) due to the updraft of O(3) destroying pollutants generated by both natural processes and by human activity. Such a loss in stratospheric O(3) can result in alterations of incidence in the ultraviolet (UV) radiation to the earth's surface. Tropospheric O(3) is known to be highly phytotoxic. Appropriate exposures to O(3) can result in both acute (symptomatic) and chronic (changes in growth, yield or productivity and quality) effects. Chronic effects are of great concern in terms of both crops and forests. A number of experimental techniques are available to evaluate the chronic effects of O(3) on plants. There are limitations attached to the use of these techniques. However, results obtained, with such techniques are valuable if interpreted in the appropriate context. Among all field evaluation techniques, open-top chambers are the most frequently used method for evaluating the chronic effects of O(3) on crops. The National Crop Loss Assessment Program (NCLAN) of the United States is the largest such effort. However, given the limitations of the open-top chambers and the experimental aspects of NCLAN, its results must be interpreted with caution. On the other hand, acute effects can be evaluated with less complexity through the use of biological indicator plants. The numerical modelling of such effects are also far less complicated than establishing numerical cause and effects relationships for chronic effects. Confounding the acute or chronic responses of plants to O(3), is the presence of other kinds and forms of pollutants in the ambient atmosphere and the incidence of pathogens and pests. The resulting complex interactions and joint effects on plants are poorly understood. Future research must address these issues. In the final analysis we have re-emphasized the fact that plant health is the product of its interaction with the physical and chemical climatology and pathogens and pests. What we have described in this context is the importance of tropospheric O(3) within the chemical climatology of our environment and its effects on vegetation.  相似文献   

6.
Effects of atmospheric ammonia (NH3) on terrestrial vegetation: a review   总被引:17,自引:0,他引:17  
At the global scale, among all N (nitrogen) species in the atmosphere and their deposition on to terrestrial vegetation and other receptors, NH3 (ammonia) is considered to be the foremost. The major sources for atmospheric NH3 are agricultural activities and animal feedlot operations, followed by biomass burning (including forest fires) and to a lesser extent fossil fuel combustion. Close to its sources, acute exposures to NH3 can result in visible foliar injury on vegetation. NH3 is deposited rapidly within the first 4-5 km from its source. However, NH3 is also converted in the atmosphere to fine particle NH4+ (ammonium) aerosols that are a regional scale problem. Much of our current knowledge of the effects of NH3 on higher plants is predominantly derived from studies conducted in Europe. Adverse effects on vegetation occur when the rate of foliar uptake of NH3 is greater than the rate and capacity for in vivo detoxification by the plants. Most to least sensitive plant species to NH3 are native vegetation > forests > agricultural crops. There are also a number of studies on N deposition and lichens, mosses and green algae. Direct cause and effect relationships in most of those cases (exceptions being those locations very close to point sources) are confounded by other environmental factors, particularly changes in the ambient SO2 (sulfur dioxide) concentrations. In addition to direct foliar injury, adverse effects of NH3 on higher plants include alterations in: growth and productivity, tissue content of nutrients and toxic elements, drought and frost tolerance, responses to insect pests and disease causing microorganisms (pathogens), development of beneficial root symbiotic or mycorrhizal associations and inter species competition or biodiversity. In all these cases, the joint effects of NH3 with other air pollutants such as all-pervasive O3 or increasing CO2 concentrations are poorly understood. While NH3 uptake in higher plants occurs through the shoots, NH4+ uptake occurs through the shoots, roots and through both pathways. However, NH4+ is immobile in the soil and is converted to NO3- (nitrate). In agricultural systems, additions of NO3- to the soil (initially as NH3 or NH4+) and the consequent increases in the emissions of N2O (nitrous oxide, a greenhouse gas) and leaching of NO3- into the ground and surface waters are of major environmental concern. At the ecosystem level NH3 deposition cannot be viewed alone, but in the context of total N deposition. There are a number of forest ecosystems in North America that have been subjected to N saturation and the consequent negative effects. There are also heathlands and other plant communities in Europe that have been subjected to N-induced alterations. Regulatory mitigative approaches to these problems include the use of N saturation data or the concept of critical loads. Current information suggests that a critical load of 5-10 kg ha(-1) year(-1) of total N deposition (both dry and wet deposition combined of all atmospheric N species) would protect the most vulnerable terrestrial ecosystems (heaths, bogs, cryptogams) and values of 10-20 kg ha(-1) year(-1) would protect forests, depending on soil conditions. However, to derive the best analysis, the critical load concept should be coupled to the results and consequences of N saturation.  相似文献   

7.
Because of their prominent role in global biomass productivity, as well as their complex structure and function, forests and tree species deserve particular attention in studies on the likely impact of elevated atmospheric CO2 on terrestrial vegetation. Poplar (Populus) has proven to be an interesting study object due to its fast response to a changing environment, and the growing importance of managed forests in the carbon balance. Results of both chamber and field experiments with different poplar species and hybrids are reviewed in this contribution. Despite the variability between experiments and species, and the remaining uncertainty over the long term, poplar is likely to profit from a rising atmospheric CO2 concentration with a mean biomass stimulation of 33%. Environmental conditions and pollutants (e.g. O3) may counteract this stimulation but with managed plantations, environmental constraints might not occur. The predicted responses of poplar to rising atmospheric CO2 have implications for future forest management and the expected forest carbon sequestration.  相似文献   

8.
In this paper an analysis is provided on: what we know, what we need to know, and what we need to do, to further our understanding of the relationships between tropospheric ozone (O(3)), global climate change and forest responses. The relationships between global geographic distributions of forest ecosystems and potential geographic regions of high photochemical smog by the year 2025 AD are described. While the emphasis is on the effects of tropospheric O(3) on forest ecosystems, discussion is presented to understand such effects in the context of global climate change. One particular strong point of this paper is the audit of published surface O(3) data by photochemical smog region that reveals important forest/woodland geographic regions where little or no O(3) data exist even though the potential threat to forests in those regions appears to be large. The concepts and considerations relevant to the examination of ecosystem responses as a whole, rather than simply tree stands alone are reviewed. A brief argument is provided to stimulate the modification of the concept of simple cause and effect relationships in viewing total ecosystems. Our knowledge of O(3) exposure and its effects on the energy, nutrient and hydrological flow within the ecosystem are described. Modeling strategies for such systems are reviewed. A discussion of responses of forests to potential multiple climatic changes is provided. An important concept in this paper is that changes in water exchange processes throughout the hydrological cycle can be used as early warning indicators of forest responses to O(3). Another strength of this paper is the integration of information on structural and functional processes of ecosystems and their responses to O(3). An admitted weakness of this analysis is that the information on integrated ecosystem responses is based overwhelmingly on the San Bernardino Forest ecosystem research program of the 1970s because of a lack of similar studies. In the final analysis, it is recommended that systems ecology be applied in examining the joint effects of O(3), carbon dioxide and ultraviolet-B radiation on forest ecosystems.  相似文献   

9.
Ambient ozone (O(3)) concentrations in the forested areas of the Central and Eastern European (CEE) mountains measured on passive sampler networks and in several locations equipped with active monitors are reviewed. Some areas of the Carpathian Mountains, especially in Romania and parts of Poland, as well as the Sumava and Brdy Mountains in the Czech Republic are characterized by low European background concentrations of the pollutant (summer season means approximately 30 ppb). Other parts of the Carpathians, especially the western part of the range (Slovakia, the Czech Republic and Poland), some of the Eastern (Ukraine) and Southern (Romania) Carpathians and the Jizerske Mountains have high O(3) levels with peak values >100 ppb and seasonal means approximately 50 ppb. Large portions of the CEE mountain forests experience O(3) exposures that are above levels recommended for protection of forest and natural vegetation. Continuation of monitoring efforts with a combination of active monitors and passive samplers is needed for developing risk assessment scenarios for forests and other natural areas of the CEE Region.  相似文献   

10.
Oxidant air pollution effects on plants of Joshua Tree National Monument   总被引:1,自引:0,他引:1  
Joshua Tree National Monument (JOTR) is located about 100 km east of the Los Angeles Basin, site of the heaviest concentration of photochemical oxidant (O(3)) air pollution in the US. This investigation was conducted to measure O(3) concentrations in JOTR and to determine the effects of O(3) on vegetation in the park. Potentially phytotoxic concentrations of O(3) were recorded in JOTR in 1984 and 1985, but peak concentration occurred at night, when most plant species would be less sensitive to O(3). No O(3) effects were observed on permanent vegetation observation plots in JOTR in 1984 or 1985. Controlled exposures of native summer annual and woody perennial species to O(3) showed that most did not develop visible O(3) injury symptoms except at concentrations higher than those expected in the park. However, Rhus trilobata Nutt. was injured at 0.10 ppm O(3), 4 h per day for 4 days. This species would be a useful bioindicator to assess the effects of O(3) on native desert plants.  相似文献   

11.
An account of histo-cytological and ultrastructural studies on ozone effect on crop and forest species in Italy is given, with emphasis on induced cell death and the underlying mechanisms. Cell death phenomena possibly due to ambient O3 were recorded in crop and forest species. In contrast, visible O3 effects on Mediterranean vegetation are often unclear. Microscopy is thus suggested as an effective tool to validate and evaluate O3 injury to Mediterranean vegetation. A DAB-Evans blue staining was proposed to validate O3 symptoms at the microscopic level and for a pre-visual diagnosis of O3 injury. The method has been positively tested in some of the most important crop species, such as wheat, tomato, bean and onion and, with some restriction, in forest species, and it also allows one to gain some very useful insights into the mechanisms at the base of O3 sensitivity or tolerance.  相似文献   

12.
Climate change factors such as elevated CO2 concentrations, warming and changes in precipitation affect the stomatal flux of ozone (O3) into leaves directly or indirectly by altering the stomatal conductance, atmospheric O3 concentrations, frequency and extent of pollution episodes and length of the growing season. Results of a case study for winter wheat indicate that in a future climate the exceedance of the flux-based critical level of O3 might be reduced across Europe, even when taking into account an increase in tropospheric background O3 concentration. In contrast, the exceedance of the concentration-based critical level of O3 will increase with the projected increase in tropospheric background O3 concentration. The influence of climate change should be considered when predicting the future effects of O3 on vegetation. There is a clear need for multi-factorial, open-air experiments to provide more realistic information for O3 flux-effect modelling in a future climate.  相似文献   

13.
This paper explores the feasibility of (1) using kriging to predict the monthly mean of daily 7-h mean (0900-1559) O3 concentrations, (2) using kriging to estimate the per cent of hourly mean O3 concentrations equal to or greater than 0.07 ppm (137 microg m(-3)) for a specific month, and (3) developing a quantitative relationship between the monthly mean of the daily 7-h (0900-1559) average O3 concentration and the monthly number of hourly concentrations > or = 0.08p ppm (157 microg m(-3)). We found that kriging can be used to estimate the (1) monthly mean of daily 7-h mean O3 concentrations and (2) the percentage of hourly concentrations for a given month > or = 0.07 ppm when sufficient spatial coverage was available. However, the per cent > or = 0.07 ppm parameter exhibited much greater relative variability than the monthly 7-h exposure index. A strong statistical association was found between the monthly number of occurrences > or = 0.08 ppm and monthly 7-h mean concentrations above 0.05 ppm (98 microg m(-3)). Because of the variability that cumulative indices, such as the monthly percentage of hourly concentrations > or = 0.07 ppm , exhibit from site to site, it appears that whether kriging techniques or mathematical regressions are used to estimate the number of elevated O3 hourly concentrations above selected thresholds, large uncertainties associated with the predicted values will exist. These large uncertainties will make it difficult to accurately estimate vegetation effects caused by ambient levels of O3. However, if a generalized quantitative relationship between repeated occurrences of hourly mean concentrations > or = 0.07 ppm or > or = 0.08 and vegetation effects can be developed, it may be possible, using kriged monthly values accompanied with confidence intervals, to identify those areas where vegetation may be at risk. However, before it will be possible to implement such an approach, researchers will have to better quantify the relationship between realistic O3 exposures and vegetation effects.  相似文献   

14.
The advantages and disadvantages, benefits and limitations, of a number of published mathematical models representing the effects of ozone on crops and native vegetation are described. Several levels of modeling are addressed: word models, graphic models, mathematical models, and computer simulation implementation. Special attention is given to evaluating: (1) how the interaction between ozone exposure and vegetation effects is quantified, (2) the status of field testing of the model, and (3) the adequacy of information for enabling other investigators to replicate the model for further testing. Original contributions, not previously published, are made in this evaluation in the form of: (1) graphic model flow charts for published models, (2) clarification of mathematical equations for existing models, (3) graphic forms of functional relations comprising portions of models, and (4) graphic displays of model output performance versus observed data. The models that are evaluated cover acute exposure-response models, statistical and mechanistic-process models, including a partial model of ambient exposure versus ozone flux, and uptake. They also cover chronic exposure statistical approaches, including time-series modeling, mechanistic-process models, 'disintegrated' models of forest system simulations, chronic flux density-uptake-response, and models for regional effects assessment in forests and agricultural lands.  相似文献   

15.
The current European critical levels for ozone (O3) to protect crops, natural and semi-natural vegetation and forest trees are based on a relative small number of open-top chamber experiments with a very limited number of plant species. Therefore, the working group "Effects of Ozone on Plants" of the Commission on Air Pollution Prevention of the Association of German Engineers and the German Institute of Standardization reanalysed the literature on O3 effects on European plant species published between 1989 and 1999. An exposure-response relationship for wild plant species and agricultural crops could be derived from 30 experiments with more than 30 species and 90 data points; the relationship for conifer and deciduous trees is based on 20 experiments with nine species and 50 data points. From these relationships maximum O3 concentrations for different risk stages are deduced, below which the vegetation type is protected on the basis of the respective criteria. Because it is assumed that the fumigation concentrations reflect the O3 concentrations at the top of the canopy, i.e. the upper surface boundary of the quasi-laminar layer if the micrometeorological big-leaf approach is applied, the application of these maximum O3 concentrations requires the transformation of O3 concentrations measured at a reference height above the canopy to the effective phytotoxic concentrations at the top of the canopy. Thus, the approach described in this paper is a synthesis of the classical concept of toxicology of air pollutants (critical concentrations) and the more toxicological relevant dose concept.  相似文献   

16.
There is a fast growing and an extremely serious international scientific, public and political concern regarding man's influence on the global climate. The decrease in stratospheric ozone (O3) and the consequent possible increase in ultraviolet-B (UV-B) is a critical issue. In addition, tropospheric concentrations of 'greenhouse gases' such as carbon dioxide (CO2), nitrous oxide (N2O) and methane (CH4) are increasing. These phenomena, coupled with man's use of chlorofluorocarbons (CFCs), chlorocarbons (CCs), and organo-bromines (OBs) are considered to result in the modification of the earth's O3 column and altered interactions between the stratosphere and the troposphere. A result of such interactions could be the global warming. As opposed to these processes, tropospheric O3 concentrations appear to be increasing in some parts of the world (e.g. North America). Such tropospheric increases in O3 and particulate matter may offset any predicted increases in UV-B at those locations. Presently most general circulation models (GCMs) used to predict climate change are one- or two-dimensional models. Application of satisfactory three-dimensional models is limited by the available computer power. Recent studies on radiative cloud forcing show that clouds may have an excess cooling effect to compensate for a doubling of global CO2 concentrations. There is a great deal of geographic patchiness or variability in climate. Use of global level average values fails to account for this variability. For example, in North America: 1. there may be a decrease in the stratospheric O3 column (1-3%); however, there appears to be an increase in tropospheric O3 concentrations (1-2%/year) to compensate up to 20-30% loss in the total O3 column; 2. there appears to be an increase in tropospheric CO2, N2O and CH4 at the rate of roughly 0.8%, 0.3% and 1-2%, respectively, per year; 3. there is a decrease in erythemal UV-B; and 4. there is a cooling of tropospheric air temperature due to radiative cloud forcing. The effects of UV-B, CO2 and O3 on plants have been studied under growth chamber, greenhouse and field conditions. Few studies, if any, have examined the joint effects of more than one variable on plant response. There are methodological problems associated with many of these experiments. Thus, while results obtained from these studies can assist in our understanding, they must be viewed with caution in the context of the real world and predictions into the future. Biomass responses of plants to enhanced UV-B can be negative (adverse effect); positive (stimulatory effect) or no effect (tolerant). Sensitivity rankings have been developed for both crop and tree species. However, such rankings for UV-B do not consider dose-response curves. There are inconsistencies between the results obtained under controlled conditions versus field observations. Some of these inconsistencies appear due to the differences in responses between cultivars and varieties of a given plant species; and differences in the experimental methodology and protocol used. Nevertheless, based on the available literature, listings of sensitive crop and native plant species to UV-B are provided. Historically, plant biologists have studied the effects of CO2 on plants for many decades. Experiments have been performed under growth chamber, greenhouse and field conditions. Evidence is presented for various plant species in the form of relative yield increases due to CO2 enrichment. Sensitivity rankings (biomass response) are agein provided for crops and native plant species. However, most publications on the numerical analysis of cause-effect relationships do not consider sensitivity analysis of the mode used. Ozone is considered to be the most phytotoxic regional scale air pollutant. In the pre-occupation of loss in the O3 column, any increases in tropospheric O3 concentrations may be undermined relative to vegetation effects. As with the other stress factors, the effects of O3 have been studied both under controlled and field conditions. Thboth under controlled and field conditions. The numerical explanation of cause-effect relationships of O3 is a much debated subject at the present time. Much of the controversy is directed toward the definition of the highly stochastic, O3 exposure dynamics in time and space. Nevertheless, sensitivity rankings (biomass response) are provided for crops and native vegetation. The joint effects of UV-B, CO2 and O3 are poorly understood. Based on the literature of plant response to individual stress factors and chemical and physical climatology of North America, we conclude that nine different crops may be sensitive to the joint effects: three grain and six vegetable crops (sorghum, oat, rice, pea, bean, potato, lettuce, cucumber and tomato). In North America, we consider Ponderosa and loblolly pines as vulnerable among tree species. This conclusion should be moderated by the fact that there are few, if any, data on hardwood species. In conclusion there is much concern for global climate change and its possible effects on vegetation. While this is necessary, such a concern and any predictions must be tempered by the lack of sufficient knowledge. Experiments must be designed on an integrated and realistic basis to answer the question more definitively. This would require very close co-operation and communication among scientists from multiple disciplines. Decision makers must realize this need.  相似文献   

17.
Evidence shows that the current national primary ambient air quality standard, if attained, would still permit substantial injury to vegetation. Thus, in March 1987, the California Air Resources Board (CARB) began consideration of the evidence for the effects of ozone (O3) on vegetation, and of several possible state ambient air quality standards designed to protect vegetation, especially crops, from O3 injury. In its review, the CARB addressed a number of issues relevant to such a standard. One issue considered by the CARB is the relationship of an ambient air quality standard to natural background levels of O3, which would greatly influence the practicality of attainment. Attainment of a standard close to natural background could entail excessive costs. Another issue considered is the occurrence of oxidants other than O3 that can damage vegetation. Throughout much of California, O3 accounts for over 90% of the oxidant air pollutants, and the CARB considered whether, in keeping with current practice, O3 should be used as a surrogate for total oxidant air pollutants. A major new piece of information presented to the CARB was an assessment of the economic effects of several potential standards. This assessment, produced by University of California scientists at Riverside and Davis, calculated the benefits of the potential standards in comparison to current O3 levels and estimated natural O3 background. This assessment was developed using field chamber response data, local crop data, and local O3 concentration data as inputs to the California Agricultural Resources Model, which accounts for both supply and demand effects. Because of California's varied climate, agricultural production occurs on a year-round basis, with overlapping growing seasons for many crops. Over long periods of time, O3 levels may vary markedly because of the influence of various factors, and a 1-h standard may not be an accurate indicator of growing season O3 exposure. A moving three-month averaging time has been proposed as a way to approximate the growing seasons of California's 200 crops. However, a sufficiently stringent 1-h standard would serve as a surrogate for a growing season standard. The CARB reviewed evidence supporting both long-term and short-term standards. Agriculture dominates the economies of some regions within California but is a minor components of other regional economies. Because the San Joaquin Valley is California's most important agricultural area, the CARB reviewed evidence for a regional standard for this area that would be more stringent than standards for other parts of the state.  相似文献   

18.
Increasing risk for negative ozone impacts on vegetation in northern Sweden   总被引:1,自引:0,他引:1  
Trends were found for increasing surface ozone concentrations during April-September in northern Sweden over the period 1990-2006 as well as for an earlier onset of vegetation growing season. The highest ozone concentrations in northern Sweden occurred in April and the ozone concentrations in April showed a strong increasing trend. A model simulation of ozone flux for Norway spruce indicated that the provisional ozone flux based critical level for forests in Europe is exceeded in northern Sweden. Future climate change would have counteracting effects on the stomatal conductance and needle ozone uptake, mediated on the one hand by direct effect of increasing air temperatures and on the other through increasing water vapour pressure difference between the needles and air. Thus, there is a substantial and increasing risk for negative impacts of ozone on vegetation in northern Sweden, related mainly to increasing ozone concentrations and an earlier onset of the growing season.  相似文献   

19.
Ground-level ozone is a secondary pollutant that has recently gained notoriety for its detrimental effects on human and vegetation health. In this paper, a systematic approach is applied to develop artificial neural network (ANN) models for ground-level ozone (O3) prediction in Edmonton, Alberta, Canada, using ambient monitoring data for input. The intent of these models is to provide regulatory agencies with a tool for addressing data gaps in ambient monitoring information and predicting O3 events. The models are used to determine the meteorological conditions and precursors that most affect O3 concentrations. O3 time-series effects and the efficacy of the systematic approach are also assessed. The developed models showed good predictive success, with coefficient of multiple determination values ranging from 0.75 to 0.94 for forecasts up to 2 hr in advance. The inputs most important for O3 prediction were temperature and concentrations of nitric oxide, total hydrocarbons, sulfur dioxide, and nitrogen dioxide.  相似文献   

20.
The critical load (CL) of acidic atmospheric deposition represents the load of acidity deposited from the atmosphere to the earth’s surface at which harmful acidification effects on sensitive biological receptors are thought to occur. In this study, the CL for forest soils was estimated for 27 watersheds throughout the United States using a steady-state mass balance approach based on both national and site-specific data and using different approaches for estimating base cation weathering. Results suggested that the scale and source of input data can have large effects on the calculated CL and that the most important parameter in the steady-state model used to estimate CL is base cation weathering. These results suggest that the data and approach used to estimate weathering must be robust if the calculated CL is to be useful for its intended purpose.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号