首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A field study was carried out at six locations in the Lazio region (Central Italy) aimed at characterising atmospheric particulate matter (PM10 and PM2.5) from the point of view of the chemical composition and grain size distribution of the particles, the mixing properties of the atmosphere, the frequency and relevance of natural events. The combination of four different analytical techniques (ion chromatography, X-ray fluorescence and ICP for inorganic components, thermo-optical analysis for carbon compounds) yielded sound results in terms of characterisation of the air masses. During the first three months of the study (October-December 2004), many pollution events of natural (sea-salt or desert dust episodes) or anthropogenic nature were identified and characterised. More than 90% of the collected mass was identified by chemical analysis. The central role played by the mixing properties of the lower atmosphere when pollution events occurred was highlighted. The results show a major impact of primary anthropogenic pollutants on traffic stations and a homogeneous distribution of secondary pollutants over the regional area. An evaluation of the sources of PM and an identification of possible reliable tracers were obtained using a chemical fractionation procedure.  相似文献   

2.
A field study was carried out at six locations in the Lazio region (Central Italy) aimed at characterising atmospheric particulate matter (PM10 and PM2.5) from the point of view of the chemical composition and grain size distribution of the particles, the mixing properties of the atmosphere, the frequency and relevance of natural events. The combination of four different analytical techniques (ion chromatography, X-ray fluorescence and ICP for inorganic components, thermo-optical analysis for carbon compounds) yielded sound results in terms of characterisation of the air masses. During the first three months of the study (October–December 2004), many pollution events of natural (sea-salt or desert dust episodes) or anthropogenic nature were identified and characterised. More than 90% of the collected mass was identified by chemical analysis. The central role played by the mixing properties of the lower atmosphere when pollution events occurred was highlighted. The results show a major impact of primary anthropogenic pollutants on traffic stations and a homogeneous distribution of secondary pollutants over the regional area. An evaluation of the sources of PM and an identification of possible reliable tracers were obtained using a chemical fractionation procedure.  相似文献   

3.
为探究典型燃煤工业城市邯郸市的大气细颗粒物(PM2.5)污染水平及水溶性无机离子特征,于2016年1—12月采集了当地大气PM2.5样品,然后利用离子色谱法测得水溶性无机离子的组分,分析了不同季节水溶性无机离子随PM2.5的浓度变化特征。通过对PM2.5中的阴离子、阳离子进行分析发现,SO4^2-、NO3^-和NH4^+在春夏秋冬四季均为PM2.5中的主要离子成分,SO4^2-、NO3^-和NH4^+的浓度之和在春夏秋冬四季占各季节总的水溶性无机离子浓度的百分比分别为84.6%、77.4%、89.9%、62.5%。其中,在春季和冬季含量最高的3种离子分别是NO3^-、SO4^2-和NH4^+,夏季含量最高的3种离子分别是SO4^2-、NH4^+和NO3^-,而秋季含量最高的3种离子分别是NH4^+、SO4^2-和NO3^-。相关性分析发现,2016年春季、夏季和秋季PM2.5为酸性,冬季为碱性。SO4^2-、NO3^-、NH4^+浓度分析表明,冬季PM2.5中的一次建筑扬尘排放较多。通过主成分分析法得出,PM2.5中水溶性无机离子主要来源于二次转化和生物质燃烧。  相似文献   

4.
大气可吸入颗粒物(PM10)中矿物组分的X射线衍射研究   总被引:5,自引:1,他引:5  
利用X射线衍射技术对北京2002春季和夏季的可吸入颗粒物进行了研究.结果表明,北京春季和夏季可吸入颗粒物的矿物组成明显不同,春季可吸入颗粒物中的矿物以硅铝酸盐为主,同时存在碳酸盐、硫酸盐、硫化物、铁的氧化物、粘土矿物以及难以鉴定的矿物;在夏季的样品中,矿物的种类有所减少,却有新的物种出现,如氯化氨、硫酸氨等.XRD定量分析显示,在沙尘天气时,可吸入颗粒物中石英和粘土矿物以及非晶质分别占到24.1%、28.5%和2 0%,斜长石和方解石分别占到10.4%和8.1%,其他矿物总共不到10%.矿物组分的确定对可吸入颗粒物来源的识别有一定的指导作用.  相似文献   

5.
质谱直接测量法解析盐城市大气细颗粒物来源   总被引:3,自引:0,他引:3  
为全面了解盐城市大气颗粒物的组成,摸清以PM2.5为首要污染物的来源,说清其化学组分和源贡献率,于2014年12月16日00:00—2014年12月21日09:00,利用在线单颗粒气溶胶质谱仪,对盐城市细颗粒物进行实时在线源解析。结果表明,盐城首要污染物为燃煤,占比为23.7%,其次是机动车尾气,占比为18.3%,第三位是扬尘,占总颗粒数的15.7%,生物质燃烧占比为14.8%位列第四,工业工艺源、二次无机源和其他源贡献率相对较小。  相似文献   

6.
根据2014年全年实时在线观测数据,分析了徐州睢宁地区大气细颗粒物(PM_(2.5))和气态污染物(包括SO_2、CO、NO_x、O_3)质量浓度的季节性变化特征。结合后向轨迹模型,分析不同气团对该地区大气污染浓度的影响。PM_(2.5)与O_3值在夏季最低,呈显著相关,表明夏季PM_(2.5)主要受控于本地大气光化学活性。在冬季,除O_3外,PM_(2.5)、SO_2、CO、NO_x值最高,且大气颗粒物主要以细粒子为主。O_3在春季最高,并与远程传输的气团且经过我国东部污染源密集地区相对应。高浓度的PM_(2.5)主要与冬季缓慢移动的气团相对应,这可能将PM_(2.5)及其气态前体物传输至该地区进而加重大气污染程度。  相似文献   

7.
Episodes of large-scale transport of airborne dust and anthropogenic pollutant particles from different sources in the East Asian continent in 2008 were identified by National Oceanic and Atmospheric Administration satellite RGB (red, green, and blue)-composite images and the mass concentrations of ground level particulate matter. These particles were divided into dust, sea salt, smoke plume, and sulfate by an aerosol classification algorithm. To analyze the aerosol size distribution during large-scale transport of atmospheric aerosols, aerosol optical depth (AOD) and fine aerosol weighting (FW) of moderate imaging spectroradiometer aerosol products were used over the East Asian region. Six episodes of massive airborne dust particles, originating from sandstorms in northern China, Mongolia, and the Loess Plateau of China, were observed at Cheongwon. Classified dust aerosol types were distributed on a large-scale over the Yellow Sea region. The average PM10 and PM2.5 ratio to the total mass concentration TSP were 70% and 15%, respectively. However, the mass concentration of PM2.5 among TSP increased to as high as 23% in an episode where dust traveled in by way of an industrial area in eastern China. In the other five episodes of anthropogenic pollutant particles that flowed into the Korean Peninsula from eastern China, the anthropogenic pollutant particles were largely detected in the form of smoke over the Yellow Sea region. The average PM10 and PM2.5 ratios to TSP were 82% and 65%, respectively. The ratio of PM2.5 mass concentrations among TSP varied significantly depending on the origin and pathway of the airborne dust particles. The average AOD for the large-scale transport of anthropogenic pollutant particles in the East Asian region was measured to be 0.42 ± 0.17, which is higher in terms of the rate against atmospheric aerosols as compared with the AOD (0.36 ± 0.13) for airborne dust particles with sandstorms. In particular, the region ranging from eastern China, the Yellow Sea, and the Korean Peninsula to the Korea East Sea was characterized by high AOD distributions. In the episode of anthropogenic polluted aerosols, FW averaged 0.63 ± 0.16, a value higher than that in the episode of airborne dust particles (0.52 ± 0.13) with sandstorms, showing that fine anthropogenic pollutant particles contribute greatly to atmospheric aerosols in East Asia.  相似文献   

8.
The simulated concentrations from a numerical 3-dimensional regional air quality model (MC2AQ) are compared to those of ground-based observations in north-eastern Canada and the United States. The model has oxidant chemistry for both inorganic and organic species and deposition routines driven online by a mesoscale compressible community meteorological model (MC2). A standard emission inventory of anthropogenic, natural and biogenic sources for the year 1990 for 21 atmospheric trace species was used in the simulation. The model was run for July 1999, because of the occurrence of a high ozone episode and the availability of the monitoring data for surface O3, SO2, NO, NO2 and NOx. The comparisons during the episode show that the model performs quite well for predicting concentrations and diurnal variations of the surface ozone. The predictions for other gaseous species show some discrepancies with observations, but they are consistent with the results from other models evaluated in the literature. The uncertainties in the emission inventory for these species might be the main causes of the discrepancies. Further studies are needed to improve the predictability of SO and NOx, especially as the model is developed to include particulate matter formation as a result of these gaseous precursors.  相似文献   

9.
Source apportionment study was performed, applying principal component analysis to the results of 221 chemical analyses of PM10 and PM2.5 samples collected daily from the industrial (but low traffic) Spanish town of Puertollano over a 14-month period during 2004-2005. Results reveal compositional variations attributable to different mixtures of natural and anthropogenic materials, mainly soil and rock dust (crustal), marine salt (only in PM10), petrochemical refinery emissions, and particles attributed to the combustion of local coal, which is unusually rich in Pb and Sb. During the study period there were 34 pollution episodes when PM10 exceeded 50 tg m(-3), mostly due to winter air temperature inversions, regional atmospheric stagnation, or African dust incursions (North African, NAF days: usually in summer). Whereas the crustal component during NAF episodes averaged 52% with a PM2.5/PM10 ratio of 0.54, this dropped to 29% and a PM2.5/PM10 of 0.67 during non-NAF days when anthropogenic materials predominated. Abnormally enhanced concentrations of pathfinder metallic trace elements provide additional evidence for source apportionment: thus aerosols with raised levels of Pb and Sb are associated with local coal combustion, Ni and V can be linked to petrochemical PM emissions, and Ti, Mn, Rb, and Ce are particularly characteristic of crustal dust incursions.  相似文献   

10.
Water-soluble inorganic ions in aerosol samples have been studied. The sample collection took place during summer in 2003 at a European background site which is operating within the framework of the European Monitoring and Evaluation Program. Gent type PM10 stacked filter unit (SFU) samplers were operated in parallel on a day and night basis to collect particles in separate coarse (2.0-10 microm) and fine (<2.0 microm) size fractions. Particulate masses were measured gravimetrically; the filters from one of the SFU samplers were analyzed by particle-induced X-ray emission spectrometry (PIXE) and instrumental neutron activation analysis (INAA). Filters from the other SFU sampler were analyzed by ion chromatography (IC) for major inorganic anions (MSA-, NO2(-), NO3(-), Cl-, Br-, SO4(2-), oxalate) and cations (Na+, K+, NH4(+), Mg2+, Ca2+). The water-soluble inorganic ions measured were responsible for 44% and 16% of the total fine and coarse particulate mass, respectively. In the fine size fraction, the main ionic components were SO4(2-) and NH4(+) accounting for about 90% of fine ionic mass. In the coarse fraction the main ionic components were Ca2+ and NO3(-), followed by SO4(2-). Significant day and night difference in the mass concentrations was observed only for fine NO3(-). The molar ratios of fine NH4(+) to SO4(2-) indicated their complete neutralization to (NH4)2SO4. According to the cation-to-anion ratios the coarse particles were alkaline, while the fine particles were slightly acidic or neutral. By comparing the corresponding concentrations obtained from PIXE/INAA and IC, we determined the water-extractable part of the individual species. We also investigated the effect of long-range transported air masses on the local air concentrations, and we found that the air quality of this background monitoring station was affected by regional pollution sources.  相似文献   

11.
石家庄市大气颗粒物中水溶性无机离子污染特征研究   总被引:3,自引:0,他引:3  
用超声萃取-离子色谱法分析了石家庄市大气颗粒物中8种水溶性无机离子。结果表明,NO3-、SO2-4、NH4+及 Ca2+为主要组分;各个离子的质量浓度均有季节及空间变化差异;不同粒径颗粒物中 SO2-4和 NO3-相关性均很好,NH4+与 SO2-4、NO3-在细颗粒物中具有良好的相关性,Ca2+在粗粒子中与 NO3-和 SO2-4的相关性也较好。SO2-4/NO3-质量比季节变化表明,春、夏季固定源与流动源对大气颗粒物贡献相当,秋季流动源贡献较大,冬季固定源贡献较大。PM2.5中SO2与SO2-4、NO2与 NO3-转化率表明,SO2-4、NO3-主要是由二次转化而来。  相似文献   

12.
采用Tekran 2537X大气汞分析仪在线测量北京市城区大气中气态元素汞(GEM,简称大气汞) 浓度,研究大气汞浓度随不同气象条件的变化特征。通过分析2016年10月—2017年9月大气汞监测数据发现,该监测点全年大气汞浓度为0.48~16.25 ng/m3,均值为(3.41±1.79)ng/m3。春季、夏季、秋季和冬季大气汞浓度均值依次为2.93 、2.95、4.27、3.37 ng/m3,其中,秋季大气汞浓度明显高于其他季节 。秋季大气汞浓度显著偏高可能由不利的大气扩散条件导致。大气汞夜间浓度显著高于白天浓度。同时,将大气汞与SO2、CO及PM2.5进行相关性分析,发现大气汞浓度变化趋势与SO2、CO和PM2.5呈显著正相关。结合风向和风速进行污染来源分析,得到该点位大气汞在西南和东北方向上受人为排放源影响较大。污染源类型分析表明,冬季大气汞与CO同源性强,主要来自本地供暖用煤。  相似文献   

13.
为了探讨厦门金砖会晤期间的排放控制措施以及天气形势对大气颗粒物污染特征的影响,于2017年8月10日至9月10日对厦门气态污染物、细颗粒物(PM2.5)中的水溶性离子以及有机碳(OC)、元素碳(EC)等主要化学成分开展了高时间分辨率的在线监测。根据空气质量管控措施和天气形势将研究期分为6个阶段。管控前、管控期Ⅰ(非台风)和管控期Ⅱ(非台风) PM2.5质量浓度分别为(33. 12±9. 48)、(30. 30±17. 00)、(16. 01±4. 71)μg/m^3。管控期Ⅰ(台风)和管控期Ⅱ(台风) PM2.5质量浓度分别为(12. 40±3. 73)、(12. 45±3. 28)μg/m^3。结果表明:管控期Ⅰ(非台风)阶段受静稳天气的影响,管控效果削弱,PM2.5质量浓度下降幅度小;台风对颗粒物质量浓度下降的影响比管控更显著。管控初期,PM2.5中二次无机离子的质量浓度下降明显;台风对碳质组分质量浓度的影响不如无机组分显著。PMF源解析结果表明,二次无机源是PM2.5主要来源,随着管控措施的实行,扬尘源的贡献从21%降低到6%,而机动车源的贡献降幅不明显。台风期间SO4^2-、NO3^-、SO2、NO2以及硫酸盐氧化比值(SOR)均明显低于非台风期间,氮氧化比值(NOR)反而升高。台风和非台风期间NOR的日变化特征一致,NOR与阳离子的相关性分析结果表明,台风或高风速海风期间NOR与Na^+呈现很强的正相关性,说明海盐粒子可促进NO2非均相反应生成NO3-。  相似文献   

14.
15.
Atmospheric particulate and gaseous polycyclic aromatic hydrocarbons (PAHs) samples were collected from an urban area in Dokki (Giza) during the summer of 2007 and the winter of 2007–2008. The average concentrations of PAHs were 1,429.74 ng/m3 in the particulate phase, 2,912.56 ng/m3 in the gaseous phase, and 4,342.30 ng/m3 in the particulate + gaseous phases during the period of study. Dokki has high level concentrations of PAH compounds compared with many polluted cities in the world. The concentrations of PAH compounds in the particulate and gaseous phases were higher in the winter and lower in the summer. Total concentrations of PAHs in the particulate phase and gaseous phase were 22.58% and 77.42% in summer and 36.97% and 63.03% in winter of the total (particulate + gaseous) concentrations of PAHs, respectively. The gaseous/particulate ratios of PAHs concentration were 3.43 in summer and 1.71 in winter. Significant negative correlation coefficients were found between the ambient temperature and concentrations of the total PAHs in the particulate and gaseous phases. The distribution of individual PAHs and different categories of PAHs based on aromatic ring number in the particulate and gaseous phases during the summer and winter were nearly similar, indicating similar emission sources of PAHs in both two seasons. Benzo(b)fluoranthene in the particulate phase and naphthalene in the gaseous phase were the most abundant compounds. Diagnostic concentration ratios of PAH compounds indicate that these compounds are emitted mainly from pyrogenic sources, mainly local vehicular exhaust emissions. Health risks associated with the inhalation of individual PAHs in particulate and gaseous phases were assessed on the basis of its benzo(a)pyrene equivalent concentration. Dibenzo(a,h)anthracene and benzo(a)pyrene in the particulate phase and benzo(a)pyrene and benzo(a)anthracene in the gaseous phase were the greatest contributors to the total health risks. The relative mean contributions of the total carcinogenic activity (concentrations) of all PAHs to the total concentrations of PAHs were 29.37% and 25.15% in the particulate phase and 0.76% and 0.92% in the gaseous phase during the summer and winter, respectively. These results suggest that PAHs in the particulate phase in the ambient air of Dokki may pose a potential health risk.  相似文献   

16.
To investigate the diurnal profile of the concentration and composition of ambient coarse particles, three sampling sites were set up in the Los Angeles Basin to collect coarse particulate matter (CPM) in four different time periods of the day (morning, midday, afternoon and overnight) in summer and winter. The samples were analyzed for total and water-soluble elements, inorganic ions and water-soluble organic carbon (WSOC). In summer, highest concentrations of CPM gravimetric mass, mineral and road dust, and WSOC were observed in midday and afternoon, when the prevailing onshore wind was stronger. In general, atmospheric dilution was lower in winter, contributing to the accumulation of air pollutants during stagnation conditions. Turbulences induced by traffic become a significant particle re-suspension mechanism, particularly during winter night time, when mixing height was lowest. This is evident by the high levels of CPM mass, mineral and road dust in winter overnight at the near-freeway sites located in urban Los Angeles, and to a lesser extent in Riverside. WSOC levels were higher in summer, with a similar diurnal profile with mineral and road dust, indicating that they either share common sources, or that WSOC may be adsorbed or absorbed onto the surfaces of these dust particles. In general, the contribution of inorganic ions to CPM mass was greater in the overnight sampling period at all sampling sites, suggesting that the prevailing meteorological conditions (lower temperature and higher relative humidity) favor the formation of these ions in the coarse mode. Nitrate, the most abundant CPM-bound inorganic species in this basin, is found to be predominantly formed by reactions with sea salt particles in summer. When the sea salt concentrations were low, the reaction with mineral dust particles and the condensation of ammonium nitrate on CPM surfaces also contributes to the formation of nitrate in the coarse mode.  相似文献   

17.
Because of the recent frequent observations of major dust storms in southwestern cities in Iran such as Ahvaz, and the importance of the ionic composition of particulate matters regarding their health effects, source apportionment, etc., the present work was conducted aiming at characterizing the ionic composition of total suspended particles (TSP) and particles on the order of ~10?μm or less (PM(10)) during dust storms in Ahvaz in April-September 2010. TSP and PM(10) samples were collected and their ionic compositions were determined using an ion chromatography. Mean concentrations of TSP and PM(10) were 1,481.5 and 1,072.9?μg/m(3), respectively. Particle concentrations during the Middle Eastern Dust (MED) days were up to four times higher than those in normal days. Ionic components contributed to only 9.5% and 11.3% of the total mass of TSP and PM(10), respectively. Crustal ions were most abundant during dust days, while secondary ions were dominant during non-dust days. Ca(2+)/Na(+) and Cl(-)/Na(+) ratios can be considered as the indicators for identification of the MED occurrence. It was found that possible chemical forms of NaCl, (NH(4))(2)SO(4), KCl, K(2)SO(4), CaCl(2), Ca(NO(3))(2), and CaSO(4) may exist in TSP. Correlation between the anionic and cationic components suggests slight anion and cation deficiencies in TSP and PM(10) samples, though the deficiencies were negligible.  相似文献   

18.
The particulate matter with an aerodynamic diameter less than or equal to 10 and 2.5 microns respectively (PM10 and PM2.5) constitutes one of the main air pollutants, which is currently regulated in Europe through Directive 2008/50/EC due to its proven harmful effects on human health. In this paper, the airborne PM10 samples collected in Zaragoza city during 2001-2009 were apportioned by statistical tools based on principal component analysis with absolute principal component scores (PCA-APCS). PM10 samples were characterized regarding their concentrations of polycyclic aromatic hydrocarbons (PAH) and water-soluble ions. PAH were analyzed by gas chromatography-mass spectrometry-mass spectrometry detection (GC-MS-MS) and ions were analyzed by ion chromatography. A total of five factors were identified by PCA-APCS corresponding to different anthropogenic and natural sources. This work was focused on analyzing in more detail those samples involving higher negative impact on human health, in particular, PM10 samples exceeding the daily PM10 limit value of 50 μg m(-3) according to Directive 2008/50/EC and samples with concentrations of benzo[a]pyrene (BaP) higher than the upper assessment threshold (BaP > 0.6 ng m(-3)) established by the Directive 2004/107/EC. Most of the exceedances of the daily PM10 limit value were associated with direct and indirect North-African long-range transport. During these exceedances, it was observed that anthropogenic pollution sources slightly decreased with regard to the natural sources. This indicated that episodes of high PM10 could have a natural origin associated with long-range transport from the African continent. On the contrary, those exceedances with regional contribution and samples with BaP concentrations higher than 0.6 ng m(-3) showed an important contribution of anthropogenic pollution sources increasing their negative impact on human health.  相似文献   

19.
乌鲁木齐市可吸入颗粒物水溶性离子特征及来源解析   总被引:2,自引:1,他引:1  
采暖期时在乌鲁木齐市采集了环境空气中的可吸入颗粒物,对可吸入颗粒物质量浓度及8种水溶性离子的特征和来源进行了分析。结果表明,细粒子和粗粒子的月平均质量浓度分别是53.5~233.3μg/m3和38.9~60.9μg/m3;细粒子和粗粒子中水溶性离子主要由SO24-、NH4+和NO3-组成;粗粒子中NH4+与NO3-和SO24-的相关性分别是0.70和0.66,细粒子中NH4+与NO3-和SO24-的相关性分别是0.89和0.93,铵盐是乌鲁木齐可吸入颗粒物主要存在形式;煤烟尘是乌鲁木齐市采暖期可吸入颗粒物的主要来源。  相似文献   

20.
通过2015年在沈阳市采集PM2.5样品及源类样品,分析样品的质量浓度和化学组成,用化学质量平衡(CMB)模型对该市PM2.5来源进行解析。结果表明:沈阳市大气中PM2.5浓度时空变化特征明显;各主要源类对沈阳市PM2.5的分担率依次为煤烟尘(28.03%)、二次无机离子(22.63%)、机动车尾气尘(17.27%)、城市扬尘(13.28%)、建筑尘(5.94%)、土壤风沙尘(5.82%)、道路尘(3.04%)、生物质燃烧尘(2.74%)和冶金尘(1.25%)。燃煤和机动车的有效控制既能降低本类源的贡献,也能降低二次无机离子,体现了多源类综合治理原则。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号