首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Polycyclic aromatic hydrocarbons extracted and concentrated from diesel exhaust particulates have been shown to be mutagenic and carcinogenic, but attempts to induce pulmonary tumors through chronic inhalation of diesel exhaust by experimental animals have failed. We have attempted to resolve this incongruity by measuring chromosomal damage in lung tissue of chronically exposed hamsters, using the highly sensitive test for genotoxic chemical agents, sister chromatid exchange (SCE) analysis. To determine the degree of responsiveness of the test system to both diesel exhaust particulates and benzo(a)pyrene (BaP), these agents were instilled intratracheally into anesthetized hamsters as suspensions in 0.25 ml volumes of Hank's balanced salt solution (HBSS). Lung tissues from these animals were subsequently cultured in vitro and chromosomes from the resulting cell divisions were scored for exchanges of chromatin between sister chromatids. Control animals, treated weekly with 0.25 ml of BSS for 10 weeks, showed an average value of 12 SCE's per cell, while animals treated weekly with 200 ng BaP over a 10-week period showed an average of 17 SCE's per cell. HBSS, given as a single treatment, also produced an average of 12 SCE's per cell in control animals, but animals treated with a single instillation of 12.5 μg BaP showed an average SCE value of 19. These data confirmed that the procarcinogen BaP can be metabolically activated by lung cells in vivo and also demonstrated the efficacy of using this technical approach to study the effect of chemical mutagens that enter the lungs. Diesel exhaust particulates, administered in a range from 0 to 20 mg per hamster over a 24 h exposure period, produced a linear SCE dose-response ranging from 12 to 26 SCE's per metaphase. This curve suggested that a concentration of 3 mg of diesel particulates per hamster would not produce a statistically significant increase in SCE's above control values. One group of 8 hamsters, chronically exposed to diesel exhaust particulates for 3 months showed an average of 12 SCE's per cell. This was equivalent to a set of 5 control animals which also showed an average of 12 SCE's per cell. Although the scope of this study was limited, the data demonstrated that diesel exhaust particulates can induce genotoxic damage but a 3-month exposure to 6 mg/m3 of diesel exhaust particulates was insufficient to produce measurable mutagenic changes in lung cells. This negative response is consistent with the results from other studies in which similar exposures failed to produce pulmonary tumors.  相似文献   

2.
Adult male, inbred, disease-free cats of uniform age and size were exposed eight hours per day, seven days per week to a 1 : 18 dilution of diesel exhaust emissions. After one year of exposure, the animals were removed from the chambers for measurement of lung volumes, forced expiratory flow rates, dynamic compliance and resistance, diffusing capacity, and nitrogen washout. No important changes in pulmonary function were detected with the exception of a decrease in closing volume (P < 0.05). The inability to detect decrements in pulmonary function may have been due to insufficient cocentration of exhaust, insufficient exposure length, or to the use of a species resistant to diesel exhaust. To test these possibilities, the cats are being exposed for an additional year, and another species, hamsters, are being exposed for future testing at exhaust dilutions of 1 : 18 and 1 : 9.  相似文献   

3.
Thw purpose of this work was to assess the potential effect that chronic inhalation of diesel exhaust may have on lung mechanics and lung volumes. Noninvasive pulmonary function tests have been conducted repeatedly on 25 rats exposed to diesel exhaust at a particulate concentration of 1500 μg/m3, for 20 h/day, days/week for 267 days. The same tests were conducted on 25 clean air control animals. When the data is normalized, there are no apparent functionally significant changes occurring in the lungs that may be attributed to the chronic inhalation of diesel exhaust.  相似文献   

4.
A sex-linked recessive lethal test was performed on male fruit flies of the species Drosophila melanogaster, (Oregon-R strain), exposed to an approximate five-fold dilution of exhaust from a diesel engine. The eight hour exposure was achieved by drawing diluted diesel exhaust from a three cubic meter stainless steel exposure chamber housing laboratory animals through a two liter reaction flask modified for use with Drosophila. A preconditioned sampling bag was used to collect the emissions after passing through the exposure chamber containing the flies. Results of analyses performed on the diesel exhaust mixture showed the following: carbon dioxide—0.17%, carbon monoxide—12.2 ppm, hydrocarbons—11.6 ppm, nitrogen oxide—3.8 ppm, nitrogen dioxide—2.9 ppm, sulphur dioxide—1.0 ppm, and particulates—2.18 mg/m3. Two broods of the F2 generation were investigated for the occurrence of recessive lethal events. These broods approximated the developing gametogenic stages of mature sperm (P1 matings on days 2 and 3 postexposure) and spermatocytes (P1 matings on days 8 and 9). Additionally, the F3 generation was evaluated for the occurrence of mosaic recessive lethal events which might escape detection in the F2 generation. An equal number of F2 and F3 flies for both broods served as concurrent controls. Results indicate that, under the conditions tested, the diesel exhaust did not increase the mutation frequency of the exposed flies (F2 rate = 0.30%, F3 rate = 0%) when compared to the concurrent controls (F2 rate = 0.37%, F3 rate = 0.15%).  相似文献   

5.
Male Chinese hamsters were exposed to diesel exhaust and clean air for six months at the Center Hill Facility of the U.S. Environmental Protection Agency in Cincinnati, Ohio. The animals were kept in specially constructed inhalation chambers and exposed to clean air or diesel exhaust for eight hours daily. The animals were sacrificed and slides prepared to study the mutagenic effects of diesel exhaust by four in vivo short term mammalian bioassays. Sperm morphology bioassay revealed a 2.67-fold increase in sperm abnormalities in the animals exposed to diesel exhaust as compared to those exposed to fresh air. Micronucleus bioassay revealed a 50% increase in the number of micronuclei in polychromatic erythrocytes obtained from animals exposed to diesel exhuast. However, no increase in sister chromatid exchange or chromosomal abnormalities was observed in bone marrow cells of animals treated with diesel exhaust. During these studies a decrease in mitotic index was observed in animals treated with diesel exhaust.  相似文献   

6.
A series of experiments was conducted in which groups of mice were first exposed for various durations to diluted exhaust from light duty diesel engines and then briefly to an infectious aerosol generated by nebulizing cultures of a bacterial pathogen (Streptococcus). Typically, postinfection mortality was significantly greater in groups exposed to exhaust than in their corresponding control groups exposed to purified air only. Data of recent diesel and of past diesel- and catalyst-treated gasoline engine exhaust experiments suggest a somewhat greater excess mortality from (enhanced susceptibility to) bacterial infection in mice exposed to diesel exhaust than in those exposed to catalytic gasoline exhaust. Limited data on acute tests of NO2 and acrolein vapor alone suggest that the infectivity-enhancing effect of diesel exhaust could be accounted for in large part by these components. Exposures to diesel exhaust, NO2, or acrolein did not enhance the mortality response to a viral pathogen (A/PR8-34).  相似文献   

7.
The diminishing resources and continuously increasing cost of petroleum in association with their alarming pollution levels from diesel engines have caused an interest in finding alternative fuels to diesel which are renewable and sustainable. Emission control and engine efficiency are two most important parameters in current engine design. The impending introduction of emission standards such as Euro IV and Euro V is forcing the research towards developing new technologies for combating engine emissions. The classification of Euro IV and V norms is applicable to heavy-duty engines in Europe, where as Euro 5 is applicable to light-duty engines. This paper presents the effects of exhaust gas recirculation (EGR), swirl augmentation techniques and ethanol addition on the combustion of Honge oil methyl ester (HOME) and its blends with ethanol in a diesel engine. From the experimental work conducted, it is found that the combustion of HOME plus up to 15% ethanol blend in a diesel engine operated with optimised parameters of injection timing 23° Before Top Dead Centre and compression ratio 17.5 results in acceptable combustion emissions and improved brake thermal efficiency (BTE). The addition of ethanol increased BTE with reduced hydrocarbons (HCs), CO and smoke emissions. However, NO x emissions increased dramatically. Use of appropriate EGR reduces NO x to acceptable levels. The implementation of swirl augmentation techniques further resulted in increased BTE and considerable reduction in tail pipe emissions such as smoke, HCs, CO and NO x . The effect of swirl by providing grooves on the piston was taken into consideration to find the overall biodiesel engine performance, which gives scope for further studies.  相似文献   

8.
A chronic exposure study was initiated to determine the effects of diesel exhaust on the health of experimental animals. For this purpose, test atmospheres of clean air (control) or freshly diluted diesel exhaust at concentrations of 250, 750, and 1500 μg/m3 were supplied to four 12.6 m3 inhalation chambers which housed rats and guinea pigs. Diesel aerosol size and concentration, as well as chamber temperature and relative humidity, were continually monitored and controlled to maintain the exposure dose levels and an environment of 22±2°C and 50%±20% relative humidity. The concentrations of CO and NOx were found to be 5.8±1.0 mg/m3 and 7.9±1.0 mg/m3 above ambient in the chamber containing 1500 μg/m3 of particulate. Animals were supplied from the chambers, on a random basis, for both intramural and extramural studies throughout the exposure period. The experiment ran uninterrupted for over twelve months with mean diesel particle mass concentrations within 2% of the target values.  相似文献   

9.
A complete assessment of the health effects of diesel emissions must take into account the possible chemical transformations (and associated biological impacts) of particulate organic matter (POM) due to reactions with the many gaseous copollutants which have now been unambiguously demonstrated to be present in atmospheres burdened by photochemical air pollution. These copollutants include the “trace” species, nitric (HNO3) and nitrous (HONO) acids, the nitrate radical (NO3), formaldehyde (H2CO) and formic acid (HCOOH), as well as the criteria pollutants, ozone (O3) and nitrogen dioxide (NO2). Techniques for establishing the atmospheric concentrations of the trace pollutants (and their spatial and temporal variations) are briefly described, and we present results of investigations into the reactions of polycyclic aromatic hydrocarbons (PAH) coated on filters and exposed to ambient concentrations of O3 and NO2. Environmental health implications of these results are discussed and include the potential for sampling “artifacts” and their possible effects on the correlation (or lack thereof) between ambient PAH levels and urban lung cancer rates, as well as the problems associated with understanding the appropriate POM “dose” to be employed in animal testing and assessments of impacts on human health.  相似文献   

10.
To estimate the human health risk of inhaled diesel particles, it is necessary to know their deposition and retention in the respiratory tract and the rate of dissociation of mutagenic compounds associated with the particles. The deposition of a chain aggregate aerosol of 67Ga2O3 with size and shape characteristics similar to diesel exhaust particles has been evaluated using Beagle dogs. Approximately one-third of the inhaled activity is deposited in the respiratory tract with most of the particles deposited in the lung. The mutagenic activity present in dichloromethane, dog serum, dog lung lavage fluid, saline, dipalmitoyl lecithin (DPL) and albumin following incubation of these fluids with diesel exhaust particles was determined in the Ames Salmonella system. As observed by other investigators, large quantities of mutagenic activity were removed by dichloromethane. A very small amount of mutagenic activity was removed by the serum and lavage fluid over a 3-day incubation period. No activity was detected following elution with the other solvents. The finding that minimal mutagenic activity could be demonstrated in the biological media following incubation with diesel exhaust particles may be due to a lack of removal of mutagens from the particles or an inactivation of removed mutagens by protein binding or other processes.  相似文献   

11.
Karanja oil methyl ester (KOME), a biodiesel prepared from Karanja oil, a potential source of non-edible oil in India and a prospective alternative to the diesel fuel, shows comparable performance and considerable reduction in emissions except NOx. Exhaust gas recirculation (EGR) is a popular method of reducing the NOx emission. The aim of this experimental work was to study the potential of the cooled EGR in a direct injection compression ignition engine operating with the KOME and its blend. The study was conducted with the different EGR rates. Performance and emission parameters were compared by using diesel, KOME and its blend employing EGR and with the same fuels without EGR. The study also differentiates the effect of EGR on KOME and its blend with the neat diesel. The effect of EGR was found to be slightly higher for KOME biodiesel and its blend than for neat diesel. Increased NOx emission using KOME biodiesel was also found to be reduced by using EGR.  相似文献   

12.
Alternative and renewable fuels have numerous advantages compared with fossil fuels as they are renewable and biodegradable, besides providing food and energy security and foreign exchange savings and addressing environmental and socio-economic issues. Therefore, these renewable fuels can be used predominantly in compression ignition (CI) engines for transportation purposes and power generation applications. Today, the use of biomass-derived producer gas is more relevant for addressing rural power generation and is also a promising technique for controlling both NOx and soot emission levels. Although a producer gas–biodiesel-operated dual-fuel diesel engine exhibits lower performance, they are independent from the use of fossil fuels. The lower performance of the engine could be due to the slow-burning and lower calorific value of producer gas. For this purpose, exhaustive experiments on the use of Honge oil methyl ester (HOME)–producer gas in a dual-fuel CI engine were carried out for the improvement of its fuel efficiency. This paper presents the effect of the compression ratio (CR) on the performance, combustion and exhaust emission characteristics of a single-cylinder, four-stroke, direct injection stationary diesel engine operated using HOME and producer gas in a dual-fuel mode. The results indicated that the HOME–producer gas combination exhibited lower brake thermal efficiency (BTE) with comparable emission levels with the diesel–producer gas combination at different CRs. Comparative measures of BTE, peak pressure, pressure–crank angle variation, heat release rate, smoke opacity, and hydrocarbon (HC), carbon monoxide (CO) and nitric oxide (NOx) emission levels are presented and analysed.  相似文献   

13.
The diminishing resources and continuously increasing cost of petroleum in association with their alarming pollution levels from diesel engines has led to an interest in finding alternative fuels to diesel. Emission control and engine efficiency are two of the most important parameters in current engine design. The impending introduction of emission standards such as Euro IV and Euro V has forced research towards developing new technologies for combating engine emissions. This paper examines the effects of compression ratio, swirl augmentation techniques and ethanol addition on the combustion of compressed natural gas (CNG) blended with Honge oil methyl esters (HOME) in a dual fuel engine. The present results show that the combustion of HOME and 15% ethanol blend with CNG induction in a dual-fuel engine operated in optimized parameters at an injection timing of 27° Before Top Dead Centre and a compression ratio of 17.5 resulted in acceptable combustion emissions and improved brake thermal efficiencies. The implementation of swirl augmentation techniques increased brake thermal efficiencies (BTEs) and considerably reduced combustion emissions such as smoke, HC, CO and NOx. The addition of ethanol also increased BTEs. However, at more than 15% of ethanol in HOME, NOx emissions increased dramatically.  相似文献   

14.
Three experiments were conducted to investigate factors influencing the (rated) disturbance caused by various noises to subjects when they were reading: (a) comparison of disturbances from various noises at 70 dB(A) Leq; (b) comparison of exposure-response relationships between road traffic, aircraft, and train noises; and (c) the effect of road traffic background noise on the total disturbance caused by combined noise (aircraft or train noise combined with road traffic noise). From the three experiments, the following conclusions were drawn: (1) High-level components such as peak level contributed to the disturbance, since the noise was more disturbing with the increase of peak level. (2) Although the general pattern of the exposure-response relationships for aircraft and train noises was similar, the disturbance due to road traffic noise increased with Leq level more rapidly than for aircraft and train noise. Considering that the peak level of aircraft or train noise was always higher than that of road traffic noise at equal Leq levels, the contribution of the high-level components to the disturbance appeared to be level-dependent. (3) The background noise level did not affect the total disturbance. Because the high-level components of combined noises were almost the same, this finding was consistent with conclusions drawn in (1) and (2).  相似文献   

15.
In this study we examined the effect of diesel exhaust (DE) exposure on in vivo metabolism of benzo[a]pyrene (BaP). DE-exposed and unexposed A/Jax mice of group B were instilled intratracheally with 3H-BaP. At each time point of 2, 24, and 168 h after instillation five mice were killed and the liver, lungs, and testes were removed and frozen. Aliquots of the organs were homogenized in 2 ml water and each received 3 volumes of cold ethanol. Radioactivity in supernatant and precipitate was measured. The supernatant extracts were subjected to HPLC analysis on ALOX-T and on Zorbax ODS. The ALOX-T method was a modification of Autrup's procedure for conjugate assay (Biochem. Pharmacol.28, 1727, 1979). Fractions were (a) free BaP; (b) nonconjugated primary metabolites; (c) sulfate conjugates; (d) glucuronides, glutathiones, and other conjugates. By 2 h after instillation primary metabolites were found in liver and lung, but very little was conjugated. The unconjugated BaP was mainly in the form of free BaP and phenolic metabolite(s). The lungs of DE-exposed mice had less capacity to dispose of “bound” BaP 1 week after instillation.  相似文献   

16.
Female Swiss mice were exposed 8 h/day to diesel exhaust for 1, 3, and 7 weeks. Urine was collected overnight for 4 days prior to sacrifice while the mice continued to be exposed for eight hours during the day. The presence of mutagens was determined by the Ames Salmonella test. One hour prior to sacrifice each mouse received 1 mg/kg colcemide. After sacrifice, the marrow from each femur was obtained. The marrow from one femur was used to prepare slides for metaphase analysis and the other for micronuclei assay. Other mice received IP 50 mg/kg cyclophosphamide 24 h prior to sacrifice or 1 μmole/kg benzo(a)pyrene in each of four daily doses prior to sacrifice and served as positive controls. The Ames Salmonella assay of the unconcentrated urine after 1, 3, and 7 weeks and concentrated urine after 7 weeks exposure to diesel exhaust did not significantly vary from clean air controls. In the micronucleus test, and metaphase analysis, cyclophosphamide produced a strong positive response and the 7 week diesel exposure was not different from clean air controls.  相似文献   

17.
Alternative fuels for diesel engine applications are gaining more prominence as they have numerous advantages compared to fossil fuels. They are renewable, biodegradable; provide food and energy security and foreign exchange savings. They address environmental concerns and socio-economic issues as well. Gaseous fuels such as compressed natural gas and hydrogenated compressed natural gas (HCNG) appear more attractive fuels for diesel engine applications operated in dual-fuel mode. Such dual fuel engines can replace considerable amount of liquid-injected pilot fuels by gaseous fuels besides being friendly to the environment. A small quantity of liquid fuel injected towards the end of the compression stroke initiates combustion of the inducted gas in the dual-fuel engines. The main advantage of dual-fuel engines is their lower nitrogen oxides (NOx) and particulate emissions. Hence renewable fuels such as biodiesels and gaseous fuels can be used predominantly for transportation and power generation applications. Gaseous fuels are clean burning and are more economical as well. A suitable carburettor was designed to supply a stoichiometric mixture of air and HCNG to the modified diesel engine operated in dual-fuel mode. The biodiesel used in this study is derived from Honge oil called the Honge oil methyl ester (HOME). This paper presents the performance, combustion and exhaust emission characteristics of a single cylinder, four stroke, direct injection, stationary diesel engine operated on HOME and HCNG in dual-fuel mode. From the results it is observed that HOME–HCNG combination gave lower brake thermal efficiency (BTE) and improved emission levels when compared with diesel/HOME in single fuel operation. Lower smoke and particulate matter were obtained with dual-fuel operation. Comparative measures of BTE, peak pressure, pressure–crank angle variation, smoke opacity, hydrocarbon, carbon monoxide and NOx emissions have been made and analysed.  相似文献   

18.
BackgroundSteel production is a major industry worldwide yet there is relatively little information on the pulmonary effects of air quality near steel manufacturing plants.ObjectivesThe aim of this study was to examine how lung function changes acutely when healthy subjects are situated near a steel plant which is adjacent to a residential area.MethodsSixty-one subjects were randomly assigned to spend 5 consecutive, 8-hour days in a residential neighborhood approximately 0.9 km from a steel plant, or approximately 4.5 km away at a college campus. Subjects crossed-over between sites after a nine-day washout period. Lung function was measured daily at both sites along with air pollutants including SO2, NO2, O3, PM2.5, and ultrafine particles. Diffusion capacity and pulse oximetry were also examined.ResultsCompared with the college site, the forced expiratory volume in 1-second/forced vital capacity, forced expiratory flow between 25% and 75% of the FVC, total lung capacity, functional residual capacity, and residual volume were lower near the steel plant by 0.67% (95% CI: 0.28, 1.06),1.62% (95% CI: 0.50, 2.75), 1.54% (95% CI: 0.68, 2.39), 3.54% (95% CI: 1.95, 5.13) and 11.3% (95% CI: 4.92, 17.75), respectively. Diffusion capacity, forced expiratory volume in 1 s, and pulse oximetry were also lower near the plant but these effects were not statistically significant. Sulfur dioxide, ultrafine particulates, and oxides of nitrogen were greater near the steel plant site compared to the college site.ConclusionsSpending short periods of time near a steel plant is associated with a decrease in lung function.  相似文献   

19.
Factors influencing the disposition of the inhaled diesel particles were studied by analyzing the deposition of radioactively labelled diesel particles in the respiratory system, by determining the specific function of alveolar cellular mechanisms in the primary defense against inhaled particles and by identifying the important role of the lymphatic system in the lung clearance of experimental animals exposed to diluted emissions from a diesel engine. Radioactive 131Barium was used as a tracer of diesel particles and the deposition efficiency was determined to be 15%±6% of the inhaled dose in the Fischer 344 rat strain. The number of cells obtained by bronchial lavage increased significantly after a prolonged exposure to a concentration of 1500 μg/m3 of diesel particles. The increased cell number was more than twofold, contained two distinct cell populations (alveolar macrophages and neutrophils) and represented a reactive mobilization of the defense mechanisms in the organism. Light microscopy studies investigated the role of lymphatic transport of the particulate matter and revealed that the peribrochial and perivascular aggregates of lymphoid tissue contained diesel particles even after short exposure periods at low dose levels. With the increasing burden of particles in the respiratory system, the coloration of hilar and mediastinal lymph nodes continuously changed to gray and finally to dark black, depending upon the dose level and exposure. However, at all exposure levels, most of the diesel particles in the alveoli were phagocytized by an increased alveolar cellular defence and particle-containing macrophages were actively moving towards the mucociliary escalator or towards lymphatic channels leading to peribronchial lymphoid aggregates and bronchial or mediastinal lymph nodes. In the lymph nodes, alveolar macrophages containing diesel particles were found mostly in the afferent subcapsular lymphatic vessels and marginal sinuses. In the later stages, cellular structure disintegrated and large aggregates of particulate matter were dispersed throughout the medullary cords with increasing accumulation towards the hilus. It is concluded that the lymphoid aggregates and lymphatic nodes play an important role in sequestering diesel particles or particle-containing phagocytizing cells and provide a pathway, in addition to the mocociliary clearance for particulate removal from the deep pulmonary region.  相似文献   

20.
ABSTRACT

Renewable and sustainable fuels for diesel engine applications provide energy protection, overseas exchange saving and address atmospheric and socio-economic concerns. This study presents the investigational work carried out on a single cylinder, four-stroke, direct injection diesel engine operated in dual fuel (DF) mode using renewable and sustainable fuels. In the first phase, a Y-shaped mixing chamber or venture was developed with varied angle facility for gas entry at 30°, 45° and 60°, respectively, to enable homogeneous air and gas mixing. Further effect of different gas and air mixture entry on the DF engine performance was studied. In the next phase of the work, hydrogen flow rate influence on the combustion and emission characteristics of a compression ignition (CI) engine operated in DF mode using diesel, neem oil methyl ester (NeOME) and producer gas has been investigated. During experimentation, hydrogen was mixed in different proportions varied from 3 to 12 l/min (lpm) in step of 3 lpm along with air-producer gas and the mixtures were directly inducted into engine cylinder during suction stroke. Experimental investigation showed that 45° Y-shaped mixing chamber resulted in improved performance with acceptable emission levels. Further, it is observed that investigation showed that at maximum operating conditions and hydrogen flow rate of 9 lpm, Diesel–producer gas and NeOME–producer gas combination showed increased thermal efficiency by 13.2% and 3.8%, respectively, compared to the DF operation without hydrogen addition. Further, it is noticed that hydrogen-enriched producer gas lowers the power derating by 5–10% and increases nitric oxide (NOx) emissions. However, increased hydrogen addition beyond the 12 lpm leads to sever knocking.

Abbreviations: NeOME: Neem oil methyl ester; BTE: brake thermal efficiency; CI: compression ignition; ITE: indicated thermal efficiency; PG: producer gas; CA: crank angle; K: Kelvin; BP: brake power; IP: indicated power; H2: hydrogen; HC: unburnt hydrocarbon; CO: carbon dioxide; CO2: carbon dioxide; NOx: nitric oxide; HRR: heat release rate; %: percentage; PPM: parts per million; CMFIS: conventional mechanical fuel injection system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号