首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The goals of environmental legislation and associated regulations are to protect public health, natural resources, and ecosystems. In this context, monitoring programs should provide timely and relevant information so that the regulatory community can implement legislation in a cost-effective and efficient manner. The Safe Drinking Water Act (SDWA) of 1974 attempts to ensure that public water systems (PWSs) supply safe water to its consumers. As is the case with many other federal environmental statutes, SDWA monitoring has been implemented in relatively uniform fashion across the United States. In this three part series, spatial and temporal patterns in water quality data are utilized to develop, compare, and evaluate the economic performance of alternative place-based monitoring approaches to current monitoring practice. Part II: Several factors affect the performance of monitoring strategies, including: measurable objectives, required precision in estimates, acceptable confidence levels of such estimates, available budget for sampling. In this paper, we develop place-based monitoring strategies based on extensive analysis of available historical water quality data (1960-1994) of 19 Iowa community water systems. These systems supply potable water to over 350,000 people. In the context of drinking water, the objective is to protect public health by utilizing monitoring resources to characterize contaminants that are detectable, and are close to exceeding health standards. A place-based monitoring strategy was developed in which contaminants were selected based on their historical occurrence, rather than their appearance on the SDWA contaminant list. In a subset of the water systems, the temporal frequency of monitoring for one ubiquitous contaminant, nitrate, was tailored to patterns in its historical occurrence and concentration. Three sampling allocation models (linear, quadratic, and cubic) based on historic patterns in peak occurrence were developed and evaluated. Random and fixed-interval sampling strategies within the context of such models were also developed and evaluated. Strategies were configured to incorporate a variety of options for frequency and number of samples (depending on budget and the desired precision in estimate of peak concentrations).  相似文献   

2.
The goals of environmental legislation and associated regulations are to protect public health, natural resources, and ecosystems. In this context, monitoring programs should provide timely and relevant information so that the regulatory community can implement legislation in a cost-effective and efficient manner. The Safe Drinking Water Act (SDWA) of 1974 attempts to ensure that public water systems (PWSs) supply safe water to its consumers. As is the case with many other federal environmental statutes, SDWA monitoring has been implemented in relatively uniform fashion across the USA. In this three part series, spatial and temporal patterns in water quality data are utilized to develop, compare, and evaluate the economic performance of alternative place-based monitoring approaches to current monitoring practice. Under the Safe Drinking Water Act (SDWA), a common list of over 90 contaminants is analyzed nationwide using EPA-authorized laboratory procedures. National and state-level summaries of SDWA data have shown that not all contaminants occur in all places at all times. This hypothesis is confirmed and extended by showing that only a few (less than seven) contaminants are of concern in any one of 19 Iowa surface water systems studied. These systems collectively serve about 350,000 people and their sizes vary between 1,200 and 120,000. The distributions of contaminants found in these systems are positively skewed, with many non-detect measurements. A screening strategy to identify such contaminants in individual systems is presented. These findings have significant implications not only for the design of alternative monitoring programs, but also in multi-billion-dollar decisions that influence the course of future drinking water infrastructure, repair, and maintenance investments.  相似文献   

3.
水质监测是任何水资源管理必不可少的组成部分,水质监测与评价不仅可对水污染问题进行鉴别和评估,而且可以验证污染控制措施是否正确以及污染源是否遵守了相关的环保法规、制度。文章讨论了综合监测系统的对策、网络设计、采样与分析、数据处理与报告,还讨论了必需的科学的组织形式。以4条跨界河流[欧洲的莱茵河(Rhine)和多瑙河(Danube)、南美的拉普拉塔河(La Plata)、东南亚的湄公河(Mekong)]为例阐述了现代意义的监测方法学。对于工业化程度高的流域(如莱茵河和多瑙河),早期预警系统尤为重要。最后探讨了新的性价比好的污染监测方法以及如何避免产生数据很多,但信息量很少的状况。  相似文献   

4.
跨界河流的水质监测(1)   总被引:2,自引:1,他引:2  
水质监测是任何水资源管理必不可少的组成部分,水质监测与评价不仅可对水污染问题进行鉴别和评估,而且可以验证污染控制措施是否正确以及污染源是否遵守了相关的环保法规、制度、文章讨论了综合监测系统的对策、网络设计、采样与分析、数据处理与报告,还讨论了必需的科学的组织形式。以4条跨界河流[欧洲的莱茵河(Rhine)和多瑙河(Danube)、南美的拉普拉塔河(La Plata)、东南亚的湄公河(Mekong)]为例阐述了现代意义的监测方法学。对于工业化程度高的流域(如莱茵河和多瑙河),早期预警系统尤为重要。最后探讨了新的性价比好的污染监测方法以及如何避免产生数据很多,但信息量很少的状况。  相似文献   

5.
The South Florida Water Management District has collected surface water and sediment samples for analysis of over 80 pesticides since 1992. Residues of atrazine and DDE-p,p(') are nearly ubiquitous throughout the sampling area. Surface water concentrations of atrazine at nine of 14 selected monitoring locations exhibited a downward trend and none of the detected concentrations exceeded established levels of concern. Seventy-five percent of the sampled locations had average sediment residues of DDE-p,p(') at levels that may impact sediment-dwelling organisms. Monitoring locations with the highest average DDE-p,p(') concentrations (based on detected values) and the highest percentage of pesticide detections did not exhibit consistent trends. Some locations exhibited increasing trends while trends at other locations showed a decrease in concentrations. Additionally, specific location concentrations for ethion, diazinon, and endosulfan documented periods of surface water quality exceedances. However, product label changes and grower education have substantially contributed to the reduced number of exceedances over time.  相似文献   

6.
The U.S. Environment Protection Agency (EPA) is promulgating a revised national primary drinking water regulation (NPDWR) which includes a monthly sample size and maximum contaminant level (MCL) for total coliform bacteria in public water systems. No previous quantification has been made of the coliform content that must be present in the sampled water in order for an MCL to be exceeded. This paper presents a method for evaluating the coliform level an MCL will detect with likelihood P.Our approach is to treat an MCL as a decision rule, with Type I (false positive) and Type II (false negative) error rates. The stringency of an MCL is quantified as the mean coliform level in the sampled system that it will detect with likelihood P. MCLs are contrasted on stringency by comparing the mean coliform level each targets for detection, with fixed error rates.Interim rules (NIPDWR), in effect since 1975, are shown to vary widely on the coliform content each targets for detection, that is, on stringency. Yes/no decisions on contamination have not been decided based on mean coliform content. Coliform levels permitted in monitored public water systems have been determined by the particular MCL used for testing. The same coliform level will test positively with one MCL 90 times in 100 yet be guaranteed 95% nondetection by a second MCL.EPA's reasonably safe standard for drinking water is reformulated on our stringency criteria. Its proposed monthly MCL is evaluated on its capability for maintaining this standard. Smaller systems will not provide its users this level of protection under the new rule.In addition, our evaluation of the safe water standard on stringency and the rationale for a monthly MCL require that coliform levels be identically distributed (i.d.) across month and sampled system. Empirical data strongly refute this model and question the utility of a monthly MCL.This work suggests an alternative, single sample MCL, with repeat sampling for verification, which can be configured to provide monitoring to discover mean coliform values at any level, in any size of system, at minimal extra cost.  相似文献   

7.
Water quality monitoring involves a complex set of steps and a variety of approaches. Its goals include understanding of aquatic habitats, informing management and facilitating decision making, and educating citizens. Environmental nongovernmental organizations (ENGOs) are increasingly engaged in water quality monitoring and act as environmental watchdogs and stewards of water resources. These organizations exhibit different monitoring mandates. As government involvement in water quality monitoring continues to decline, it becomes essential that we understand their modi operandi. By doing so, we can enhance efficacy and encourage data sharing and communication. This research examined Canadian ENGOs that collect their own data on water quality with respect to water quality monitoring activities and information needs. This work had a twofold purpose: (1) to enhance knowledge about the Canadian ENGOs operating in the realm of water quality monitoring and (2) to guide and inform development of web-based geographic information systems (GIS) to support water quality monitoring, particularly using benthic macroinvertebrate protocols. A structured telephone survey was administered across 10 Canadian provinces to 21 ENGOs that undertake water quality monitoring. This generated information about barriers and challenges of data sharing, commonly collected metrics, human resources, and perceptions of volunteer-collected data. Results are presented on an aggregate level and among different groups of respondents. Use of geomatics technology was not consistent among respondents, and we found no noteworthy differences between organizations that did and did not use GIS tools. About one third of respondents did not employ computerized systems (including databases and spreadsheets) to support data management, analysis, and sharing. Despite their advantage as a holistic water quality indicator, benthic macroinvertebrates (BMIs) were not widely employed in stream monitoring. Although BMIs are particularly suitable for the purpose of citizen education, few organizations collected this metric, despite having public education and awareness as part of their mandate.  相似文献   

8.
Derivation of Nutrient Guidelines for Streams in Victoria, Australia   总被引:4,自引:0,他引:4  
Human induced increases to nutrientconcentrations in streams have led to many agenciesdeveloping strategies and criteria for nutrientreduction. National or statewide guidelines aregenerally inappropriate, due to the natural variabilityin stream ecosystems within political boundaries. Thisstudy used an extant aquatic macroinvertebrate-basedregionalisation for the state of Victoria, Australia, asthe basis for defining regions of relatively homogeneousenvironmental character. This enabled the selection ofecologically-based regional reference sites andsubsequent characterisation of the nutrient status ofthese sites. Using an extensive biological and nutrientdata base for streams across the State, we calculated50th and 75th percentile concentrations forreference sites within each region. Using thesepercentiles in conjunction with impact and recoverystudies, we defined nutrient guidelines for each region. Although the nutrient data largely supported thebiological regionalisation, patterns in the nutrient datadid require some minor modifications for the nutrientregions. Relatively unimpacted regions with referencesites in very good-to excellent-condition were assignedguidelines largely based on the 75th percentiles. The more impacted regions, where best availablereference sites were of poorer quality, were assignedguidelines based largely on the 50th percentiles. Professional judgement and known extents of impactsacross each region provided important contributions tothe decision-making process. The derived guidelineconcentrations are comparable to several cited in theliterature and are proposed for use in monitoring,assessment and restoration targets.  相似文献   

9.
10.
Environmental monitoring is essential for assessing the current state of the environment, measuring impacts of environmental pressures and providing evidence to government. Recent UK government announcements have indicated an increased role for 'Big Society' in monitoring. In this paper, we review available literature concerning the use of citizen science for monitoring, present examples of successful volunteer monitoring work and highlight important issues surrounding the use of volunteers. We argue that in order to ensure that environmental monitoring continues to be effective it is important to learn from examples where volunteers are currently used, acknowledging constraints and identifying potential approaches which will help to maximise both their engagement and data quality. Effective partnerships between environmental monitoring organisations and volunteers may thus aid the UK in developing robust coordinated monitoring systems that will be less vulnerable to funding variances.  相似文献   

11.
The objectives of this study were to: (1) analyzehistorical diazinon water column monitoring data frominconsistent monitoring programs in mainstem and tributary sitesin the Sacramento and Feather River watersheds from 1991 to 2001to assess possible spatial and temporal trends and (2) determinethe probability of measured diazinon concentrations by site orsimilar pooled sites exceeding various proposed effectsbenchmarks such as Water Quality Criteria and 10th centilesderived from species sensitivity distributions proposed as targetconcentrations for Total Maximum Daily Loads (TMDLs). An analysisof diazinon monitoring data from both fixed and rain eventsampling from the Sacramento/Feather River watersheds from 1991to 2001 showed that 90th centiles for 27 different mainstemand tributary sites ranged from 12 to 14,897 ng L-1. The 90th centiles were generally higher at tributary sites (as compared to mainstem sites) during rain event sampling prior to 1995. A comparison of rain event samples for similar sites sampled in 1994 and 2000 showed that 90th centiles were lower in seven of eight sites in 2000. A comparison of pooled mainstemsites between 1994 and 2000 for rain event data showed a lower90th centile value for 2000; 90th centiles were alsolower in 2000 at all pooled tributary sites and all sites whendata from a highly influential site was removed. For varioussite designations (all sites, pooled mainstem sites etc.) theprobability of exceeding the acute and chronic diazinon targetsdeveloped by California Department of Fish and Game decreasedfrom 1994 to 2000. These data clearly show progress in the 6 yrperiod in reducing environmental concentrations of diazinon.Probability of exceeding the 10th centile targets based onspecies sensitivity distributions for arthropods (the mostsensitive taxa to diazinon exposure) was similar and fairly lowbetween years; the highest percent probability of exceedance forany site designation was 20%.Results from a two-way ANOVA using individual measurementsfrom all sites sampled showed a significant decrease during rainevents between 1994 and 2000, although the decrease was notequivalent for all sites. Sources of uncertainty identified inthe analysis of rain event data from 1994 and 2000 wereinconsistent frequency of sampling during rain events for eachyear, unknown definition of rain events between the two years andnon-defined measurement point within the hydrograph of rainevents sampled in each year. Analysis of diazinon trends fromfixed sampling was limited due to lack of yearly data by site;therefore, only parametric analysis could be conducted. Based onparametric analysis of diazinon monitoring data from fixedsampling sites, the percent detected concentrations were greaterthan 20% for 12 tributary sites and 5 mainstem sites fromsamples collected during January-March. On the average over allsites and months, diazinon concentrations have decreased at fixedsampling sites in the Sacramento/Feather River watershed from1991 to 2001.  相似文献   

12.
Water quality monitoring network design has historically tended to use experience, intuition and subjective judgement in locating monitoring stations. Better design procedures to optimize monitoring systems need to simultaneously identify significant planning objectives and consider a number of social, economic and environmental constraints. The consideration of multiple objectives may require further decision analysis to determine the preference weights associated with the objectives to aid in the decision-making process. This may require the application of an optimization study to extract such information from decision makers or experts and to evaluate the overall effectiveness of locating strategies. This paper assesses the optimal expansion and relocation strategies of a water quality monitoring network using a two-stage analysis. The first stage focuses on the information retrieval of preference weights with respect to the designated planning objectives. With the aid of a pre-emptive goal programming model, data analysis is applied to obtain the essential information from the questionnaire outputs. The second stage then utilizes a weighted multi-objective optimization approach to search for the optimal locating strategies of the monitoring stations in the river basin. Practical implementation is illustrated by a case study in the Kao-Ping River Basin, south Taiwan.  相似文献   

13.
Environmental health monitoring and surveillance include activities such as collection of information on the production and use of chemicals; preparation of inventories of waste discharges; measurement of physical, chemical and biological agents in air, water and food, at work place and at home; epidemiological investigations, and collection and analysis of environmental, and health statistical data. There are two main objectives of these activities: estimation of human exposure to potentially harmful environmental factors and timely detection of adverse health effects; and the assessment of environmental conditions in relation to established guidelines and standards. Environmental health monitoring and surveillance projects initiated, organized and implemented by the Specialized Agencies and other bodies of the United Nations system include monitoring of air and water quality and of food and animal feed contamination; pilot projects on air pollution exposure assessment and biological monitoring; and ionizing radiation surveillance. Principles of environmental and health monitoring in occupational environment, and of monitoring and surveillance of environmental health effects are outlined. Two examples are provided of national environmental health surveillance systems.Revised and up-dated text of a paper presented at the World congress on Environmental Health in Development Planning, Mexico City, November 1979.Formerly Manager, Environmental Health Criteria and Standards, and Chief Central Unit, International Programme on Chemical Safety, Division of Environmental Health, World Health Organization, Geneva, Switzerland.  相似文献   

14.
An unusual bloom of Chrysosporum ovalisporum (basionym Aphanizomenon ovalisporum) occurred for the first time in the Murray River and distributary rivers in New South Wales, Australia, from mid-February to early June 2016. At its greatest extent, it contaminated a combined river length of ca. 2360 km. Chrysosporum ovalisporum usually comprised >99% of the total bloom biovolume at most locations sampled, which at times exceeded 40 mm3 l?1. The origins of the bloom were most likely reservoirs on the upper Murray River, with cyanobacterial-infested water released from them contaminating the river systems downstream. An integrated approach using three analytical methods: (1) identification and enumeration by microscopy, (2) multiplex quantitative polymerase chain reaction (qPCR), and (3) toxin analysis, was used to obtain data for the assessment of risk to water users and management of the bloom. qPCR indicated some cyrA and stxA genes responsible for cylindrospermopsin and saxitoxin biosynthesis respectively were present, but mostly below the level of quantification. No mcyE genes for microcystin biosynthesis were detected. Toxin analysis also revealed that cylindrospermopsin, saxitoxin and microcystin were all below detection. Lack of measurable toxicity in a species usually considered a cylindrospermopsin producer elsewhere meant the possibility of relaxing management guidelines; however, high (Red) alerts needed to be maintained due to risk to water users from other biohazards potentially produced by the cyanobacteria such as contact irritants. A three-tiered monitoring strategy is suggested for monitoring cyanobacterial blooms to provide enhanced data for bloom management.  相似文献   

15.
The development of easy-to-use and rapid-monitoring immunoassay methods for organic environmental pollutants in a class-selective manner is a topic of considerable environmental interest. In this work, a heterologous competitive indirect enzyme-linked immunosorbent assay (ciELISA) based on a monoclonal antibody (MAb) with broad-specificity for organophosphorus pesticides (OPs) was applied to the detection of O,O-diethyl and O,O-dimethyl OPs in water samples. The ciELISA conditions were carefully optimized to obtain a three to five-fold improvement of sensitivity for most OPs, and thirteen OPs were determined at concentrations ranging from 0.017 to 30 ng mL(-1). The determination of spiked environmental water samples showed average recoveries from 81.5% to 115.1%, with the coefficient of variation (CV) ranging from 6.1% to 20.9%, which showed satisfactory reproducibility of the developed ciELISA. To overcome the negative aspect of broad-specificity immunoassays not providing qualitative and quantitative analysis of individual OPs in blind samples, we used "percent inhibition rate" to make the developed ciELISA a semi-quantitative method, which allows the monitoring of positive samples from hundreds of negative samples. The determination of OPs in blind water samples by the developed ELISA with confirmation by HPLC-MS/MS analysis demonstrated that the assay is ideally suited as a screening method for OP residues prior to chromatographic analysis.  相似文献   

16.
High-frequency, long-term monitoring of water quality has revolutionized the study of surface waters in recent years. However, application of these techniques to groundwater has been limited by the ability to remotely pump and analyze groundwater. This paper describes a novel autonomous groundwater quality monitoring system which samples multiple wells to evaluate temporal changes and identify trends in groundwater chemistry. The system, deployed near Fresno, California, USA, collects and transmits high-frequency data, including water temperature, specific conductance, pH, dissolved oxygen, and nitrate, from supply and monitoring wells, in real-time. The system consists of a water quality sonde and optical nitrate sensor, manifold, submersible three-phase pump, variable frequency drive, data collection platform, solar panels, and rechargeable battery bank. The manifold directs water from three wells to a single set of sensors, thereby reducing setup and operation costs associated with multi-sensor networks. Sampling multiple wells at high frequency for several years provided a means of monitoring the vertical distribution and transport of solutes in the aquifer. Initial results show short period variability of nitrate, specific conductivity, and dissolved oxygen in the shallow aquifer, while the deeper portion of the aquifer remains unchanged—observations that may be missed with traditional discrete sampling approaches. In this aquifer system, nitrate and specific conductance are increasing in the shallow aquifer, while invariant changes in deep groundwater chemistry likely reflect relatively slow groundwater flow. In contrast, systems with high groundwater velocity, such as karst aquifers, have been shown to exhibit higher-frequency groundwater chemistry changes. The stability of the deeper aquifer over the monitoring period was leveraged to develop estimates of measurement system uncertainty, which were typically lower than the manufacturer’s stated specifications, enabling the identification of subtle variability in water chemistry that may have otherwise been missed.  相似文献   

17.
Environmental monitoring typically falls into one of two broad categories. Targeted designs, utilizing fixed stations, focus on describing and quantifying impacts, tracking trends, and assessing compliance with regulatory guidelines or limits. Probabilistic designs, in contrast, draw sampling stations at random from an area or region, and the stations are used to describe conditions in the region of interest based on a subpopulation of sites. These two design approaches are usually viewed as mutually exclusive, with randomized designs used for broader regional assessments of overall ambient condition and targeted designs for demonstrating regulatory compliance and/or characterizing specific, localized impacts. Combining elements of both approaches into a single design provides benefits not available from either design alone. Embedding targeted monitoring within the framework of a probabilistic design enables data from targeted stations to be viewed in a more accurate regional context and provides a consistent background against which to identify characteristic regional patterns of contamination and impact. We use the San Gabriel River Regional Monitoring Program, recently implemented in southern California, to illustrate the structure of a hybrid design and how it enables data analyses and assessments that provide a more complete picture of conditions in the watershed. For example, the hybrid design showed that approximately 80% of the metals levels at compliance sites were below the 25th percentile of the overall watershed condition as indicated by the probabilistic sampling.  相似文献   

18.
Identification of representative sampling sites is a critical issue in establishing an effective water quality monitoring program. This is especially important at the urban-agriculture interface where water quality conditions can change rapidly over short distances. The objective of this research was to optimize the spatial allocation of discrete monitoring sites for synoptic water quality monitoring through analysis of continuous longitudinal monitoring data collected by attaching a water quality sonde and GPS to a boat. Sampling was conducted six times from March to October 2009 along a 6.5 km segment of the Wen-Rui Tang River in eastern China that represented an urban-agricultural interface. When travelling at a velocity of ~2.4 km h(-1), this resulted in water quality measurements at ~20 m interval. Ammonia nitrogen (NH(4)(+)-N), electrical conductivity (EC), dissolved oxygen (DO), and turbidity data were collected and analyzed using Cluster Analysis (CA) to identify optimal locations for establishment of long-term monitoring sites. The analysis identified two distinct water quality segments for NH(4)(+)-N and EC and three distinct segments for DO and turbidity. According to our research results, the current fixed-location sampling sites should be adjusted to more effectively capture the distinct differences in the spatial distribution of water quality conditions. In addition, this methodology identified river reaches that require more comprehensive study of the factors leading to the changes in water quality within the identified river segment. The study demonstrates that continuous longitudinal monitoring can be a highly effective method for optimizing monitoring site locations for water quality studies.  相似文献   

19.
Traditional approaches for benchmarking drinking water systems are binary, based solely on the compliance and/or non-compliance of one or more water quality performance indicators against defined regulatory guidelines/standards. The consequence of water quality failure is dependent on location within a water supply system as well as time of the year (i.e., season) with varying levels of water consumption. Conventional approaches used for water quality comparison purposes fail to incorporate spatiotemporal variability and degrees of compliance and/or non-compliance. This can lead to misleading or inaccurate performance assessment data used in the performance benchmarking process. In this research, a hierarchical risk-based water quality performance benchmarking framework is proposed to evaluate small drinking water systems (SDWSs) through cross-comparison amongst similar systems. The proposed framework (R WQI framework) is designed to quantify consequence associated with seasonal and location-specific water quality issues in a given drinking water supply system to facilitate more efficient decision-making for SDWSs striving for continuous performance improvement. Fuzzy rule-based modelling is used to address imprecision associated with measuring performance based on singular water quality guidelines/standards and the uncertainties present in SDWS operations and monitoring. This proposed R WQI framework has been demonstrated using data collected from 16 SDWSs in Newfoundland and Labrador and Quebec, Canada, and compared to the Canadian Council of Ministers of the Environment WQI, a traditional, guidelines/standard-based approach. The study found that the R WQI framework provides an in-depth state of water quality and benchmarks SDWSs more rationally based on the frequency of occurrence and consequence of failure events.  相似文献   

20.
介绍地表水水质自动监测站提水系统的设计方案 ,分析各方案的优缺点 ,探讨各方案的适应性及选择最佳方案 ,以期对自动站的建设提供参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号